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Abstract: Reconstruction of photoacoustic (PA) images acquired with clinical ultrasound transducers

is usually performed using the Delay and Sum (DAS) beamforming algorithm. Recently, a variant

of DAS, referred to as Delay Multiply and Sum (DMAS) beamforming has been shown to provide

increased contrast, signal-to-noise ratio (SNR) and resolution in PA imaging. The main reasons for

the use of DAS beamforming in photoacoustics are its simple implementation, real-time capability,

and the linearity of the beamformed image to the PA signal. This is crucial for the identification of

different chromophores in multispectral PA applications. In contrast, current DMAS implementations

are not responsive to the full spectrum of sound frequencies from a photoacoustic source and have

not been shown to provide a reconstruction linear to the PA signal. Furthermore, due to its increased

computational complexity, DMAS has not been shown yet to work in real-time. Here, we present an

open-source real-time variant of the DMAS algorithm, signed DMAS (sDMAS), that ensures linearity

in the original PA signal response while providing the increased image quality of DMAS. We show

the applicability of sDMAS for multispectral PA applications, in vitro and in vivo. The sDMAS and

reference DAS algorithms were integrated in the open-source Medical Imaging Interaction Toolkit

(MITK) and are available as real-time capable implementations.

Keywords: photoacoustics; image reconstruction; multispectral imaging; signal processing; delay

and sum; delay multiply and sum

1. Introduction

Currently, almost all applications of photoacoustic (PA) or ultrasonic (US) imaging, where real-time

capability is crucial, use the straightforward Delay and Sum (DAS) beamforming algorithm [1,2].

Its linear complexity ensures very short computing times even on a central processing unit (CPU), but,

in comparison to other beamforming algorithms, it suffers from worse contrast and Signal-to-Noise

Ratio (SNR) [3]. The Delay Multiply and Sum (DMAS) beamforming algorithm, an extension to DAS

beamforming, has recently been proposed for US B-Mode images [4] and has been shown to improve

image quality also when applied to the field of photoacoustics [5]. On the other hand, DMAS is

computationally expensive with a complexity of O(n2) compared to the DAS complexity of O(n).

Furthermore, DMAS, as proposed by Matrone et al. [4], is a non-linear beamformer [6] that has not

yet been confirmed to produce a linear response, which is a necessity for multispectral applications.

DMAS also needs to be post-processed with a bandpass filter (F-DMAS) to remove a low frequency

artifact introduced by the algorithm, which affects PA data [7] as well as US data. While filtering is not

problematic for US imaging, doing so with PA imaging systems that are sensitive to lower acoustic
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frequencies would also remove valuable PA information, as PA signal responses have a substantial

low frequency contribution [8].

The contribution of this paper is two-fold:

(1) We present a modified DMAS algorithm which we call signed DMAS (sDMAS). The modification

addresses the non-linear optical and acoustic frequency response of conventional DMAS. We show

linearity of sDMAS based B-Mode image reconstruction with respect to the source signal, which

makes sDMAS usable for spectroscopic applications.
(2) We present a graphics processing unit (GPU)-based implementation of the sDMAS algorithm

which is real-time capable and therefore usable in a clinical setting. This is validated on a tissue

mimicking PA characterization phantom and applied by measuring blood oxygenation in vivo

on the radial artery of a healthy human volunteer.

The implementation of the contributions of this paper, as well as all other algorithms used,

are provided open-source as an extension of the Medical Imaging Interaction Toolkit (MITK) [9], and

are applicable to both PA and US image data.

2. Materials and Methods

The first two parts of this section review the reference beamforming algorithms DAS (Section 2.1)

and DMAS (Section 2.2) as applied in this paper. Section 2.3 introduces the proposed DMAS variant,

sDMAS, and motivates theoretically how it achieves linearity to the original PA signal. Finally,

Section 2.5 provides implementation details for all beamforming algorithms.

2.1. Delay and Sum Beamforming

DAS beamforming is the most common and widely used method for reconstructing photoacoustic

and ultrasonic images in real-time applications [2,4]. The first step in beamforming an image is to

calculate the delays at which a signal originating at some depth y and lateral position x arrives at each

of the elements of the transducer. We assume to this end spherical waves coming from the positions

we want to reconstruct. Furthermore, we consider a linear transducer consisting of N elements spaced

with a distance ∆x and a spatially constant speed of sound c.

As illustrated in Figure 1, the delay τ after which a wave originating at lateral position x at a

depth y arrives at the element j is:

τ(x, y, j) =

√

y2 + (|x − j · ∆x|)2

c
(1)

The DAS algorithm proceeds by summing up the delayed signals of one position (x, y). We call

the signal response measured by transducer element j, at a time τ, S(j, τ). For a reconstructed pixel at

position (x, y), the beamformed signal SDAS is therefore:

SDAS(x, y) =
N

∑
j=1

S(j, τ(x, y, j)) · Ax(j) (2)

where 0 ≤ Ax(j) ≤ 1 is an apodization function, which can be used to reduce side lobes and similar

beamforming related artifacts, usually by weighting the transducer elements near x stronger than

those far away [10].

