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Dominik Waibela, Janek Gröhla,d, Fabian Isenseeb, Thomas Kirchnera,c, Klaus Maier-Heinb,d,
and Lena Maier-Heina,d

aDivision of Computer Assisted Medical Interventions (CAMI), German Cancer Research
Center (DKFZ), Heidelberg, Germany

bDivision of Medical Image Computing (MIC), German Cancer Research Center (DKFZ),
Heidelberg, Germany

cDepartment of Physics and Astronomy, Heidelberg University, Germany
dMedical Faculty, Heidelberg University, Germany

ABSTRACT

Quantification of tissue properties with photoacoustic (PA) imaging typically requires a highly accurate repre-
sentation of the initial pressure distribution in tissue. Almost all PA scanners reconstruct the PA image only
from a partial scan of the emitted sound waves. Especially handheld devices, which have become increasingly
popular due to their versatility and ease of use, only provide limited view data because of their geometry. Owing
to such limitations in hardware as well as to the acoustic attenuation in tissue, state-of-the-art reconstruction
methods deliver only approximations of the initial pressure distribution. To overcome the limited view problem,
we present a machine learning-based approach to the reconstruction of initial pressure from limited view PA
data. Our method involves a fully convolutional deep neural network based on a U-Net-like architecture with
pixel-wise regression loss on the acquired PA images. It is trained and validated on in silico data generated with
Monte Carlo simulations. In an initial study we found an increase in accuracy over the state-of-the-art when
reconstructing simulated linear-array scans of blood vessels.
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1. INTRODUCTION

Photoacoustic imaging (PAI) is a novel and fast emerging modality that combines the strengths of ultrasound
(US) and optical imaging and offers high optical contrast as well as great imaging depth and spatial resolution.1

In multispectral applications, PAI is especially suitable for real-time imaging of functional tissue parameters such
as local blood oxygenation or perfusion,2,3 which can be indicative of cancer hallmarks such as local hypoxia
and angiogenesis.4,5

PAI is able to measure optical absorption by using pulsed laser light to induce the photoacoustic effect. The
absorbed light creates an initial pressure distribution which gives rise to a sound wave. PA raw sensor data of this
wave can be measured with a common US transducer.6 To be able to access the information contained in the raw
data, the initial pressure distribution needs to be reconstructed. While standard reconstruction algorithms such
as the radon transform can be used for tomographic scans,7 they can currently only be applied to small animal
imaging,8 but not to clinically used scanners9 without the introduction of imaging artifacts. This is, because
clinical scanners used for PA usually have a linear sensor geometry, therefore PA images have to be reconstructed
from a partial scan of the emitted sound waves. This so-called limited view problem causes undersampling during
image reconstruction, giving rise to artifacts and noise amplification.10
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were originally introduced to retain the entire range of high frequency information, further work could be done
to improve the use of a U-Net for direct image reconstruction.

We have not yet tested the proposed methods on in vivo or in vitro data. This is because our in silico model
does not include a realistic modelling of noise, angular sensitivity of the US transducer, the presence of artifacts
and local variations of speed of sound and acoustic attenuation leading to a generally lower contrast to noise
ratio. Due to the manner in which we trained and tested on random data from the same Monte Carlo distribution
we cannot ensure that there exists no bias in the dataset. This fact should also be taken into account when
comparing the results or our two algorithms to the DAS baseline approach. As such, our next challenge is to
generalize these methods to be applicable to realistic data.

In limited view PA imaging it is essential to develop accurate and fast reconstruction methods. In this study
we show two methods that can be used to either enhance reconstruction of DAS beamforming with a post-
processing step or provide a direct reconstruction of the initial pressure distribution from PA raw sensor data.
Results show high accuracy even with application of noise, while providing a qualitative improvement compared
to beamforming. Future work will include comparing our methods to other advanced reconstruction algorithms
such as done by Hauptmann et al.10 and we will apply the methods to in vitro and in vivo data.
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