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Abstract: In medical applications, the accuracy and robustness of imaging methods are of crucial

importance to ensure optimal patient care. While photoacoustic imaging (PAI) is an emerging modality

with promising clinical applicability, state-of-the-art approaches to quantitative photoacoustic imaging

(qPAI), which aim to solve the ill-posed inverse problem of recovering optical absorption from the

measurements obtained, currently cannot comply with these high standards. This can be attributed to

the fact that existing methods often rely on several simplifying a priori assumptions of the underlying

physical tissue properties or cannot deal with realistic noise levels. In this manuscript, we address this

issue with a new method for estimating an indicator of the uncertainty of an estimated optical property.

Specifically, our method uses a deep learning model to compute error estimates for optical parameter

estimations of a qPAI algorithm. Functional tissue parameters, such as blood oxygen saturation,

are usually derived by averaging over entire signal intensity-based regions of interest (ROIs). Therefore,

we propose to reduce the systematic error of the ROI samples by additionally discarding those pixels

for which our method estimates a high error and thus a low confidence. In silico experiments show an

improvement in the accuracy of optical absorption quantification when applying our method to refine

the ROI, and it might thus become a valuable tool for increasing the robustness of qPAI methods.

Keywords: confidence learning; uncertainty estimation; quantitative photoacoustic imaging;

error analysis; deep learning

1. Introduction

Photoacoustic imaging (PAI) has been shown to have various medical applications and to

potentially benefit patient care [1–3]. It is a non-invasive modality that offers the ability to measure

optical tissue properties, especially optical absorption µa, both locally resolved and centimeters deep in

tissue. Knowledge of these properties allows for deriving functional tissue parameters, such as blood

oxygenation SO2, which is a biomarker for tumors and other diseases [4]. The photoacoustic (PA) signal

is a measure of the pressure waves arising from the initial pressure distribution p0, which depends

mainly on µa, the Grüneisen coefficient Γ, and the light fluence φ, which is shaped by the optical

properties of the imaged tissue [5]. Because of this dependence, the measured p0 is only a qualitative

indicator of the underlying µa, because even if the initial pressure distribution could be recovered

perfectly, estimation of the light fluence is an ill-posed inverse problem that has not conclusively been

solved [6].

In order to derive quantitative information from initial pressure p0 reconstructions of

photoacoustic images, one has to account for the light fluence and solve the optical inverse problem.

Most methods model the distribution of optical absorption coefficients by iteratively updating the
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distribution after computing the solution of a forward model (cf., e.g., [7–14]) with inclusion of the

acoustic inverse problem [15,16]. Alternatively, in multispectral photoacoustic imaging applications,

the functional parameters are approximated directly by using a variety of spectral unmixing techniques

(cf., e.g., [17–19]). Recently, machine learning-based methods for quantitative PAI (qPAI) have been

proposed. These encompass end-to-end deep learning on 2D images [20] or the estimation of voxel

point estimates with Context Encoding qPAI (CE-qPAI) [21], which incorporates the 3D p0 context

around each voxel into a single feature vector that is used to learn the fluence at that particular

voxel. Some of the listed approaches to qPAI have been shown to work in ideal in silico conditions

or on specific datasets. At the same time, they have proven difficult to use in clinical applications,

which can be attributed to a lack of robustness caused by a priori assumptions that are made regarding,

e.g., illumination, probe design, calibration factors, or scattering properties [22]. Developing tools to

estimate systematic errors and gain information on the quantification of uncertainties in PAI could

thus be of great benefit and could be utilized to improve quantification accuracy.

Uncertainty quantification and compensation is an essential research objective in computer sciences

and has been studied extensively in various fields, including image-guided navigation (cf., e.g., [23,24]),

multi-modal image registration (cf., e.g., [25,26]), and lesion detection [27]. Current approaches to obtaining

confidence intervals for neural network estimates include, e.g., dropout sampling (cf., e.g., [28–31]),

probabilistic inference (cf., e.g., [32–34]), sampling from latent variables (cf., e.g., [35–37]), or using

ensembles of estimators (cf., e.g., [38,39]). The exploration of such uncertainty quantification methods in

the field of PAI, however, has only just started (cf., e.g., [40–43]).

In a recent publication [44], we showed a method for uncertainty quantification for the CE-qPAI

method. A key result was that the practice of evaluating PA images over a purely input noise-based

(aleatoric) region of interest (ROI) can be improved when also taking into account model-based

(epistemic) uncertainty. To achieve this, we combined both sources of uncertainty into a joint

uncertainty metric and used this to create an ROI mask on which to compute the statistics. A limitation

to that approach could be seen in the fact that we used an uncertainty model specially tailored toward

the CE-qPAI method. To overcome this bottleneck, we expand on our prior work in this contribution

and present a method that yields confidence estimates by observing the performance of an arbitrary

qPAI algorithm and uses the estimates to refine an ROI that was defined based on aleatoric uncertainty.

For validation in the context of qPAI, we applied this methodology to different PA signal

quantification algorithms to investigate whether the approach is applicable in a general manner.

We hypothesize that an estimated error metric is indicative of the actual absorption quantification

error and that we can consequently improve on µa estimations by evaluating on an ROI that is further

narrowed down with a confidence threshold (CT).