The complexity of the algorithm can be approximated to be proportional to the number of summations,

and is therefore O(N) for DAS.
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Figure 1. (a) Illustration of a signal S originating at depth y and lateral position x relative to a transducer

array with example element j and propagating as a spherical acoustic wave with speed c; (b) Illustration

of the same scenario in the time domain of pressure recorded in the transducer array (radio frequency

(rf) data), where τ(x, y, j) denotes the propagation time of that signal S.

2.2. Delay Multiply and Sum Beamforming

The DMAS algorithm as proposed by Matrone et al. [4] improves on DAS by relating each

signal response on each transducer to a single signal position by summing over the products of all

non-identical combinations of responses. This has the intention of amplifying actual source signals and

reducing noise. To retain linear units, the signed square root of the sums is taken to be the beamformer

response. The correlation matrix Mnm(x, y) of the signals of the transducer elements n and m, delayed

for a signal at lateral position x at depth y, is introduced:

Mnm(x, y) = S(n, τ(x, y, n)) · Ax(n) · S(m, τ(x, y, m)) · Ax(m) (3)

The reconstructed signal SDMAS(x, y) is then defined as:

SDMAS(x, y) =
N−1

∑
n=1

N

∑
m=n+1

sign(Mnm(x, y))
√

|Mnm(x, y)| (4)

While Mnm(x, y) is always positive in an ideal tissue and the absence of noise, sign(Mnm(x, y)) is

introduced in the equation to reduce the mean calculated value for noise and artifacts.

The number of summations necessary to determine SDMAS is N2−N
2 . Therefore, in view of N being

negligible against N2, computational complexity can be concluded to be O(N2) for DMAS.

2.3. Signed Delay Multiply and Sum Beamforming

In previous DMAS implementations [4], it was necessary to post-process the image after

beamforming by using a bandpass filter, as the loss of the sign introduces an additional low frequency

component to the actual signal, which is suppressed using the bandpass filter. Unlike in ultrasound

imaging, photoacoustic signals usually have a broad acoustic spectrum and therefore contain low

acoustic frequencies. These signal contributions will be filtered as well, which may lead to a suppression

of important signal components.

In our implementation, we overcome this issue by keeping the sign of the original signal which is

equivalent to integrating sign(SDAS) into Equation (4)

SsDMAS(x, y) = sign(SDAS(x, y)) · SDMAS(x, y) (5)

Keeping the sign of the original signal allows us to apply sDMAS for multispectral PAT application,

as shown in the following paragraph.

Here, the number of summations necessary to determine SsDMAS differs from the case of DMAS

only in the N operations for the DAS coefficient; therefore, the number of necessary summations

is N2+N
2 . Even so, the summations for DAS require far less operations than those for DMAS; either

way, we can approximate the complexity of sDMAS to be O(N2), the same as for DMAS.
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2.4. Linearity of Beamforming Algorithms

Spectral unmixing of multispectral photoacoustic signals assumes linearity of those signals to the

underlying absorption coefficient. While this assumption usually breaks down due to fluence effects,

we can still assure that we do not introduce further errors in our estimation through the beamforming

algorithm. To show that a beamforming algorithm reconstructs a signal SBF(x, y, λ) linear to the

originating signal S0(x, y, λ), we need to show that

SBF(x, y, λ) = C(x, y) · S0(x, y, λ) (6)

where C(x, y) has to be a real number, independent of λ, for any given position (x, y). In the

following, we show that this is the case for DAS but not for DMAS, and how we can remedy this by

introducing sDMAS.

Whenever a PA signal originating at position (x, y) arrives at transducer element j, the sound

wave traveled a distance d(x, y, j) = c · τ(x, y, j). The signal will have experienced signal attenuation.

This acoustic attenuation in a homogeneous medium is e−α(ω)d, where α(ω) is the sound attenuation

coefficient dependent on sound frequency ω and medium. The acoustic signals generated in the

tissue during PA image acquisition depend on the optical properties of the tissue and are wavelength

dependent. Let S0(x, y, λ) denote the signal that originates as a spherical wave in a sufficiently

homogeneous medium at a position (x, y) in response to a laser pulse of wavelength λ. Then, the

resulting attenuated signal S(j, d(x, y, j), λ) arriving at transducer element j can be expressed as follows:

S(j, d(x, y, j), λ) = e−α(ω)·c·τ(x,y,j) · S0(x, y, λ) (7)

In the following paragraphs, we examine the DAS, DMAS and sDMAS algorithms to see how

their reconstructions depend on the original signal S0.

