001     153045
005     20240229123038.0
024 7 _ |a 10.1038/s41375-019-0703-6
|2 doi
024 7 _ |a pmid:31913320
|2 pmid
024 7 _ |a 0887-6924
|2 ISSN
024 7 _ |a 1476-5551
|2 ISSN
024 7 _ |a altmetric:73785475
|2 altmetric
037 _ _ |a DKFZ-2020-00127
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Pertesi, Maroulio
|b 0
245 _ _ |a Genetic predisposition for multiple myeloma.
260 _ _ |a London
|c 2020
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1587117253_24026
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Mar;34(3):697-708
520 _ _ |a Multiple myeloma (MM) is the second most common blood malignancy. Epidemiological family studies going back to the 1920s have provided evidence for familial aggregation, suggesting a subset of cases have an inherited genetic background. Recently, studies aimed at explaining this phenomenon have begun to provide direct evidence for genetic predisposition to MM. Genome-wide association studies have identified common risk alleles at 24 independent loci. Sequencing studies of familial cases and kindreds have begun to identify promising candidate genes where variants with strong effects on MM risk might reside. Finally, functional studies are starting to give insight into how identified risk alleles promote the development of MM. Here, we review recent findings in MM predisposition field, and highlight open questions and future directions.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Went, Molly
|b 1
700 1 _ |a Hansson, Markus
|0 0000-0002-7715-4548
|b 2
700 1 _ |a Hemminki, Kari
|0 P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865
|b 3
|u dkfz
700 1 _ |a Houlston, Richard S
|0 0000-0002-5268-0242
|b 4
700 1 _ |a Nilsson, Björn
|b 5
773 _ _ |a 10.1038/s41375-019-0703-6
|0 PERI:(DE-600)2008023-2
|n 3
|p 697-708
|t Leukemia
|v 34
|y 2020
|x 1476-5551
909 C O |o oai:inrepo02.dkfz.de:153045
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LEUKEMIA : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b LEUKEMIA : 2017
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21