000153045 001__ 153045
000153045 005__ 20240229123038.0
000153045 0247_ $$2doi$$a10.1038/s41375-019-0703-6
000153045 0247_ $$2pmid$$apmid:31913320
000153045 0247_ $$2ISSN$$a0887-6924
000153045 0247_ $$2ISSN$$a1476-5551
000153045 0247_ $$2altmetric$$aaltmetric:73785475
000153045 037__ $$aDKFZ-2020-00127
000153045 041__ $$aeng
000153045 082__ $$a610
000153045 1001_ $$aPertesi, Maroulio$$b0
000153045 245__ $$aGenetic predisposition for multiple myeloma.
000153045 260__ $$aLondon$$bSpringer Nature$$c2020
000153045 3367_ $$2DRIVER$$aarticle
000153045 3367_ $$2DataCite$$aOutput Types/Journal article
000153045 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1587117253_24026$$xReview Article
000153045 3367_ $$2BibTeX$$aARTICLE
000153045 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153045 3367_ $$00$$2EndNote$$aJournal Article
000153045 500__ $$a2020 Mar;34(3):697-708
000153045 520__ $$aMultiple myeloma (MM) is the second most common blood malignancy. Epidemiological family studies going back to the 1920s have provided evidence for familial aggregation, suggesting a subset of cases have an inherited genetic background. Recently, studies aimed at explaining this phenomenon have begun to provide direct evidence for genetic predisposition to MM. Genome-wide association studies have identified common risk alleles at 24 independent loci. Sequencing studies of familial cases and kindreds have begun to identify promising candidate genes where variants with strong effects on MM risk might reside. Finally, functional studies are starting to give insight into how identified risk alleles promote the development of MM. Here, we review recent findings in MM predisposition field, and highlight open questions and future directions.
000153045 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000153045 588__ $$aDataset connected to CrossRef, PubMed,
000153045 7001_ $$aWent, Molly$$b1
000153045 7001_ $$00000-0002-7715-4548$$aHansson, Markus$$b2
000153045 7001_ $$0P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aHemminki, Kari$$b3$$udkfz
000153045 7001_ $$00000-0002-5268-0242$$aHoulston, Richard S$$b4
000153045 7001_ $$aNilsson, Björn$$b5
000153045 773__ $$0PERI:(DE-600)2008023-2$$a10.1038/s41375-019-0703-6$$n3$$p697-708$$tLeukemia$$v34$$x1476-5551$$y2020
000153045 909CO $$ooai:inrepo02.dkfz.de:153045$$pVDB
000153045 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000153045 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000153045 9141_ $$y2020
000153045 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000153045 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000153045 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLEUKEMIA : 2017
000153045 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153045 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000153045 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000153045 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000153045 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000153045 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153045 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153045 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000153045 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000153045 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bLEUKEMIA : 2017
000153045 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000153045 980__ $$ajournal
000153045 980__ $$aVDB
000153045 980__ $$aI:(DE-He78)C020-20160331
000153045 980__ $$aUNRESTRICTED