000180234 001__ 180234
000180234 005__ 20240229145611.0
000180234 0247_ $$2doi$$a10.1016/j.radonc.2022.05.025
000180234 0247_ $$2pmid$$apmid:35661675
000180234 0247_ $$2ISSN$$a0167-8140
000180234 0247_ $$2ISSN$$a1879-0887
000180234 0247_ $$2altmetric$$aaltmetric:129097829
000180234 037__ $$aDKFZ-2022-01185
000180234 041__ $$aEnglish
000180234 082__ $$a610
000180234 1001_ $$aKarsch, Leonhard$$b0
000180234 245__ $$aBeam pulse structure and dose rate as determinants for the flash effect observed in zebrafish embryo.
000180234 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000180234 3367_ $$2DRIVER$$aarticle
000180234 3367_ $$2DataCite$$aOutput Types/Journal article
000180234 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1656937801_30918
000180234 3367_ $$2BibTeX$$aARTICLE
000180234 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000180234 3367_ $$00$$2EndNote$$aJournal Article
000180234 500__ $$aVolume 173, August 2022, Pages 49-54
000180234 520__ $$aContinuing recent experiments at the research electron accelerator ELBE at the Helmholtz-Zentrum Dresden-Rossendorf the influence of beam pulse structure on the Flash effect was investigated.The proton beam pulse structure of an isochronous cyclotron (UHDRiso) and a synchrocyclotron (UHDRsynchro) was mimicked at ELBE by quasi-continuous electron bunches at 13 MHz delivering mean dose rates of 287 Gy/s and 177 Gy/s and bunch dose rates of 106Gy/s and 109 Gy/s, respectively. For UHDRsynchro, 40 ms macro pulses at a frequency of 25 Hz superimposed the bunch delivery. For comparison, a maximum beam intensity (2.5 x 105 Gy/s mean and ∼109 Gy/s bunch dose rate) and a reference irradiation (of ∼8 Gy/min mean dose rate) were applied. Radiation induced changes were assessed in zebrafish embryos over four days post irradiation.Relative to the reference a significant protecting Flash effect was observed for all electron beam pulse regimes with less severe damage the higher the mean dose rate of the electron beam. Accordingly, the macro pulsing induced prolongation of treatment time at UHDRsynchro regime reduces the protecting effect compared to the maximum regime delivered at same bunch but higher mean dose rate. The Flash effect of the UHDRiso regime was confirmed at a clinical isochronous cyclotron comparing the damage induced by proton beams delivered at 300 Gy/s and ∼9 Gy/min.The recent findings indicate that the mean dose rate or treatment time are decisive for the normal tissue protecting Flash effect in zebrafish embryo.
000180234 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000180234 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000180234 650_7 $$2Other$$aElectron Flash effect
000180234 650_7 $$2Other$$aMean dose rate influence
000180234 650_7 $$2Other$$aNormal tissue toxicity
000180234 650_7 $$2Other$$aProton Flash effect
000180234 650_7 $$2Other$$aPulse structure
000180234 650_7 $$2Other$$aUltra-high dose rate
000180234 650_7 $$2Other$$aZebrafish embryo
000180234 7001_ $$aPawelke, Jörg$$b1
000180234 7001_ $$aBrand, Michael$$b2
000180234 7001_ $$aHans, Stefan$$b3
000180234 7001_ $$aHideghéty, Katalin$$b4
000180234 7001_ $$0P:(DE-He78)02e29e2d540ff21d777f3a03ec9f5ade$$aJansen, Jeannette$$b5$$udkfz
000180234 7001_ $$aLessmann, Elisabeth$$b6
000180234 7001_ $$0P:(DE-HGF)0$$aLöck, Steffen$$b7
000180234 7001_ $$aSchürer, Michael$$b8
000180234 7001_ $$aSchurig, Rico$$b9
000180234 7001_ $$0P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aSeco, Joao$$b10$$udkfz
000180234 7001_ $$aSzabó, Emília Rita$$b11
000180234 7001_ $$aBeyreuther, Elke$$b12
000180234 773__ $$0PERI:(DE-600)1500707-8$$a10.1016/j.radonc.2022.05.025$$gp. S0167814022041317$$p 49-54$$tRadiotherapy and oncology$$v173$$x0167-8140$$y2022
000180234 909CO $$ooai:inrepo02.dkfz.de:180234$$pVDB
000180234 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)02e29e2d540ff21d777f3a03ec9f5ade$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000180234 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000180234 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000180234 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000180234 9141_ $$y2022
000180234 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000180234 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-31
000180234 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000180234 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-29$$wger
000180234 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-29
000180234 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-29
000180234 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-29
000180234 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-29
000180234 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-29
000180234 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRADIOTHER ONCOL : 2021$$d2022-11-29
000180234 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-29
000180234 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-29
000180234 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-29
000180234 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bRADIOTHER ONCOL : 2021$$d2022-11-29
000180234 9201_ $$0I:(DE-He78)E041-20160331$$kE041$$lE041 Medizinische Physik in der Radioonkologie$$x0
000180234 9201_ $$0I:(DE-He78)DD01-20160331$$kDD01$$lDKTK DD zentral$$x1
000180234 980__ $$ajournal
000180234 980__ $$aVDB
000180234 980__ $$aI:(DE-He78)E041-20160331
000180234 980__ $$aI:(DE-He78)DD01-20160331
000180234 980__ $$aUNRESTRICTED