2. Materials and Methods

This section gives an overview of the confidence estimation approach, the experiments, and the

used dataset and briefly introduces the different qPAI methods that are being used.

Method for Confidence Estimation. Our approach to confidence estimation can be applied to

any qPAI method designed to convert an input image I (p0 or raw time-series data) into an image

of optical absorption Iµa . In order to not restrict the qPAI method to a certain class (e.g., a deep

learning-based method), we made the design decision to base the confidence quantification method on

an external observing method. For this, we use a neural network, which is presented tuples of input

image I and absorption quantification error eµa in the training phase. When applying the method to a

previously unseen image I, the following steps are performed (cf. Figure 1).
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naïve fluence compensation method into the experiments. Our results suggest that using a method to

estimate confidence information to refine a region of interest for subsequent computations might be a

valuable tool for increasing the robustness of qPAI methods and could be easily integrated in future

qPAI research.

We hypothesized that our confidence metric is indicative of eµa . In the experiments, we showed

that a deep learning model is able to learn a representation of the errors of the quantification method

leading to error improvements of 10–50% in region-of-interest structures and yielding up to 5-fold

improvements in background structures. Furthermore, Figure 5 shows that the absorption estimation

error does not decrease monotonously, especially for the qPAI methods that yield more accurate results.

One reason for this might be that the confidence estimates are not correlated to the quantification

error and that low confidences might still correspond to low errors. One has to point out the worse

performance of the quantification methods when applied directly to raw time-series data. One reason

for this might be that the addition of the acoustic inverse problem and the inclusion of a realistic noise

model greatly increased the complexity of the problem and reduced the amount of information in the

data due to, e.g., limited-view artifacts. At the same time, we did not increase the number of training

samples or change the methodology to account for this.

The dataset simulated for the experiments was specifically designed such that out-of-plane fluence

effects cannot occur, as the in silico phantoms contain only straight tubular vessel structures that run

orthogonal to the imaging plane. Additionally, other a priori assumptions of the parameter space

were made, such as a constant background absorption, an overall constant scattering coefficient, and a

fixed illumination geometry. Due to the homogeneous nature of the background structure, the errors

observed in our study are highly specialized to our dataset. This is especially apparent with the direct

estimation method, as here, eµa is never greater than 0.2%. As such, we focus on reporting the errors in

the ROI, as only reporting the results of the entire images would be misleading. In order for the method

to generalize to more complex or in vitro datasets and yield similar µa and confidence estimation

results, more elaborate and diverse datasets would need to be simulated. Nevertheless, the experiments

demonstrate that applying an ROI threshold based on the estimation of the quantification error can

lead to an increase in accuracy for a given dataset regardless of the underlying qPAI method.

From a qPAI perspective, end-to-end deep learning-based inversion of PA data is feasible in

specific contexts and for specific in silico datasets, as shown previously [20] and in this work. However,

PA signal quantification cannot be regarded as solved in a general manner. One of the main reasons is

the large gap between simulated in silico data and in vivo recordings. In order for deep learning to

tackle this problem, either highly sophisticated unsupervised domain adaptation methods have to be

developed, or a large number of labeled correspondences between the simulation domain and real

recorded images need to be provided, which is not currently feasible due to the lack of methodology

to reliably measure ground truth optical properties in in vivo settings. However, with the promising

progress in PA image reconstruction from limited-view geometries with deep learning techniques

(cf., e.g., [57,58]), it might be possible to start bridging the gap and to improve on the current methods

for qPAI.
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Abbreviations

The following abbreviations are used in this manuscript:

CNR Contrast-To-Noise-Ratio

PA Photoacoustic

PAI Photoacoustic Imaging

qPAI quantitative PAI

ROI Region of Interest

CT Confidence Threshold

Appendix A. Results for the Naïve Fluence Compensation Method

Figure A1. Sample images showing the best, the worst, and the median performance of our method

when considering only the 50% most confident quantification estimations. All images show the

(a) ground truth absorption coefficients (b) reconstructed absorption, (c) error estimate from external

model, (d) the actual quantification error.
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Appendix B. Results for Fluence Correction on p0 Data

Figure A2. Sample images showing the best, the worst, and the median performance of our method

when considering only the 50% most confident quantification estimations. All images show the

(a) ground truth absorption coefficients (b) reconstructed absorption, (c) error estimate from external

model, (d) the actual quantification error.

Appendix C. Results for Fluence Correction on Raw PA Time Series Data

Figure A3. Sample images showing the best, the worst, and the median performance of our method

when considering only the 50% most confident quantification estimations. All images show the

(a) ground truth absorption coefficients (b) reconstructed absorption, (c) error estimate from external

model, (d) the actual quantification error.



J. Imaging 2018, 4, 147 12 of 15

Appendix D. Results for Direct µa Estimation on Raw PA Time Series Data

Figure A4. Sample images showing the best, the worst, and the median performance of our method

when considering only the 50% most confident quantification estimations. All images show the

(a) ground truth absorption coefficients (b) reconstructed absorption, (c) error estimate from external

model, (d) the actual quantification error.
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