2.4.1. Linearity of DAS

From the definition of the DAS beamformed signal (Equation (2)), we directly find linearity for

SDAS after introducing signal attenuation (Equation (7)) and λ explicitly.

SDAS(x, y, λ) =
N

∑
j=1

(

Ax(j) · e−α(ω)·c·τ(x,y,j)
)

· S0(x, y, λ)

= CDAS(x, y) · S0(x, y, λ)
(8)

2.4.2. Linearity of DMAS

Using the definition of the DMAS beamformed signal (Equation (4)), we need to consider signal

attenuation (Equation (7)) in Mnm(x, y), extended for λ.

SDMAS(x, y, λ) =
N−1

∑
n=1

N

∑
m=n+1

sign(Mnm(x, y, λ))
√

|Mnm(x, y, λ)|

with Mnm(x, y, λ) = Ax(n)Ax(m) · e−α(ω)·c·(τ(x,y,n)+τ(x,y,m)) · S0(x, y, λ)2

(9)

From this expression of Mnm(x, y, λ)m, we see that its sign has to be +1, considering Ax(j) ≥ 0.

SDMAS(x, y, λ) =
N−1

∑
n=1

N

∑
m=n+1

(

√

Ax(n)Ax(m) · e−
1
2 α(ω)·c·(τ(x,y,n)+τ(x,y,m)) · |S0(x, y, λ)|

)

= CDMAS(x, y) · |S0(x, y, λ)|

(10)

which means that, in DMAS beamforming, we lose the original sign of the signal.
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2.4.3. Linearity of sDMAS

We aim to recover this lost sign with sDMAS (Equation (5)) by introducing the sign of

SDAS into DMAS

SsDMAS(x, y, λ) = sign(SDAS(x, y, λ)) · SDMAS(x, y, λ)

= sign(SDAS(x, y, λ)) · CDMAS(x, y) · |S0(x, y, λ)|
(11)

from which we can restore the sign of S0 lost in DMAS, because all other terms in SDAS (Equation (8))

are positive (Ax(j) ≥ 0 and er ≥ 0 because r is a real number).

SsDMAS(x, y, λ) = sign(CDAS(x, y)) · CDMAS(x, y) · sign(S0(x, y, λ)) · |S0(x, y, λ)|

= CsDMAS(x, y) · S0(x, y, λ) (12)

Note that we did not explicitly model noise N(x, y, λ) corresponding to the measured signals

S(j, d(x, y, j), λ) as we assume S0(x, y, λ) ≫ N(x, y, λ) for the source signals of interest. If the original

signal is too small—on a noise equivalent level—linearity cannot be ensured. In the absence of noise,

the sign of SDMAS is always positive for an emerging signal S0, which means that the sign of the original

signal is lost through the DMAS double summation process. In contrast, the sign of the original signal

is not lost in sDMAS, because we inserted the factor sign(SDAS) thereby eliminating the need for

further post-processing with a bandpass filter. Other than that, both beamforming algorithms can be

regarded as proportional to the original signal in each beamformed position (x, y). This is regardless of

choice in apodization function (as long as Ax(j) ≥ 0) but assuming the same acoustic spectrum of the

source. For a spectroscopic PA application of DMAS, the acoustic spectrum ω has to be independent

of PA excitation wavelength but can and will depend on the tissue under examination [11].

2.5. Implementation of Beamforming Algorithms

Our implementation of the beamforming algorithms running on a CPU has been multithreaded,

but the attainable speed is nevertheless limited. We therefore added implementations of DAS, DMAS

and sDMAS using the GPU through the Open Computing Language (OpenCL) [12], which enables

us to get increased performance through the massive parallelization of the beamforming algorithms.

Delays τ(i, j, y) for the whole image are computed for a given speed of sound c and up to a maximum

scan depth and saved in a persistent GPU buffer. Whenever relevant beamforming parameters change

a renewed calculation of the delay buffer is needed. The number of transducer elements which are

used for the calculation of a pixel is determined by the sensitive angle, therefore the apodization is

also computed beforehand by a separate OpenCL kernel and saved in a persistent buffer. The actual

beamforming kernel uses the previously computed buffers to sum over the needed input values

according to DAS or sDMAS. In doing so, the main performance limitation is the memory access

time on the GPU. Furthermore, we use Ax(j) = 1, for all x and j for the calculation of sign(SDAS),

as apodization mainly increases SNR, but the sign of actual signals remains unaffected. Therefore,

to reduce computational cost, we refrain here from using an apodization function.

