001     127667
005     20240228140943.0
024 7 _ |a 10.1118/1.4908224
|2 doi
024 7 _ |a pmid:25735291
|2 pmid
024 7 _ |a pmc:PMC5148175
|2 pmc
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a altmetric:3731733
|2 altmetric
037 _ _ |a DKFZ-2017-03690
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Unkelbach, Jan
|b 0
245 _ _ |a Optimization approaches to volumetric modulated arc therapy planning.
260 _ _ |a New York, NY
|c 2015
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524141299_24105
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Volumetric modulated arc therapy (VMAT) has found widespread clinical application in recent years. A large number of treatment planning studies have evaluated the potential for VMAT for different disease sites based on the currently available commercial implementations of VMAT planning. In contrast, literature on the underlying mathematical optimization methods used in treatment planning is scarce. VMAT planning represents a challenging large scale optimization problem. In contrast to fluence map optimization in intensity-modulated radiotherapy planning for static beams, VMAT planning represents a nonconvex optimization problem. In this paper, the authors review the state-of-the-art in VMAT planning from an algorithmic perspective. Different approaches to VMAT optimization, including arc sequencing methods, extensions of direct aperture optimization, and direct optimization of leaf trajectories are reviewed. Their advantages and limitations are outlined and recommendations for improvements are discussed.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Bortfeld, Thomas
|b 1
700 1 _ |a Craft, David
|b 2
700 1 _ |a Alber, Markus
|b 3
700 1 _ |a Bangert, Mark
|0 P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b
|b 4
|u dkfz
700 1 _ |a Bokrantz, Rasmus
|b 5
700 1 _ |a Chen, Danny
|b 6
700 1 _ |a Li, Ruijiang
|b 7
700 1 _ |a Xing, Lei
|b 8
700 1 _ |a Men, Chunhua
|b 9
700 1 _ |a Nill, Simeon
|b 10
700 1 _ |a Papp, Dávid
|b 11
700 1 _ |a Romeijn, Edwin
|b 12
700 1 _ |a Salari, Ehsan
|b 13
773 _ _ |a 10.1118/1.4908224
|g Vol. 42, no. 3, p. 1367 - 1377
|0 PERI:(DE-600)1466421-5
|n 3
|p 1367 - 1377
|t Medical physics
|v 42
|y 2015
|x 0094-2405
909 C O |o oai:inrepo02.dkfz.de:127667
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l Medizinische Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21