Home > Publications database > Serum Extracellular Vesicle-Derived microRNAs as Potential Biomarkers for Pleural Mesothelioma in a European Prospective Study. > print |
001 | 186686 | ||
005 | 20240229154901.0 | ||
024 | 7 | _ | |a 10.3390/cancers15010125 |2 doi |
024 | 7 | _ | |a pmid:36612122 |2 pmid |
024 | 7 | _ | |a altmetric:140662788 |2 altmetric |
037 | _ | _ | |a DKFZ-2023-00055 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Casalone, Elisabetta |b 0 |
245 | _ | _ | |a Serum Extracellular Vesicle-Derived microRNAs as Potential Biomarkers for Pleural Mesothelioma in a European Prospective Study. |
260 | _ | _ | |a Basel |c 2023 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1673273526_5299 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Malignant pleural mesothelioma (MPM) is an aggressive cancer with a dismal prognosis. Early therapeutic interventions could improve patient outcomes. We aimed to identify a pattern of microRNAs (miRNAs) as potential early non-invasive markers of MPM. In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition cohort, we screened the whole miRNome in serum extracellular vesicles (EVs) of preclinical MPM cases. In a subgroup of 20 preclinical samples collected five years prior MPM diagnosis, we observed an upregulation of miR-11400 (fold change (FC) = 2.6, adjusted p-value = 0.01), miR-148a-3p (FC = 1.5, p-value = 0.001), and miR-409-3p (FC = 1.5, p-value = 0.04) relative to matched controls. The 3-miRNA panel showed a good classification capacity with an area under the receiver operating characteristic curve (AUC) of 0.81 (specificity = 0.75, sensitivity = 0.70). The diagnostic ability of the model was also evaluated in an independent retrospective cohort, yielding a higher predictive power (AUC = 0.86). A signature of EV miRNA can be detected up to five years before MPM; moreover, the identified miRNAs could provide functional insights into the molecular changes related to the late carcinogenic process, preceding MPM development. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a biomarkers |2 Other |
650 | _ | 7 | |a early changes |2 Other |
650 | _ | 7 | |a malignant pleural mesothelioma |2 Other |
650 | _ | 7 | |a microRNAs |2 Other |
650 | _ | 7 | |a next generation sequencing |2 Other |
700 | 1 | _ | |a Birolo, Giovanni |0 0000-0003-0160-9312 |b 1 |
700 | 1 | _ | |a Pardini, Barbara |0 0000-0001-9571-4257 |b 2 |
700 | 1 | _ | |a Allione, Alessandra |b 3 |
700 | 1 | _ | |a Russo, Alessia |0 0000-0002-5494-2218 |b 4 |
700 | 1 | _ | |a Catalano, Chiara |b 5 |
700 | 1 | _ | |a Mencoboni, Manlio |b 6 |
700 | 1 | _ | |a Ferrante, Daniela |0 0000-0003-4929-3759 |b 7 |
700 | 1 | _ | |a Magnani, Corrado |0 0000-0001-6413-5471 |b 8 |
700 | 1 | _ | |a Sculco, Marika |b 9 |
700 | 1 | _ | |a Dianzani, Irma |b 10 |
700 | 1 | _ | |a Grosso, Federica |b 11 |
700 | 1 | _ | |a Mirabelli, Dario |b 12 |
700 | 1 | _ | |a Filiberti, Rosa Angela |b 13 |
700 | 1 | _ | |a Rena, Ottavio |b 14 |
700 | 1 | _ | |a Sacerdote, Carlotta |0 0000-0002-8008-5096 |b 15 |
700 | 1 | _ | |a Rodriguez-Barranco, Miguel |0 0000-0002-9972-9779 |b 16 |
700 | 1 | _ | |a Smith-Byrne, Karl |b 17 |
700 | 1 | _ | |a Panico, Salvatore |b 18 |
700 | 1 | _ | |a Agnoli, Claudia |b 19 |
700 | 1 | _ | |a Johnson, Theron |0 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa |b 20 |u dkfz |
700 | 1 | _ | |a Kaaks, Rudolf |0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a |b 21 |u dkfz |
700 | 1 | _ | |a Tumino, Rosario |b 22 |
700 | 1 | _ | |a Huerta, José María |b 23 |
700 | 1 | _ | |a Riboli, Elio |b 24 |
700 | 1 | _ | |a Heath, Alicia K |0 0000-0001-6517-1300 |b 25 |
700 | 1 | _ | |a Trobajo-Sanmartín, Camino |0 0000-0001-5105-252X |b 26 |
700 | 1 | _ | |a Schulze, Matthias B |0 0000-0002-0830-5277 |b 27 |
700 | 1 | _ | |a Saieva, Calogero |0 0000-0002-0117-1608 |b 28 |
700 | 1 | _ | |a Amiano, Pilar |b 29 |
700 | 1 | _ | |a Agudo, Antonio |b 30 |
700 | 1 | _ | |a Weiderpass, Elisabete |0 0000-0003-2237-0128 |b 31 |
700 | 1 | _ | |a Vineis, Paolo |b 32 |
700 | 1 | _ | |a Matullo, Giuseppe |0 0000-0003-0674-7757 |b 33 |
773 | _ | _ | |a 10.3390/cancers15010125 |g Vol. 15, no. 1, p. 125 - |0 PERI:(DE-600)2527080-1 |n 1 |p 125 |t Cancers |v 15 |y 2023 |x 2072-6694 |
909 | C | O | |o oai:inrepo02.dkfz.de:186686 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 20 |6 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 21 |6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2022-01-24T07:56:58Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-30 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-30 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-30 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CANCERS : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-07-31T16:07:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-07-31T16:07:06Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-07-31T16:07:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-26 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CANCERS : 2022 |d 2023-10-26 |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|