001     132915
005     20240229105039.0
024 7 _ |a 10.1093/ije/dyx242
|2 doi
024 7 _ |a pmid:29315403
|2 pmid
024 7 _ |a pmc:PMC5913605
|2 pmc
024 7 _ |a 0300-5771
|2 ISSN
024 7 _ |a 1464-3685
|2 ISSN
024 7 _ |a altmetric:31392217
|2 altmetric
037 _ _ |a DKFZ-2018-00557
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Rudolph, Anja
|0 P:(DE-He78)3c7f9136fb168ffb766316ea4ca1a58b
|b 0
|e First author
245 _ _ |a Joint associations of a polygenic risk score and environmental risk factors for breast cancer in the Breast Cancer Association Consortium.
260 _ _ |a Oxford
|c 2018
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1660124830_23718
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Polygenic risk scores (PRS) for breast cancer can be used to stratify the population into groups at substantially different levels of risk. Combining PRS and environmental risk factors will improve risk prediction; however, integrating PRS into risk prediction models requires evaluation of their joint association with known environmental risk factors.Analyses were based on data from 20 studies; datasets analysed ranged from 3453 to 23 104 invasive breast cancer cases and similar numbers of controls, depending on the analysed environmental risk factor. We evaluated joint associations of a 77-single nucleotide polymorphism (SNP) PRS with reproductive history, alcohol consumption, menopausal hormone therapy (MHT), height and body mass index (BMI). We tested the null hypothesis of multiplicative joint associations for PRS and each of the environmental factors, and performed global and tail-based goodness-of-fit tests in logistic regression models. The outcomes were breast cancer overall and by estrogen receptor (ER) status.The strongest evidence for a non-multiplicative joint associations with the 77-SNP PRS was for alcohol consumption (P-interaction = 0.009), adult height (P-interaction = 0.025) and current use of combined MHT (P-interaction = 0.038) in ER-positive disease. Risk associations for these factors by percentiles of PRS did not follow a clear dose-response. In addition, global and tail-based goodness of fit tests showed little evidence for departures from a multiplicative risk model, with alcohol consumption showing the strongest evidence for ER-positive disease (P = 0.013 for global and 0.18 for tail-based tests).The combined effects of the 77-SNP PRS and environmental risk factors for breast cancer are generally well described by a multiplicative model. Larger studies are required to confirm possible departures from the multiplicative model for individual risk factors, and assess models specific for ER-negative disease.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Song, Minsun
|b 1
700 1 _ |a Brook, Mark N
|b 2
700 1 _ |a Milne, Roger L
|b 3
700 1 _ |a Mavaddat, Nasim
|b 4
700 1 _ |a Michailidou, Kyriaki
|b 5
700 1 _ |a Bolla, Manjeet K
|b 6
700 1 _ |a Wang, Qin
|b 7
700 1 _ |a Dennis, Joe
|b 8
700 1 _ |a Wilcox, Amber N
|b 9
700 1 _ |a Hopper, John L
|b 10
700 1 _ |a Southey, Melissa C
|b 11
700 1 _ |a Keeman, Renske
|b 12
700 1 _ |a Fasching, Peter A
|b 13
700 1 _ |a Beckmann, Matthias W
|b 14
700 1 _ |a Gago-Dominguez, Manuela
|b 15
700 1 _ |a Castelao, Jose E
|b 16
700 1 _ |a Guénel, Pascal
|b 17
700 1 _ |a Truong, Thérèse
|b 18
700 1 _ |a Bojesen, Stig E
|b 19
700 1 _ |a Flyger, Henrik
|b 20
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 21
700 1 _ |a Arndt, Volker
|0 P:(DE-He78)d023fdf423d87ee6c710e34dd7581fa0
|b 22
700 1 _ |a Brauch, Hiltrud
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Brüning, Thomas
|b 24
700 1 _ |a Mannermaa, Arto
|b 25
700 1 _ |a Kosma, Veli-Matti
|b 26
700 1 _ |a Lambrechts, Diether
|b 27
700 1 _ |a Keupers, Machteld
|b 28
700 1 _ |a Couch, Fergus J
|b 29
700 1 _ |a Vachon, Celine
|b 30
700 1 _ |a Giles, Graham G
|b 31
700 1 _ |a MacInnis, Robert J
|b 32
700 1 _ |a Figueroa, Jonine
|b 33
700 1 _ |a Brinton, Louise
|b 34
700 1 _ |a Czene, Kamila
|b 35
700 1 _ |a Brand, Judith S
|b 36
700 1 _ |a Gabrielson, Marike
|b 37
700 1 _ |a Humphreys, Keith
|b 38
700 1 _ |a Cox, Angela
|b 39
700 1 _ |a Cross, Simon S
|b 40
700 1 _ |a Dunning, Alison M
|b 41
700 1 _ |a Orr, Nick
|b 42
700 1 _ |a Swerdlow, Anthony
|b 43
700 1 _ |a Hall, Per
|b 44
700 1 _ |a Pharoah, Paul D P
|b 45
700 1 _ |a Schmidt, Marjanka K
|b 46
700 1 _ |a Easton, Douglas F
|b 47
700 1 _ |a Chatterjee, Nilanjan
|b 48
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 49
|e Last author
700 1 _ |a García-Closas, Montserrat
|b 50
773 _ _ |a 10.1093/ije/dyx242
|g Vol. 47, no. 2, p. 526 - 536
|0 PERI:(DE-600)1494592-7
|n 2
|p 526 - 536
|t International journal of epidemiology
|v 47
|y 2018
|x 1464-3685
909 C O |p VDB
|o oai:inrepo02.dkfz.de:132915
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)3c7f9136fb168ffb766316ea4ca1a58b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 21
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-He78)d023fdf423d87ee6c710e34dd7581fa0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 23
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 49
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2018
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J EPIDEMIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J EPIDEMIOL : 2015
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 1
920 1 _ |0 I:(DE-He78)G110-20160331
|k G110
|l Präventive Onkologie
|x 2
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 3
920 1 _ |0 I:(DE-He78)L801-20160331
|k L801
|l DKTK Tübingen
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)G110-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a I:(DE-He78)L801-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21