
This is a post-peer-review, pre-copyedit version of an article

published in

International journal of computer assisted radiology and surgery

The final authenticated version is available online at:

https://doi.org/10.1007/s11548-016-1488-y

https://inrepo01.inet.dkfz-heidelberg.de/search?cc=Periodicals&p1=PERI:(DE-600)2235881-X
https://doi.org/10.1007/s11548-016-1488-y

Noname manuscript No.
(will be inserted by the editor)

MITK-OpenIGTLink for combining open-source toolkits in
real-time computer-assisted interventions

Martin Klemm† · Thomas Kirchner‡ · Janek Gröhl‡ · Dominique

Cheray‡ · Marco Nolden‡ · Alexander Seitel‡ · Harald Hoppe† · Lena

Maier-Hein‡ · Alfred M. Franz‡

Received: date / Accepted: date

Abstract Purpose Due to rapid developments in the

research areas of medical imaging, medical image pro-

cessing and robotics, computer-assisted interventions

(CAI) are becoming an integral part of modern patient

care. From a software engineering point of view these

systems are highly complex and research can benefit

greatly from reusing software components. This is sup-

ported by a number of open-source toolkits for medical

imaging and CAI such as the Medical Imaging Interac-

tion Toolkit (MITK), the Public software Library for

UltraSound imaging research (PLUS) and 3D Slicer. An

independent inter-toolkit communication such as the

Open Image-Guided Therapy Link (OpenIGTLink) can

be used to combine the advantages of these toolkits and

enable an easier realization of a clinical CAI workflow.

Methods MITK-OpenIGTLink is presented as a net-

work interface within MITK that allows easy-to-use,

asynchronous two-way-messaging between MITK and

clinical devices or other toolkits. Performance and in-

teroperability tests with MITK-OpenIGTLink were

carried out considering the whole CAI workflow from

data acquisition over processing to visualization.

Results We present how MITK-OpenIGTLink can be

applied in different usage scenarios. In performance

tests tracking data was transmitted with a frame rate

of up to 1000 Hz and a latency of 2.81 ms. Trans-

mission of images with typical UltraSound (US) and

Martin Klemm
Phone: +49 781 205 4681
Fax: +49 781 205 45 4681
E-mail: martin.klemm@hs-offenburg.de

† Laboratory for Computer-Assisted Medicine, Department
of Electrical Engineering and Information Technology, Offen-
burg University, Badstraße 24, 77652 Offenburg, Germany ·
‡ German Cancer Research Center (DKFZ), Im Neuenheimer
Feld 280, 69120 Heidelberg, Germany

greyscale High-Definition (HD) resolutions of 640x480

and 1920x1080 is possible at up to 512 Hz and 128 Hz

respectively.

Conclusion With the integration of OpenIGTLink into

MITK, this protocol is now supported by all established

open-source toolkits in the field. This eases interoper-

ability between MITK and toolkits such as PLUS or 3D

Slicer and facilitates cross-toolkit research collabora-

tions. MITK and its submodule MITK-OpenIGTLink

are provided open-source under a BSD-style license1.

Keywords Computer-assisted interventions · Image-

guided therapy · Ultrasound · Interoperability ·
OpenIGTLink · MITK

1 Introduction

Technological advances have opened many new doors in

medical imaging, medical image processing and robotics

research. Computer assistance is no longer restricted

to diagnostics and surgical planning but has been ex-

panded to surgical and radiological interventions. From

a software engineering point of view, these extensions

bring new requirements, e.g. support for complex clin-

ical workflows, integration of different kinds of hard-

ware and data, real-time data processing, and the need

for high levels of robustness. In this context, research

can greatly benefit from reusing software components

and the community has gradually become aware of

the importance of publishing source-code to ensure

reproducibility of results [11]. As a consequence, open-

source software for medical imaging applications has

gained popularity in the scientific community in recent

years. Instead of reinventing the wheel, researchers can

1 See http://mitk.org

2 Martin Klemm† et al.

now concentrate on their preferred research and other

groups can easily reproduce their results [5].

A number of open-source toolkits have been pub-

lished in recent years, all with their degree of differen-

tiation. Some are highly specialized in a certain field,

e.g. PLUS [14] and the Medical UltraSound Imaging

and Intervention Collaboration (MUSiiC) [26]. Others

provide necessary infrastructure, e.g. the Insight Seg-

mentation and Registration Toolkit (ITK) [18], Open-

IGTLink [29], and yet others combine the functional-

ity and the infrastructure into one application, e.g. 3D

Slicer [23] and MITK [30,21].

Starting off as stand-alone software components, the

mentioned toolkits developed towards intra-operable

solutions especially with the introduction of OpenIGT-

Link2. A good example is the combination of PLUS and

3D Slicer [14]. While PLUS is acquiring and processing

the data, 3D Slicer is used to visualize it. OpenIGT-

Link is an open source network protocol originally de-

veloped for IGT environments [29] and is the de facto

standard in the medical research field. It has proved

its functionality in many different applications, such as

MRI-guided robotic prostate interventions for commu-

nication between scanner, workstation and robot [29]

or neurosurgery for communication between a com-

mercial navigation system and 3D Slicer [29]. A wide

range of toolkits such as 3D Slicer [8], IGSTK [22],

MUSiiC [12], MeVisLab [7], PLUS [14] and NifTK [4]

already support this protocol.

MITK provides dedicated modules for IGT (MITK-

IGT, [20,9]), range imaging (MITK-TOF, [25]) and Ul-

traSound (MITK-US, [16]) and is used as a basic toolkit

by other open- and closed-source software such as

NifTK [4]. These modules have been used for a wide va-

riety of CAI applications including a needle-based navi-

gation system for CT-guided radiofrequency ablation of

the liver [15], mobile Augmented Reality (AR) systems

for nephrolithotomy and forensic medicine [19,13], a

navigation system based on a compact electromagnetic

field generator integrated with an US probe [17] and

markerless navigation for percutaneous needle inser-

tions [24].

