001     186686
005     20240229154901.0
024 7 _ |a 10.3390/cancers15010125
|2 doi
024 7 _ |a pmid:36612122
|2 pmid
024 7 _ |a altmetric:140662788
|2 altmetric
037 _ _ |a DKFZ-2023-00055
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Casalone, Elisabetta
|b 0
245 _ _ |a Serum Extracellular Vesicle-Derived microRNAs as Potential Biomarkers for Pleural Mesothelioma in a European Prospective Study.
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673273526_5299
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Malignant pleural mesothelioma (MPM) is an aggressive cancer with a dismal prognosis. Early therapeutic interventions could improve patient outcomes. We aimed to identify a pattern of microRNAs (miRNAs) as potential early non-invasive markers of MPM. In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition cohort, we screened the whole miRNome in serum extracellular vesicles (EVs) of preclinical MPM cases. In a subgroup of 20 preclinical samples collected five years prior MPM diagnosis, we observed an upregulation of miR-11400 (fold change (FC) = 2.6, adjusted p-value = 0.01), miR-148a-3p (FC = 1.5, p-value = 0.001), and miR-409-3p (FC = 1.5, p-value = 0.04) relative to matched controls. The 3-miRNA panel showed a good classification capacity with an area under the receiver operating characteristic curve (AUC) of 0.81 (specificity = 0.75, sensitivity = 0.70). The diagnostic ability of the model was also evaluated in an independent retrospective cohort, yielding a higher predictive power (AUC = 0.86). A signature of EV miRNA can be detected up to five years before MPM; moreover, the identified miRNAs could provide functional insights into the molecular changes related to the late carcinogenic process, preceding MPM development.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a biomarkers
|2 Other
650 _ 7 |a early changes
|2 Other
650 _ 7 |a malignant pleural mesothelioma
|2 Other
650 _ 7 |a microRNAs
|2 Other
650 _ 7 |a next generation sequencing
|2 Other
700 1 _ |a Birolo, Giovanni
|0 0000-0003-0160-9312
|b 1
700 1 _ |a Pardini, Barbara
|0 0000-0001-9571-4257
|b 2
700 1 _ |a Allione, Alessandra
|b 3
700 1 _ |a Russo, Alessia
|0 0000-0002-5494-2218
|b 4
700 1 _ |a Catalano, Chiara
|b 5
700 1 _ |a Mencoboni, Manlio
|b 6
700 1 _ |a Ferrante, Daniela
|0 0000-0003-4929-3759
|b 7
700 1 _ |a Magnani, Corrado
|0 0000-0001-6413-5471
|b 8
700 1 _ |a Sculco, Marika
|b 9
700 1 _ |a Dianzani, Irma
|b 10
700 1 _ |a Grosso, Federica
|b 11
700 1 _ |a Mirabelli, Dario
|b 12
700 1 _ |a Filiberti, Rosa Angela
|b 13
700 1 _ |a Rena, Ottavio
|b 14
700 1 _ |a Sacerdote, Carlotta
|0 0000-0002-8008-5096
|b 15
700 1 _ |a Rodriguez-Barranco, Miguel
|0 0000-0002-9972-9779
|b 16
700 1 _ |a Smith-Byrne, Karl
|b 17
700 1 _ |a Panico, Salvatore
|b 18
700 1 _ |a Agnoli, Claudia
|b 19
700 1 _ |a Johnson, Theron
|0 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa
|b 20
|u dkfz
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 21
|u dkfz
700 1 _ |a Tumino, Rosario
|b 22
700 1 _ |a Huerta, José María
|b 23
700 1 _ |a Riboli, Elio
|b 24
700 1 _ |a Heath, Alicia K
|0 0000-0001-6517-1300
|b 25
700 1 _ |a Trobajo-Sanmartín, Camino
|0 0000-0001-5105-252X
|b 26
700 1 _ |a Schulze, Matthias B
|0 0000-0002-0830-5277
|b 27
700 1 _ |a Saieva, Calogero
|0 0000-0002-0117-1608
|b 28
700 1 _ |a Amiano, Pilar
|b 29
700 1 _ |a Agudo, Antonio
|b 30
700 1 _ |a Weiderpass, Elisabete
|0 0000-0003-2237-0128
|b 31
700 1 _ |a Vineis, Paolo
|b 32
700 1 _ |a Matullo, Giuseppe
|0 0000-0003-0674-7757
|b 33
773 _ _ |a 10.3390/cancers15010125
|g Vol. 15, no. 1, p. 125 -
|0 PERI:(DE-600)2527080-1
|n 1
|p 125
|t Cancers
|v 15
|y 2023
|x 2072-6694
909 C O |o oai:inrepo02.dkfz.de:186686
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 21
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-01-24T07:56:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-30
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCERS : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-31T16:07:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-31T16:07:06Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-07-31T16:07:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCERS : 2022
|d 2023-10-26
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21