000153045 001__ 153045 000153045 005__ 20240229123038.0 000153045 0247_ $$2doi$$a10.1038/s41375-019-0703-6 000153045 0247_ $$2pmid$$apmid:31913320 000153045 0247_ $$2ISSN$$a0887-6924 000153045 0247_ $$2ISSN$$a1476-5551 000153045 0247_ $$2altmetric$$aaltmetric:73785475 000153045 037__ $$aDKFZ-2020-00127 000153045 041__ $$aeng 000153045 082__ $$a610 000153045 1001_ $$aPertesi, Maroulio$$b0 000153045 245__ $$aGenetic predisposition for multiple myeloma. 000153045 260__ $$aLondon$$bSpringer Nature$$c2020 000153045 3367_ $$2DRIVER$$aarticle 000153045 3367_ $$2DataCite$$aOutput Types/Journal article 000153045 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1587117253_24026$$xReview Article 000153045 3367_ $$2BibTeX$$aARTICLE 000153045 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000153045 3367_ $$00$$2EndNote$$aJournal Article 000153045 500__ $$a2020 Mar;34(3):697-708 000153045 520__ $$aMultiple myeloma (MM) is the second most common blood malignancy. Epidemiological family studies going back to the 1920s have provided evidence for familial aggregation, suggesting a subset of cases have an inherited genetic background. Recently, studies aimed at explaining this phenomenon have begun to provide direct evidence for genetic predisposition to MM. Genome-wide association studies have identified common risk alleles at 24 independent loci. Sequencing studies of familial cases and kindreds have begun to identify promising candidate genes where variants with strong effects on MM risk might reside. Finally, functional studies are starting to give insight into how identified risk alleles promote the development of MM. Here, we review recent findings in MM predisposition field, and highlight open questions and future directions. 000153045 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0 000153045 588__ $$aDataset connected to CrossRef, PubMed, 000153045 7001_ $$aWent, Molly$$b1 000153045 7001_ $$00000-0002-7715-4548$$aHansson, Markus$$b2 000153045 7001_ $$0P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aHemminki, Kari$$b3$$udkfz 000153045 7001_ $$00000-0002-5268-0242$$aHoulston, Richard S$$b4 000153045 7001_ $$aNilsson, Björn$$b5 000153045 773__ $$0PERI:(DE-600)2008023-2$$a10.1038/s41375-019-0703-6$$n3$$p697-708$$tLeukemia$$v34$$x1476-5551$$y2020 000153045 909CO $$ooai:inrepo02.dkfz.de:153045$$pVDB 000153045 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000153045 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0 000153045 9141_ $$y2020 000153045 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000153045 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000153045 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLEUKEMIA : 2017 000153045 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000153045 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000153045 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000153045 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000153045 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000153045 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000153045 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000153045 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000153045 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000153045 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bLEUKEMIA : 2017 000153045 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0 000153045 980__ $$ajournal 000153045 980__ $$aVDB 000153045 980__ $$aI:(DE-He78)C020-20160331 000153045 980__ $$aUNRESTRICTED