We introduce the module MITK-OpenIGTLink that

extends MITK with a network interface to allow cross-

application, cross-toolkit, and cross-platform commu-

nication within CAI systems. This module implements

the OpenIGTLink protocol version 2, including full

support for the querying mechanism: Data can be re-

quested and replies are sent if the data is available.

We highlight different usage scenarios and evaluate the

modules performance with respect to frame rate and

latency.

2 See http://openigtlink.org/

2 Methods

MITK-OpenIGTLink is implemented as a module

within the MITK toolkit providing standardized in-

dependent communication across toolkits and medical

devices. The implementation complies with the MITK

software process [21] using a continuous integration3, a

database for tracking changes4 and a dedicated release

process with manual tests at the application level.

This section starts with the requirement analysis,

followed by the architectural overview and finishes with

the methodology for validating the developed architec-

ture.

2.1 Requirements

The following requirements were identified for MITK-

OpenIGTLink as a communication layer for MITK:

Extensibility : The new module must easily integrate

into the pipeline structure of MITK and its modules

to allow for interchangeability of e.g. data processing

methods. Using new and customized OpenIGTLink

message types must be possible.

Flexibility : The data transmission and its processing

inside the MITK pipelines have to be connected in a

flexible way in order to easily exchange the processing

steps.

Performance: High frame rates and low latency are

necessary for real-time applications. The US image

data transfer shall run with 30 Hz since typical real-

time US devices run with such a frame rate. Tracking

data shall be transmitted with up to 1000 Hz in order to

cover robotic applications [29]. The latency for tracking

data caused by MITK shall be one order of magnitude

smaller than the latency caused by the tracking device

itself which is the time from when the tracking device

is sampled until tracking data is available in the PC.

Application-wide availability : The module should pro-

vide an application-wide availability of all filters and

devices that are necessary for an OpenIGTLink connec-

tion. This makes multiple configurations of the same

component unnecessary.

Portability : MITK-OpenIGTLink should be imple-

mented in C++ and run on Windows, Linux and Mac.

Robustness: Messages must not be discarded as long

as the user wants to process all of them. It must be

configurable to keep only the latest message or all.

Usability : The module must be easy to integrate for de-

velopers and the resulting application or plugin should

be easy to use for the end user.

3 See http://cdash.mitk.org/
4 See http://bugs.mitk.org/

MITK-OpenIGTLink for combining open-source toolkits in real-time computer-assisted interventions 3

OpenIGTLink
SDK

Processing
Layer

Application
Layer

Network
Layer

Sockets
Message

Types

OIGTL
Device

OIGTL Message
Queue

OIGTL Message
Factory

GUI,
Interaction

OIGTL Device
Source

OIGTL
Conversion Filter

Processing
Filters

OIGTL
Conversion Filter

Processing
Filters

OIGTL Message
Provider

1

1

1

N

Fig. 1 The MITK-OpenIGTLink layered architecture. The
network layer wraps the OpenIGTLink classes and man-
ages the communication. The processing layer connects
the OpenIGTLink device to the processing pipeline. The
OIGTLDeviceSource is used for 1 to 1 connections while the
OIGTLMessageProvider can handle several conversion filters
and supports streams. The OIGTLDeviceSource is statically
coupled with the conversion filters while the OIGTLMessage-
Provider is only loosely coupled with them. Both versions can
run in parallel but normally only one of them is used

2.2 Architecture

An architectural overview of MITK-OpenIGTLink is

given in Figure 1 and Figure 2. MITK-OpenIGTLink is

structured in the following three layers:

Network Layer: handles the communication with the

OpenIGTLink SDK

Processing Layer: handles the processing of incoming

and outgoing messages

Application Layer: handles the management of connec-

tions

Figure 1 shows the classes used to connect MITK

pipelines to other OpenIGTLink devices. A pipeline is

a concatenation of processing filters, where each fil-

ter does a particular job and sends the result to the

next stage of the pipeline. This approach is based on

ITK [10]. In ITK, pipelines are implemented as pull-

pipelines, meaning that the processing is triggered on

demand by any filter inside the pipeline (in general the

last one). This stands in contrast to a push pipeline in

Network Layer,
Processing Layer

Network
Communication

Reusable GUI
components

Manager

Examples

Fig. 2 Module structure of MITK-OpenIGTLink

which the processing is started from the first pipeline

component.

Figure 2 shows the module structure. The source

code for the network and the processing layer is con-

tained in MITK-OpenIGTLink which depends on Open-

IGTLink. MITK-OpenIGTLinkUI provides reusable

GUI components. On top of all these components there

is a manager plugin to configure the connection. Addi-

tionally different examples are provided.

2.2.1 OpenIGTLink SDK

The OpenIGTLink SDK5 consists of two parts: a low

level C library and a higher level C++ library. Open-

IGTLink is designed to run on top of the Transmis-

sion Control Protocol (TCP) stack. As an alternative

to TCP, the User Datagram Protocol (UDP) is sup-

ported. There is no session management, which is the

reason why an OpenIGTLink message contains all nec-

essary information (data type, etc.) for the receiver to

interpret it. This simplifies the protocol but also in-

creases the overhead of each message. Besides the stan-

dard messages for exchanging tracking data, images,

control and monitor information, custom message types

can be defined. The protocol version 2 also specifies a

querying mechanism used to request single messages or

streams of a given message type.

2.2.2 Network Layer

The network layer interfaces with the OpenIGTLink

protocol and encapsulates its implementation as pro-

vided in the SDK. It contains all classes for establish-

ing and managing OpenIGTLink communications and

messages.

5 See http://openigtlink.org/library.html

4 Martin Klemm† et al.

Client-Server Architecture The central class in the net-

work layer is the OIGTLDevice. An OIGTLDevice is

responsible for the communication with other toolk-

its or devices supporting OpenIGTLink. For sending

and receiving messages it uses the OpenIGTLink sock-

ets. The device runs three different threads to con-

tinuously check for new connections, receive messages

and send messages. This allows the server to accept

new client connections while it is already communicat-

ing with other clients. These threads are continuously

put to sleep for 1 ms to reduce the CPU usage of the

threads.

