001     153781
005     20240229123049.0
024 7 _ |a 10.1002/nbm.4271
|2 doi
024 7 _ |a pmid:32078756
|2 pmid
024 7 _ |a 0952-3480
|2 ISSN
024 7 _ |a 1099-1492
|2 ISSN
024 7 _ |a altmetric:76504760
|2 altmetric
037 _ _ |a DKFZ-2020-00447
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Polak, Daniel
|b 0
245 _ _ |a Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping (QSM).
260 _ _ |a New York, NY
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582544552_19276
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Feb 20:e4271
520 _ _ |a High-quality Quantitative Susceptibility Mapping (QSM) with Nonlinear Dipole Inversion (NDI) is developed with pre-determined regularization while matching the image quality of state-of-the-art reconstruction techniques and avoiding over-smoothing that these techniques often suffer from. NDI is flexible enough to allow for reconstruction from an arbitrary number of head orientations and outperforms COSMOS even when using as few as 1-direction data. This is made possible by a nonlinear forward-model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. We synergistically combine this physics-model with a Variational Network (VN) to leverage the power of deep learning in the VaNDI algorithm. This technique adopts the simple gradient descent rule from NDI and learns the network parameters during training, hence requires no additional parameter tuning. Further, we evaluate NDI at 7 T using highly accelerated Wave-CAIPI acquisitions at 0.5 mm isotropic resolution and demonstrate high-quality QSM from as few as 2-direction data.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Chatnuntawech, Itthi
|b 1
700 1 _ |a Yoon, Jaeyeon
|b 2
700 1 _ |a Iyer, Siddharth Srinivasan
|b 3
700 1 _ |a Milovic, Carlos
|b 4
700 1 _ |a Lee, Jongho
|0 0000-0002-9485-5434
|b 5
700 1 _ |a Bachert, Peter
|0 P:(DE-He78)29b2f01310f7022916255ddba2750f9b
|b 6
|u dkfz
700 1 _ |a Adalsteinsson, Elfar
|b 7
700 1 _ |a Setsompop, Kawin
|b 8
700 1 _ |a Bilgic, Berkin
|b 9
773 _ _ |a 10.1002/nbm.4271
|0 PERI:(DE-600)2002003-X
|p e4271.
|t NMR in biomedicine
|v 20
|y 2020
|x 1099-1492
909 C O |o oai:inrepo02.dkfz.de:153781
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)29b2f01310f7022916255ddba2750f9b
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NMR BIOMED : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21