000127584 001__ 127584
000127584 005__ 20240228140937.0
000127584 0247_ $$2doi$$a10.18632/oncotarget.4807
000127584 0247_ $$2pmid$$apmid:26334100
000127584 0247_ $$2pmc$$apmc:PMC4694975
000127584 0247_ $$2altmetric$$aaltmetric:4473515
000127584 037__ $$aDKFZ-2017-03607
000127584 041__ $$aeng
000127584 082__ $$a610
000127584 1001_ $$aSundararajan, Vignesh$$b0
000127584 245__ $$aThe ZEB1/miR-200c feedback loop regulates invasion via actin interacting proteins MYLK and TKS5.
000127584 260__ $$a[S.l.]$$bImpact Journals LLC$$c2015
000127584 3367_ $$2DRIVER$$aarticle
000127584 3367_ $$2DataCite$$aOutput Types/Journal article
000127584 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521116921_29680
000127584 3367_ $$2BibTeX$$aARTICLE
000127584 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000127584 3367_ $$00$$2EndNote$$aJournal Article
000127584 520__ $$aEpithelial to mesenchymal transition (EMT) is a developmental process which is aberrantly activated during cancer invasion and metastasis. Elevated expression of EMT-inducers like ZEB1 enables tumor cells to detach from the primary tumor and invade into the surrounding tissue. The main antagonist of ZEB1 in controlling EMT is the microRNA-200 family that is reciprocally linked to ZEB1 in a double negative feedback loop. Here, we further elucidate how the ZEB1/miR-200 feedback loop controls invasion of tumor cells. The process of EMT is attended by major changes in the actin cytoskeleton. Via in silico screening of genes encoding for actin interacting proteins, we identified two novel targets of miR-200c - TKS5 and MYLK (MLCK). Co-expression of both genes with ZEB1 was observed in several cancer cell lines as well as in breast cancer patients and correlated with low miR-200c levels. Depletion of TKS5 or MYLK in breast cancer cells reduced their invasive potential and their ability to form invadopodia. Whereas TKS5 is known to be a major component, we could identify MYLK as a novel player in invadopodia formation. In summary, TKS5 and MYLK represent two mediators of invasive behavior of cancer cells that are regulated by the ZEB1/miR-200 feedback loop.
000127584 536__ $$0G:(DE-HGF)POF3-311$$a311 - Signalling pathways, cell and tumor biology (POF3-311)$$cPOF3-311$$fPOF III$$x0
000127584 588__ $$aDataset connected to CrossRef, PubMed,
000127584 650_7 $$2NLM Chemicals$$aActins
000127584 650_7 $$2NLM Chemicals$$aAdaptor Proteins, Vesicular Transport
000127584 650_7 $$2NLM Chemicals$$aCDH1 protein, human
000127584 650_7 $$2NLM Chemicals$$aCadherins
000127584 650_7 $$2NLM Chemicals$$aCalcium-Binding Proteins
000127584 650_7 $$2NLM Chemicals$$aHomeodomain Proteins
000127584 650_7 $$2NLM Chemicals$$aMIRN200 microRNA, human
000127584 650_7 $$2NLM Chemicals$$aMicroRNAs
000127584 650_7 $$2NLM Chemicals$$aSH3PXD2A protein, human
000127584 650_7 $$2NLM Chemicals$$aTranscription Factors
000127584 650_7 $$2NLM Chemicals$$aZEB1 protein, human
000127584 650_7 $$2NLM Chemicals$$aZinc Finger E-box-Binding Homeobox 1
000127584 650_7 $$0EC 2.7.11.18$$2NLM Chemicals$$aMYLK protein, human
000127584 650_7 $$0EC 2.7.11.18$$2NLM Chemicals$$aMyosin-Light-Chain Kinase
000127584 7001_ $$0P:(DE-He78)d2851af71b2aced0c34d8c71329c3bc5$$aGengenbacher, Nicolas$$b1$$udkfz
000127584 7001_ $$aStemmler, Marc P$$b2
000127584 7001_ $$aKleemann, Julia A$$b3
000127584 7001_ $$aBrabletz, Thomas$$b4
000127584 7001_ $$aBrabletz, Simone$$b5
000127584 773__ $$0PERI:(DE-600)2560162-3$$a10.18632/oncotarget.4807$$gVol. 6, no. 29, p. 27083 - 27096$$n29$$p27083 - 27096$$tOncoTarget$$v6$$x1949-2553$$y2015
000127584 909CO $$ooai:inrepo02.dkfz.de:127584$$pVDB
000127584 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d2851af71b2aced0c34d8c71329c3bc5$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000127584 9131_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000127584 9141_ $$y2015
000127584 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bONCOTARGET : 2015
000127584 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000127584 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000127584 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000127584 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000127584 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000127584 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000127584 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000127584 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bONCOTARGET : 2015
000127584 9201_ $$0I:(DE-He78)A190-20160331$$kA190$$lVaskuläre Onkologie und Metastasierung$$x0
000127584 980__ $$ajournal
000127584 980__ $$aVDB
000127584 980__ $$aI:(DE-He78)A190-20160331
000127584 980__ $$aUNRESTRICTED