The OpenIGTLink client-server architecture is re-

alized by two specializations of the OIGTLDevice:

OIGTLClient and OIGTLServer. You can decide to

run a client or a server or both at the same time. This

stands in contrast to other implementations as in PLUS

in which there is only a server available.

In OpenIGTLink a server can connect to an arbi-

trary number of clients but each client only to one

server. Server and clients are classified by their role

during the connection establishment and not during the

connection itself. The client is the device that requests

the connection with the server. During the connection

both devices (client and server) can request or send

data.

Messages Incoming and outgoing messages are stored

in an OIGTLMessageQueue. These queues can be con-

figured in two different modes. Depending on the ap-

plication, it might be necessary to process all incoming

messages or only the latest one. The outgoing message

buffer is used when messages are created faster than
they can be sent.

An additional command queue stores the incom-

ing commands. In the standard there are four different

kinds of commands defined that can be used for the

query functionality:

GET MSGTYPE: Used to request a single message

with the type MSGTYPE. The device answers with

a message of type MSGTYPE or RTS MSGTYPE.

RTS MSGTYPE: Used to inform the requesting device

that MSGTYPE messages are not available.

STT MSGTYPE: Used to request a stream of mes-

sages with the type MSGTYPE. The device answers

with a stream or an RTS message.

STP MSGTYPE: Used to stop the stream of type

MSGTYPE. The device has to stop the stream and

answers with an RTS message.

The query mechanism that results from these command

messages can be used for a two-way communication,

e.g. to send control commands to an US machine and

receive image data. This query mechanism is not used

by all existing OpenIGTLink implementations. In these

cases the stream automatically starts as soon as client

and server are connected to each other. To be compat-

ible with such implementations it is possible to config-

ure MITK-OpenIGTLink to also send messages upon

connection. The commands are received and sent from

the OIGTLDevice, however, the handling of these com-

mands is done in the processing layer.

Custom message types can be created and have to

be added to the OIGTLMessageFactory before they can

be used. This can be done at compile and at run time.

In order to add custom types to the factory two things

are necessary:

1. A correct name according to the protocol: A data

message is called by its data, e.g. CUSTOMDATA,

whereas a command starts with the command type,

e.g. GET CUSTOMDATA.

2. A method that allocates this message.

Standard types are automatically added to the factory

at compile time.

The factory is registered as a Micro Service and

therefore is available system-wide. C++ Micro Ser-

vices6 are a low level mechanism for a service-oriented

modular system. The goal of this architecture is to

hide complex tasks behind a simple service interface

and to make it available to other components during

run-time. After registering a service in one module it is

available to other modules. The selection of services is

based on properties and priorities and is managed by

the so-called module context. In this way functionality

can be easily extended by registering a new service with

a higher priority. [21]

2.2.3 Processing Layer

The processing layer holds the components establish-

ing the connection between ITK style pipeline filters

and the OpenIGTLink devices in the Network Layer.

This conversion is important since existing MITK-IGT

components are mainly implemented as such filters.

The first step, a so-called conversion filter, converts ei-

ther MITK data types into OpenIGTLink messages or

vice versa. Custom conversion filters can be easily inte-

grated, however, for the most common data types used

in MITK, conversion filters are already available. In

the second step, the message has to be sent or received.

There are two different configurations to achieve this:

1. Using the OIGTLDeviceSource:

The OIGTLDeviceSource manages an OIGTLDe-

6 See http://cppmicroservices.org/

MITK-OpenIGTLink for combining open-source toolkits in real-time computer-assisted interventions 5

OIGTL
Device

OIGTL
Device

OIGTL Message
Provider

Module
Context

ImageToOIGTL
MessageFilter

Image
Source

Connect

GET_IMAGE

Connected

Incoming
Command

GetSource(IMAGE)

ImageToOIGTLMessage
Filter

GetImage
GetImage

MITKIMAGE

Send Message

OIGTLIMAGE

OIGTLIMAGE

Register

Fig. 3 Sequence diagram for the query of an image. An OIGTL device is requesting an image, the message provider looks for
available image sources inside the module context, connects itself to the fitting conversion filter (ImageToOIGTLMessageFilter)
and requests an image, subsequently the image is provided, converted and sent to the requesting device

vice and can be statically connected to a conver-

sion filter (left side of Figure 1). This configura-

tion is used in applications where all components

are known at compile time.

2. Using the OIGTLMessageProvider :

The OIGTLMessageProvider inherits from the

OIGTLDeviceSource and therefore also manages an

OIGTLDevice. The difference is that the provider

is only loosely connected to the conversion filter. At

startup it is not connected to any filter. It waits for
an incoming command message and subsequently

checks if it can provide the requested data. To find

this data the provider looks for conversion filters

that are registered as a Micro Service and that are

able to provide the appropriate data output. Once

it finds an appropriate filter it connects to it auto-

matically and sends the data. It supports single

GET commands as well as streaming commands.

This configuration is used in applications in which

the setup is defined at runtime. Figure 3 shows an

example for the request of an image but other types

can be handled in the same way.

Alternatively, MITK-OpenIGTLink can also be

used without the pipeline by directly sending Open-

IGTLink messages to the OIGTLDevice as indicated

in Figure 1 by the connection from the application

layer to the OIGTLDevice. This might be useful if the

pipelining concept is not used.

2.2.4 Application Layer

The application layer consists of ready-to-use MITK

plugins and the MITK-OpenIGTLinkUI module. The

latter contains several Qt7 GUI widgets that allow the

developer to easily integrate the new module into his

application. The plugins include the following views:

– OpenIGTLinkManager: The OpenIGTLink man-

ager view is not mandatory but can be used to

manage the OpenIGTLink devices registered as

Micro Services. Additionally, it also finds all regis-

tered conversion filters and allows to manually start

the streaming of these sources. Figure 4 shows this

plugin with a running example in which tracking

data is streamed with 500 Hz.

– OpenIGTLinkExample: This simple example con-

nects itself to an OpenIGTLink device source and

visualizes the received tracking data.