In contrast to the original DMAS formulation, sDMAS does not rely on a bandpass filter as

integral part of the beamforming process, which increases performance, as bandpass filters rely on

two computationally intensive Fourier transforms. Nevertheless, we provide a bandpass filter as an

optional processing step for our implementations of DAS, DMAS and sDMAS as it can reduce noise

and artifacts. Our bandpass implementation performs first a Fourier transform of the beamformed

image in depth direction using the Fast Fourier Transform (FFT) implementation of the Insight Imaging

Toolkit (ITK), then multiplies the resulting image with a Tukey window which can be adjusted to select

the desired band of frequencies and gives the option to smoothly set the boundaries of that band to
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beamforming. The bandpass filter is therefore an optional step in sDMAS beamforming. The increase

in CNR had a depth dependence, with the CNR increasing an average of 1 db more for the structure

at 13 mm depth, and having a higher standard deviation at higher depths. In additionl as shown in

Table 2, the experiments suggest a 2 db increase in CNR using F-sDMAS over F-DMAS and a similar

CNR when comparing sDMAS to F-DMAS.

Table 1. Increase in CNR using sDMAS in different variants (columns) compared to DAS in different

variants (rows) in db for µa = 8.5 cm−1. Box and Hann denotes if box car or Hanning apodization is

compared. F denotes the use of a bandpass filter. For instance, the sDMAS algorithm with boxcar

apodization and no bandpass filter (sDMAS, Box, -) on average yielded an improvement of 8 db in

CNR over the DAS algorithm with boxcar apodization and using a bandpass filter (DAS, Box, F). CNRs

are averaged over n = 100 slices and three signals in depths of 8 mm to 18 mm. The increases in CNR

over the three structures in different depths had standard deviations of 2 db.

sDMAS

Box Hann

F − F −

DAS

Box
F 9 8 11 9

− 9 7 11 9

Hann
F 6 4 8 6

− 6 5 8 6

Table 2. CNR of DAS, DMAS and sDMAS in db for µa = 8.5 cm−1. CNRs are averaged over n = 100

slices and listed for three signal positions. The CNRs for depths 8 mm and 13 mm had a standard

deviation of ≈ 1 db. For the depth of 18 mm the standard deviation was ≈ 1.5 db.

DAS F-DMAS sDMAS

Box Hann Box Hann Box Hann

Depth F − F − F − F −

8 mm 5 5 8 7 10 11 12 10 14 11

13 mm 4 5 8 7 12 14 14 13 17 15

18 mm −3 −2 0 0 6 8 8 6 10 8

The runtimes of the sDMAS and DAS algorithms, as listed in Table 3, were measured on the

characterization phantom dataset with n = 1300 recorded frames and for a reconstruction depth of

3.9 cm. The reconstruction was performed running MITK on a Ubuntu 18.04 operating system using

a i7-5960X CPU (Intel, Santa Clara, CA, USA) and a GeForce GTX 970 GPU (Nvidia, Santa Clara,

CA, USA). As the complexity of the DMAS and sDMAS algorithms is the same, the computational

performance of DMAS has not been compared to sDMAS and DAS here explicitly.

Table 3. Runtime of our DAS and sDMAS implementations, processing one frame. The standard

deviations of the runtimes are each smaller than 5% of the listed means. Choice of apodization had no

impact on the runtime. The Tukey window bandpass as well as the B-Mode envelope detection were

exclusively performed on CPU.

DAS sDMAS Bandpass B-Mode

Lines CPU GPU CPU GPU CPU CPU

128 29 ms 6 ms 502 ms 33 ms 9 ms 5 ms
256 58 ms 18 ms 990 ms 63 ms 18 ms 10 ms







J. Imaging 2018, 4, 121 11 of 12

reduced further using other beamforming methods such as Minimum Variance (MV) beamforming [10],

Double stage DMAS [3] or further modifications of DMAS such as the introduction of MV into

DMAS [22]. They are however non-linear and computationally expensive. Therefore, they are currently

not usable for real-time multispectral applications. However, further study of those methods and

appropriate extensions and implementations might give insight into their applicability to multispectral

PA imaging. Other issues such as wavelength dependent fluence effects [23], or limited views of PA

sensor arrays cannot be solved by a beamforming algorithm alone and will impact functional PA

imaging independent of the beamformer.

In conclusion, the presented sDMAS algorithm offers a superior image quality compared to DAS

and preserves linearity in the original signal on the same level as DAS, which makes it suitable for

spectroscopic PA applications. Furthermore, sDMAS can be performed in real-time and is as such

usable in a clinical setting.
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Abbreviations

PA photoacoustic

DAS Delay and Sum

DMAS Delay Multiply and Sum

sDMAS signed DMAS

MV Minimum Variance

US ultrasonic

MITK Medical Imaging Interaction Toolkit

SNR Signal-to-Noise Ratio

CNR Contrast-to-Noise Ratio

GUI Graphical User Interface

API Application Programming Interface

ITK Insight Toolkit
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