– OpenIGTLinkProviderExample: The provider ex-

ample constructs an IGT-Pipeline that uses previ-

ously recorded navigation data to simulate a track-

ing device. This data is transformed into OpenIGT-

Link messages and streamed on request (receiving

of a STT TDATA command).

In addition to these new plugins, existing plugins for

IGT and US applications were updated in such a way

that, instead of hardware devices, these modules can

also connect directly to OpenIGTLink network devices.

7 See http://qt.io

6 Martin Klemm† et al.

Fig. 4 The user interface of the manager plugin. In the top
list view the device source can be selected. In this example
the provider was selected. The lower part of the interface is
used to setup a connection, send commands and managing
streams

2.3 Performance Analysis

In order to assess the performance of latency and frame

rate parameters in realistic and reproducible environ-

ments, two recently set up high-end computers8 were

used. To neglect any falsification caused by the network,

the two PCs were directly connected to each other.

The experiments were performed on Linux. Time

synchronization between both computers was achieved

by using the Precision Time Protocol (PTP) [6] and its

implementation, the PTP daemon (PTPd)9. PTPd is

open-source and only available on Linux.

8 CPU: Core i7-5960X 3.5 GHz 8 cores, RAM: 32 GB,
Storage: SSD, GPU: Geforce GTX970 4 GB PCI-E x16, OS:
Ubuntu 14.04
9 See http://ptpd.sourceforge.net/

Server Client

1 5 632 4

R
ea

d
 in

p
u

ts
St

ar
t

co
n

ve
rs

io
n

Pu
ll

fr
om

 b
uf

fe
r

Se
n

d
m

es
sa

ge

R
ec

ei
ve

 m
es

sa
ge

Pu
sh

 in
to

 b
uf

fe
r

Pu
ll

fr
om

 b
uf

fe
r

St
ar

t
co

nv
er

si
on

Co
nv

er
si

on
 fi

ni
sh

ed
St

ar
t

re
n

de
ri

ng

Co
nv

er
si

on
 fi

ni
sh

ed
Pu

sh
 in

to
 b

uf
fe

r

Main
thread

Sending
thread

Receiving
thread

Main
thread

Fig. 5 Measurement points used for the performance analy-
sis

Previous experiments [4,29] with the OpenIGTLink

protocol mainly focused on the network performance.

Clarkson et al. and Tokuda et al. tested the latency

from the generation of the OpenIGTLink message to

the receiving in a second PC. Our analysis covers the

whole pipeline, from the data generation in MITK to

the rendering of the data in the other MITK instance.

In order to evaluate the latency of all steps of the

pipeline presented before, we defined six Measurement

Points (MP) as illustrated in Figure 5. In each MP the

current timestamp and the index of the current message

were recorded. The rendering process was considered in

the tests by performing the tests one time with render-

ing and one time without. However, in both cases the

messages are received, converted and processed in the

pipeline. There is no MP inside the rendering since it

normally runs slower than the processing. For certain

processes it might be necessary to run with high frame

rates (e.g. 500 Hz) whereas the rendering is limited by

the refresh rate of the monitor (typically 60 Hz). For

this analysis the rendering was set to 30 Hz.

2.3.1 Experiment 1: Transmission of Tracking Data

We transmitted 10000 messages containing tracking

data in 16 channels with four frame rates of 128, 256,

512 and 1000 Hz. The tracking data was previously gen-

erated and read from file. During this experiment the

rendering was turned off since it is application specific.

In the easiest case every channel could be rendered as

a single point. However, on a modern computer this

would not have an influence on the test results.

2.3.2 Experiment 2: Transmission of Image Data

We simulated an US stream by transmitting 1000

greyscale image messages with an US-typical resolu-

tion of 640x480 with varying frame rates of 16, 32, 64,

MITK-OpenIGTLink for combining open-source toolkits in real-time computer-assisted interventions 7

128, 256 and 512 Hz. The images were taken from a

standard USB webcam. All measurements were per-

formed two times, with rendering enabled and with

rendering disabled.

2.3.3 Experiment 3: Transmission of HD Image Data

We transmitted 1000 greyscale image messages with a

Full-HD resolution of 1920x1080 with frame rates of 16,

32, 64 and 128 Hz. All measurements were performed

two times, with rendering enabled and with rendering

disabled.

3 Results

The first part of this section depicts usage scenarios

that become available with the MITK-OpenIGTLink

module. The second part shows the results of the tests

described above.

3.1 Usage Scenarios

The integration of the OpenIGTLink protocol into

MITK allows several interoperability usage scenar-

ios. They range from intra-toolkit communication on

the same computer to intra-toolkit communication on

different platforms and communication with medical

devices and robotic systems.

3.1.1 Interfacing with Other Toolkits

Through MITK-OpenIGTLink, MITK can now be eas-

ily connected with other toolkits to exchange data

and other information. We illustrate this by interfac-

ing MITK to two common open-source toolkits in the

medical domain, PLUS and 3D Slicer. Both scenarios

were tested on Linux and Windows and worked well

with our implementation.

A usage scenario of interfacing between PLUS and

MITK is depicted in Figure 6. This can e.g. be used

to acquire data from an US scanner, and make use

of the algorithmic functionality of PLUS such as vol-

ume reconstruction, or spatial and temporal calibra-

tion. The acquired and processed data can be recorded

and streamed over the network via OpenIGTLink to be

used within MITK [14].

Furthermore, the new OpenIGTLink module allows

collaboration with other end-user GUI applications,

such as 3D Slicer. Hence, research groups can easily

exchange and share data and results directly from their

Windows, Linux or Mac OS

Ultrasound
Scanner

Image

MITK

OpenIGTLink

Visualization

PLUS

OpenIGTLink

Image Parameters

Fig. 6 An example for a cross-toolkit application. Both
toolkits run on the same platform. PLUS communicates with
the US scanner, performs its algorithms and sends the result
to MITK where it is visualized subsequently

favorite frameworks. 3D Slicer, for example, could ben-

efit from the range imaging module of MITK (MITK-

TOF, [25]) or from research in progress that is not yet

available as open source but provided as binaries.

Figure 7 shows this usage scenario. 3D Slicer con-

tains a plugin called OpenIGTLink Remote that al-

lows querying data and sending commands to a remote

OpenIGTLink device. In this case, MITK reacts to the

request and answers if the data is available. Moreover,

MITK could be configured to run without a GUI just

responding to the requests of another end-user GUI ap-

plication.

Windows, Linux or Mac OS
Response

3D Slicer

OpenIGTLink

Visualization

MITK

OpenIGTLink
Request

Functionality

Fig. 7 An example of a collaboration between two toolkits
in which MITK is used by another end-user GUI application

3.1.2 Cross-Platform Communication

The use case depicted in Figure 8 allows communication

between systems/applications that are bound to run on

different platforms (e.g. Windows and Linux) and/or on

a different instruction set architecture of the CPU (x86

or x64). With MITK-OpenIGTLink it is now possible

to e.g. interface with proprietary applications that are

only available for one specific platform and instruction

set without having to port the application code to this

(often outdated) system architecture. An example could

be a tracking device only accessible on a certain system

configuration. In this case, a simple console application

that streams the tracking data through OpenIGTLink

8 Martin Klemm† et al.

would be enough. We tested this by streaming tracking

data received from a tracking device that only runs on

a Windows PC to an application running on Linux.

Windows (x86) Linux Workstation (x64)

Tracking
Device

Parameters

MITK

OpenIGTLink

Visualization

MITK

OpenIGTLink

Tracking
Data

Tracking
Data

Parameters

Fig. 8 An example of a cross-platform device integration.
The visualization runs on a windows workstation with 64bit
architecture while the tracking device is connected to a MS
Windows PC with x86 architecture due to missing drivers for
64bit

3.1.3 Interfacing with Clinical Devices and Robotic

Systems

Recently, the first clinical devices that support Open-

IGTLink natively, e.g. the Brainlab navigation system,

were introduced. By using this interface, these clini-

cal devices can be integrated in a faster way. Moreover,

OpenIGTLink is often used in robotic applications [1–3,

29] which makes the integration of robotics much easier.

Another common use case is the data retrieval from an

MRI or CT scanner as described in [27]. Figure 9 shows

such a setup.

Workstation
Parameters

Clinical Device or
Robotic System

OpenIGTLink

MITK

OpenIGTLink
Data

Fig. 9 Interfacing with clinical devices or robotic systems

3.2 Performance Analysis

In the following sections, the results of the perfor-

mance tests are shown for the tracking data transfer

(section 3.2.1), the image transfer (section 3.2.2), and

the HD image transfer (section 3.2.3). For each of those

individual evaluations, the results are presented in two

ways. First, a boxplot diagram is given showing the

Generation Buffer Network Buffer Conversion Total

L
a
te

n
c
y
 i
n
 m

ill
is

e
c
o
n
d
s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 10 Experiment 1: Latency in transmission of tracking
data. 10000 messages with tracking data of 16 channels were
sent at 1000 Hz. The average total latency was 2.81 ms

latency produced by the components of the pipeline.

Since these values do not change essentially from one

test run to another only one diagram per experiment

is shown. Each test run uses a different frame rate

and calculates the mean values for transmitting 10000

tracking or 1000 image messages. The central marks of

a boxplot indicate the median, the edges of the box are

the 25th and 75th percentiles, the whiskers extend to

the most extreme data points not considered outliers

and outliers are plotted individually as crosses. Sec-

ond, a table showing the average, median, minimal and

maximal values of the test runs is given.

3.2.1 Tracking Data Transfer

Figure 10 shows a boxplot diagram of Experiment 1.

The first boxplot shows the time required for data gen-

eration. The second and fourth boxplot show the time a

message lies in a buffer. As explained above this is not

processing time but idle time and has a major influence

on the total result. The third boxplot is the time the

message is sent from one socket to the next one. The

fifth one is the time necessary to convert the incoming

OpenIGTLink message into an MITK datatype and the

sixth boxplot shows the total latency from generation

till conversion.

As shown in Figure 10 the two buffers produce the

highest latencies in the pipeline. The higher the frame

rate the lower the buffer idle time and, thus, the lower

the total latency. This behaviour can be seen in Table 1.

The average latencies, depending on the frame rate lie

between 2.81 and 7 ms.

MITK-OpenIGTLink for combining open-source toolkits in real-time computer-assisted interventions 9

Table 1 Measurement result for tracking data with different
frame rates and 10000 recorded messages

Frame rate Average Median Min Max
[Hz] [ms] [ms] [ms] [ms]

128 7.00 8.38 1.89 10.65
256 3.13 3.08 1.95 6.19
512 2.90 2.84 1.64 4.81
1000 2.81 2.76 1.48 4.65

3.2.2 Image Transfer

Figure 11 shows the result for Experiment 2 in which

image data with a fixed resolution of 640x480 pixel was

sent over the network. Compared to Experiment 1 the

major part of the latency is not produced by the buffers

but by the network itself. The average latency, depend-

ing on the frame rate and if rendering is enabled, lies

between 10.5 and 21 ms (see Table 2 and Table 3). Un-

til 128 Hz the rendering only causes minor latencies.

However, for higher frame rates it causes a significant

increase in latency of almost 100%.

Generation Buffer Network Buffer Conversion Total

L
a

te
n
c
y
 i
n

 m
ill

is
e

c
o

n
d

s

0

2

4

6

8

10

12

14

Fig. 11 Experiment 2: Latency in transmission of image data
(640x480 pixel). 1000 messages were sent at 128 Hz with dis-
abled rendering. The data transmission is the most time con-
suming step

3.2.3 HD Image Transfer

Figure 12 shows the latencies for Experiment 3 in which

HD greyscale image data with a fixed resolution of

1920x1080 pixel were sent over the network. Due to the

increased message size the major part of the latency is

produced in the network itself. The average latency, de-

pending on the frame rate, lies between 65 and 69.5 ms

(see Table 4). Unlike the results in Experiment 2 these

results are only slightly influenced by the rendering.

Table 2 Measurement result for image data with different
frame rates and 1000 recorded messages (rendering disabled)

Frame rate Average Median Min Max
[Hz] [ms] [ms] [ms] [ms]

16 13.77 13.75 12.44 15.20
32 13.01 13.00 11.57 14.96
64 12.57 12.58 10.65 14.42
128 11.55 11.54 9.66 13.79
256 10.55 10.31 8.54 23.01
512 11.20 10.52 8.36 25.43

Table 3 Measurement result for image data with different
frame rates and 1000 recorded messages (rendering enabled)

Frame rate Average Median Min Max
[Hz] [ms] [ms] [ms] [ms]

16 14.17 14.11 11.12 18.68
32 13.66 13.57 10.69 19.09
64 12.60 12.61 8.99 17.80
128 12.64 12.48 9.56 20.57
256 18.36 18.84 8.87 30.86
512 21.71 14.28 8.47 53.44

Table 4 Measurement result for HD image data with differ-
ent frame rates and 1000 recorded messages

Frame rate Average Median Min Max
[Hz] [ms] [ms] [ms] [ms]

16 69.45 69.57 60.75 74.72
32 60.86 60.86 51.07 71.13
64 68.90 68.96 50.29 84.47
128 65.09 64.99 55.21 75.95

4 Discussion

The experiments were carried out under Linux utiliz-

ing the PTPd implementation. Due to a missing open-

source alternative on MS Windows and missing hard-

ware for OS X, tests were not performed on these plat-

forms.

The missing implementation of an asynchronous

connect and receive method in OpenIGTLink v2.0

makes it necessary to have individual threads for polling

the socket. On the one hand, putting the threads to

sleep for 1 ms is necessary to reduce the CPU usage.

On the other hand, it also reduces the upper frame rate

limit to 1000 Hz. If there were to be an asynchronous

receive available in future versions of OpenIGTLink

these threads would not be necessary anymore.

Tokuda et al. [29] state that the frame rate of track-

ing devices is in the range of 40 - 375 Hz and the one

for robotic applications in the order of kHz. The experi-

ments show that tracking data can be sent with more

than 1000 Hz. The highest measurable frame rate in our

test setup, 1000 Hz, resulted in a latency of 2.81 ms on

10 Martin Klemm† et al.

Generation Buffer Network Buffer Conversion Total

L
a

te
n

c
y
 i
n

 m
ill

is
e
c
o

n
d

s

0

10

20

30

40

50

60

70

Fig. 12 Experiment 3: Latency in transmission of HD image
data. 1000 messages were sent at 128 Hz with disabled render-
ing. The data transmission is by far the most time consuming
step

average. In contrast, the lowest measured frame rate

was 128 Hz and resulted in a latency of 7 ms. According

to Teather et al. an NDI Polaris tracking system has

a latency of approximately 75 ms [28]. Wu and Taylor

state that electro-magnetic tracking systems have an

even higher latency [31]. Considering these tracking la-

tencies an additional latency of 7 ms is acceptable.

The fact that the latency is decreasing with increas-

ing frame rates is due to the implemented buffers that

cause a big part of the total latency. This means that

the faster the buffers are polled, the lower the latency

will be. Therefore, the latency can be decreased by run-

ning the ”consuming“ pipeline with a higher frame rate

than the transmission, e.g. the transmission runs with

128 Hz and the pipeline with 512 Hz. Another way to

improve this behavior could be to couple the message

reception with the pipeline by triggering the pipeline

update once a message is received.

According to [29] around 32 Hz are sufficient for

real-time US imaging. Our implementation measures up

to 512 Hz with enabled rendering and a median latency

of 14 ms. HD greyscale images were processed with

128 Hz and a latency of 66 ms. Theoretically, HD RGB

images could be sent with up to 43 Hz (128/3 ≈ 43)

which is still more than the recommended 32 Hz. There-

fore, the presented implementation is able to cover most

applications utilizing image messages.

Enabling the rendering of transmitted images only

showed differences in Experiment 2 but not in Experi-

ment 3. In Experiment 2 US image data was trans-

mitted with up to 512 Hz and a difference occurred for

frame rates higher than 128 Hz. In Experiment 3 HD

image data was transmitted with up to 128 Hz. We as-

sume that the PCs are able to transmit and process im-

ages up to 128 Hz, independent of the image size, but

that they are partly overloaded for higher frame rates.

This is based on the fact that the increase in process-

ing time does not correlate with the increase in image

size when comparing US with HD images. In MITK

the handling of US and HD images is exactly the same

and mainly management, the part that has to differen-

tiate between the image sizes for rendering purposes is

running on the GPU and does not influence the mea-

surement.

A direct comparison between the presented results

and the previously published experiments in [4,29] can-

not be made since they concentrated on the network

performance and their OpenIGTLink implementation.

The presented analysis, on the contrary, covers the

whole pipeline, from the data conversion in MITK to

the rendering of the data in the other MITK instance.

[4] and [29] state for a tracking data transfer with

128 Hz a latency of around 0.3 ms respectively 0.36 ms

whereas the presented results show a latency of 7 ms.

[4] and [29] measure the time from creating an Open-

IGTLink message at the sender host until the end of

the deserialization at the receiver host. These mea-

surements are very interesting concerning the Open-

IGTLink interface but do not give information about

the performance of an application. They do not in-

clude visualization nor management of messages. In

the presented tests we measure the application-specific

latency: we generate real data (as MITK data types),

convert it into messages, send them and vice versa on

the receiving side. Moreover, we implemented buffers to

easily integrate OpenIGTLink into the pipelined struc-

ture of MITK. The most time-consuming component

in the tests by [4] and [29] is the networking. In our

128 Hz tracking data test we had an average network

latency of 0.19 ms. Creation, serialization and deseri-

alization can be considered as less time consuming as

the networking which means that our implementation

performs similarly to [4] and [29].

For image data transfers with frame rates higher

than 512 Hz the network load was so high that the PTP

synchronization packages arrived delayed. In this sce-

nario two separate network connections might be nec-

essary, one for the data and one for the synchronization.

The usage scenarios show that MITK can commu-

nicate with other toolkits such as 3D Slicer or PLUS.

These toolkits can also run on different platforms, e.g.

Linux x64 and Window x32.

MITK-OpenIGTLink for combining open-source toolkits in real-time computer-assisted interventions 11

5 Conclusion

In this paper we presented a new software module which

enables OpenIGTLink support in MITK. We carried

out performance tests and described new usage scenar-

ios. MITK-OpenIGTLink was released as open source

together with the MITK toolkit release 2016-03. The

new module enables real-time communication of differ-

ent types of CAI data, such as tracking data, US data

and HD greyscale image data which was demonstrated

by the performance analysis. MITK can now be com-

bined with other toolkits in a plug-and-play manner

which was shown for 3D Slicer and PLUS. Tutorials

and manuals on how to use MITK-OpenIGTLink were

published together with the release.

6 Acknowledgment

The authors would like to acknowledge support from

the European Union through the ERC starting grant

COMBIOSCOPY under the New Horizon Framework

Programme grant agreement ERC-2015-StG-37960.

7 Conflict of Interest

The authors declare that there are no known conflicts

of interest associated with this publication.

8 Ethical approval

This article does not contain any studies with human

participants or animals performed by any of the au-

thors.

9 Informed consent

This articles does not contain patient data.

References

1. Arata, J., Kenmotsu, H., Takagi, M., Hori, T., Miyagi,
T., Fujimoto, H., Kajita, Y., Hayashi, Y., Chinzei, K.,
Hashizume, M.: Surgical bedside master console for neu-
rosurgical robotic system. International Journal of Com-
puter Assisted Radiology and Surgery 8(1), 75–86 (2013)

2. Arata, J., Kozuka, H., Kim, H.W., Takesue, N.,
Vladimirov, B., Sakaguchi, M., Tokuda, J., Hata, N.,
Chinzei, K., Fujimoto, H.: Open core control software
for surgical robots. International Journal of Computer
Assisted Radiology and Surgery 5(3), 211–220 (2010)

3. Arata, J., Tada, Y., Kozuka, H., Wada, T., Saito, Y.,
Ikedo, N., Hayashi, Y., Fujii, M., Kajita, Y., Mizuno,
M., Wakabayashi, T., Yoshida, J., Fujimoto, H.: Neu-
rosurgical robotic system for brain tumor removal. In-
ternational Journal of Computer Assisted Radiology and
Surgery 6(3), 375–385 (2011)

4. Clarkson, M.J., Zombori, G., Thompson, S., Totz, J.,
Song, Y., Espak, M., Johnsen, S., Hawkes, D., Ourselin,
S.: The NifTK software platform for image-guided inter-
ventions: platform overview and NiftyLink messaging. In-
ternational Journal of Computer Assisted Radiology and
Surgery 10(3), 301–316 (2014)

5. Cleary, K., Peters, T.M.: Image-Guided Interventions:
Technology Review and Clinical Applications. Annual
Review of Biomedical Engineering 12(1), 119–142 (2010)

6. Correll, K., Barendt, N., Branicky, M.: Design consid-
erations for software only implementations of the IEEE
1588 precision time protocol. Conference on IEEE
1588(November), 10–12 (2005)

7. Egger, J., Tokuda, J., Chauvin, L., Freisleben, B., Nim-
sky, C., Kapur, T., Wells, W.: Integration of the Open-
IGTLink Network Protocol for image-guided therapy
with the medical platform MeVisLab. International Jour-
nal of Medical Robotics and Computer Assisted Surgery
8(3), 282–290 (2012)

8. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J.,
Fillion-Robin, J.C., Pujol, S., Bauer, C., Jennings, D.,
Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller,
J.V., Pieper, S., Kikinis, R.: 3D Slicer as an image com-
puting platform for the Quantitative Imaging Network.
Magnetic resonance imaging 30(9), 1323–41 (2012)

9. Franz, A.M., Seitel, A., Servatius, M., Zollner, C., Gergel,
I., Wegner, I., Neuhaus, J., Zelzer, S., Nolden, M., Gaa,
J., Mercea, P., Yung, K., Sommer, C.M., Radeleff, B.A.,
Schlemmer, H.P., Kauczor, H.U., Meinzer, H.P., Maier-
Hein, L.: Simplified Development of Image-Guided Ther-
apy Software with MITK-IGT. In: Proc. SPIE, Medical
Imaging 2012: Image-Guided Procedures, Robotic Inter-
ventions, and Modeling, vol. 8316 (2012)

10. Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK
Software Guide. The ITK Software Guide Second(May),
804 (2005)

11. Ince, D.C., Hatton, L., Graham-Cumming, J.: The case
for open computer programs. Nature 482, 485–488
(2012)

12. Kang, H.j., Stolka, P.J., Boctor, E.:
OpenIGTLinkMUSiiC : A Standard Communica-
tions Protocol for Advanced Ultrasound Research.
MIDAS Journal pp. 1–12 (2011)

13. Kilgus, T., Heim, E., Haase, S., Prüfer, S., Müller, M.,
Seitel, A., Fangerau, M., Wiebe, T., Iszatt, J., Schlem-
mer, H.P., Hornegger, J., Yen, K., Maier-Hein, L.: Mobile
markerless augmented reality and its application in foren-
sic medicine. International Journal of Computer Assisted
Radiology and Surgery 5(1), 573–586 (2015)

14. Lasso, A., Heffter, T., Rankin, A., Pinter, C., Ungi, T.,
Fichtinger, G.: PLUS: open-source toolkit for ultrasound-
guided intervention systems. IEEE transactions on bio-
medical engineering pp. 1–11 (2014)

15. Maier-Hein, L., Tekbas, A., Seitel, A., Pianka, F., Muller,
S.A., Satzl, S., Schawo, S., Radeleff, B., Tetzlaff, R.,
Franz, A.M., Muller-Stich, B.P., Wolf, I., Kauczor, H.U.,
Schmied, B.M., Meinzer, H.P.: In vivo accuracy assess-
ment of a needle-based navigation system for CT-guided
radiofrequency ablation of the liver. Medical Physics
35(12), 5385 (2008)

12 Martin Klemm† et al.

16. März, K., Franz, a.M., Seitel, a., Winterstein, a., Bendl,
R., Zelzer, S., Nolden, M., Meinzer, H.P., Maier-Hein, L.:
MITK-US: Real-time ultrasound support within MITK.
International Journal of Computer Assisted Radiology
and Surgery 9(3), 411–420 (2014)

17. März, K., Franz, a.M., Seitel, A., Winterstein, A., Hafezi,
M., Saffari, A., Bendl, R., Stieltjes, B., Meinzer, H.P.,
Mehrabi, A., Maier-Hein, L.: Interventional real-time
ultrasound imaging with an integrated electromagnetic
field generator. International journal of computer assisted
radiology and surgery 9(5), 759–68 (2014)

18. McCormick, M., Liu, X., Jomier, J., Marion, C., Ibanez,
L.: ITK: enabling reproducible research and open science.
Frontiers in neuroinformatics 8(February), 13 (2014)

19. Müller, M., Rassweiler, M.C., Klein, J., Seitel, A., Gon-
dan, M., Baumhauer, M., Teber, D., Rassweiler, J.J.,
Meinzer, H.P., Maier-Hein, L.: Mobile augmented real-
ity for computer-assisted percutaneous nephrolithotomy.
International journal of computer assisted radiology and
surgery 8(4), 663–75 (2013)

20. Neuhaus, J., Wegner, I., Käst, J., Baumhauer, M., Sei-
tel, A., Gergel, I., Nolden, M., Maleike, D., Wolf, I.,
Meinzer, H.: MITK-IGT: Eine Navigationskomponente
für das Medical Imaging Interaction Toolkit. Bildverar-
beitung für die Medizin 2009 pp. 454–458 (2009)

21. Nolden, M., Zelzer, S., Seitel, A., Wald, D., Müller, M.,
Franz, A.M., Maleike, D., Fangerau, M., Baumhauer, M.,
Maier-Hein, L., Maier-Hein, K.H., Meinzer, H.P., Wolf,
I.: The medical imaging interaction toolkit: Challenges
and advances: 10 years of open-source development. In-
ternational Journal of Computer Assisted Radiology and
Surgery 8(4), 607–620 (2013)

22. Ordas, S., Yaniv, Z., Cheng, P., Tokuda, J., Liu, H.,
Hata, N., Cleary, K.: Interfacing proprietary hardware
with the image-guided surgery toolkit (IGSTK): a case
for the OpenIGTLink protocol. Proceedings of SPIE
7264, 72,640F–72,640F–7 (2009)

23. Pieper, S., Halle, M., Kikinis, R.: 3D Slicer. 2004 2nd
IEEE International Symposium on Biomedical Imaging:
Nano to Macro (IEEE Cat No. 04EX821) (2004)

24. Seitel, A., Bellemann, N., Hafezi, M., Franz, A.M., Ser-
vatius, M., Saffari, A., Kilgus, T., Schlemmer, H.P.,
Mehrabi, A., Radeleff, B.A., Maier-Hein, L.: Towards
markerless navigation for percutaneous needle insertions.
International Journal of Computer Assisted Radiology
and Surgery (2015)

25. Seitel, A., Yung, K., Mersmann, S., Kilgus, T., Groch,
A., Dos Santos, T.R., Franz, A.M., Nolden, M., Meinzer,
H.P., Maier-Hein, L.: MITK-ToF-Range data within
MITK. International Journal of Computer Assisted Ra-
diology and Surgery 7(1), 87–96 (2012)

26. Stolka, P.J., Kang, H.j., Boctor, E.: The MUSiiC Toolkit:
Modular Real-Time Toolkit for Advanced Ultrasound Re-
search. The MIDAS Journal - Computer Assisted Inter-
vention pp. 1–11 (2010)

27. Su, H., Shang, W., Member, S., Cole, G., Li, G., Mem-
ber, S., Harrington, K., Camilo, A., Tokuda, J., Tempany,
C.M., Hata, N., Fischer, G.S.: Piezoelectrically Actuated
Robotic System for MRI-Guided Prostate Percutaneous
Therapy. IEEE/ASME Transactions on Mechatronics 1,
1–13 (2014)

28. Teather, R.J., Pavlovych, A., Stuerzlinger, W., MacKen-
zie, I.S.: Effects of tracking technology, latency, and spa-
tial jitter on object movement. In: 3DUI - IEEE Sympo-
sium on 3D User Interfaces 2009 - Proceedings, pp. 43–50
(2009)

29. Tokuda, J., Fischer, G.S., Papademetris, X., Yaniv,
Z., Ibanez, L., Cheng, P., Liu, H., Blevins, J., Arata,
J., Golby, A.J., Kapur, T., Pieper, S., Burdette, E.C.,
Fichtinger, G., Tempany, C.M., Hata, N., Alexandra, J.,
Kapur, T., Pieper, S., Burdette, E.C., Fichtinger, G.,
Clare, M., Hata, N.: OpenIGTLink: an open network
protocol for image-guided therapy environment. Inter-
national Journal of Medical Robotics and Computer As-
sisted Surgery 5(4), 423–434 (2009)

30. Wolf, I., Vetter, M., Wegner, I., Nolden, M., Bottger, T.,
Hastenteufel, M., Schobinger, M., Kunert, T., Meinzer,
H.P.: The Medical Imaging Interaction Toolkit (MITK)
a toolkit facilitating the creation of interactive software
by extending VTK and ITK. In: Medical Imaging 2004,
pp. 16–27 (2004)

31. Wu, X., Taylor, R.H.: A framework for calibration of elec-
tromagnetic surgical navigation systems. In: Proceedings
2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003), vol. 1, pp. 547–552
(2003)

