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Compartments in medulloblastoma with
extensive nodularity are connected through
differentiation along the granular precursor
lineage
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Medulloblastomas with extensive nodularity are cerebellar tumors character-

ized by two distinct compartments and variable disease progression. The

mechanisms governing the balance between proliferation and differentiation

inMBEN remain poorly understood. Here, we employ amulti-modal single cell

transcriptome analysis to dissect this process. In the internodular compart-

ment, we identify proliferating cerebellar granular neuronal precursor-like

malignant cells, along with stromal, vascular, and immune cells. In contrast,

the nodular compartment comprises postmitotic, neuronally differentiated

malignant cells. Both compartments are connected through an intermediate

cell stage resembling actively migrating CGNPs. Notably, we also discover

astrocytic-like malignant cells, found in proximity to migrating and differ-

entiated cells at the transition zone between the twocompartments. Our study

sheds light on the spatial tissue organization and its link to the developmental

trajectory, resulting in a more benign tumor phenotype. This integrative

approach holds promise to explore intercompartmental interactions in other

cancers with varying histology.

Medulloblastoma (MB) is themost commonembryonal brain tumor of

childhood and accounts for a significant proportion of bothmorbidity

and mortality in this age group1,2. Traditionally, MB has been stratified

into four histopathological subtypes based on histological appear-

ance: Classic, Large Cell/Anaplastic, Desmoplastic/Nodular (DNMB)

and MB with Extensive Nodularity (MBEN)3,4. Additionally, in the last

decade, four molecular groups (WNT, SHH, Group 3, and Group 4)

together with various subgroups have been defined and now generally

replace the classic histopathological stratification in the 2021 WHO

classification of central nervous system (CNS) tumors5–14.
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MBEN is a unique histological type ofMB thatmainly arises in very

young children and infants. These tumors exclusively fall into the

molecular SHH-group and have been shown to frequently harbor

mutations in SHH-pathwaygenes, for instance,PTCH1orSUFU4,15. Their

distinctive, bicompartmental histological appearance is characteristic

and differentiates them from other MBs: large nodular conglomerates

of postmitotic, differentiated, neurocytic tumor cells are surrounded

by internodular zones of highly proliferative, poorly differentiated

cells15–17. Furthermore, MBEN show a distinctive, grapevine-like neu-

roradiological appearance16–18. MBEN are generally associated with

good prognosis and are therefore considered low-risk in comparison

to other MB variants. However, relapse and disease progression can

occur andmay require intensified therapy, resulting in potentially life-

long, severe side effects in these very young children15,19–22. Interest-

ingly, case studies reported that MBEN may mature and differentiate

into benign ganglion cell tumors23,24. These findings have led to spec-

ulations whether underlying biological differentiation programs may

exist in these tumors that could result in a loss ofmalignant potential16.

This hypothesis is underlined by the fact thatMBEN are defined by the

upregulation of cellular pathways that are important in cerebellar

neuronal differentiation, for instance synaptic transmission, glutama-

tergic signaling and calcium homeostasis25. In the past, it has been

disputed whether DNMB andMBEN represent two biologically distinct

MB variants.We previously showed that these histological variants can

be reliably distinguished based on their transcriptomic profiles,

despite harboring similar SHH-associated epigenetic signatures25.

Whereas clinical characteristics of MBEN are well established, the

biology underlying its distinctive histological appearance and varying

disease aggressiveness remains largely unknown. It is especially

unclear if and how the two histological compartments of MBEN are

interconnected. Several studies have postulated that the cells of origin

of SHH-MB are cerebellar granule neuronal precursors (CGNP) in the

external granular layer (EGL) of the developing cerebellum. The large

differences in biological and clinical features within the molecular

group of SHH-MB indicate that tumor formation may depend on dis-

tinctive spatial and temporal circumstances26–30.

In this study, we use an integrated multi-modal approach that

includes three complementary spatial transcriptomics methods. We

demonstrate that MBEN mimics the development of CGNPs into

granule neurons and that the bi-compartmental histology of MBEN

represents distinct differentiation cell states that are connected

through a direct developmental trajectory. Furthermore, we identify a

subset of tumor cells that cluster together with non-malignant astro-

cytes and show an astroglial phenotype. Overall, our findings indicate

that MBEN could be understood as a disease of the developing cere-

bellum and serve as an explanation why these tumors are almost

entirely restricted to infancy.

Results
Molecular and clinical characterization of the MBEN cohort
In order to study the genetic basis of MBEN in a comprehensive way,

we applied a multimodal set of complementary methods, including

single nucleus RNA-sequencing (snRNA-seq) and spatial tran-

scriptomics, to a cohort of nine fresh frozen MBEN samples (Fig. 1a,

Supplementary Data 1). DNA methylation-based clustering of bulk

methylomes with a reference cohort spanning all majormolecularMB-

groups confirmed that all cases belonged to the infant SHH-MB group

(SHH-1: n = 7, SHH-2: n = 2) (Fig. 1b)9. DNA sequencing revealed genetic

alterations of the SHH-pathway in six tumors (PTCH1: 1/9, SMO: 2/9,

SUFU: 3/9) (Fig. 1c). As reported previously for MBENs, copy number

variations (CNVs) were only detected infrequently (Supplementary

Fig. 1). MBEN-histology was confirmed by central pathological review

in all cases (A.K.) (Fig. 1d). All tumors were located in the cerebellum

(Fig. 1e). At the time of diagnosis, disease stage was M0 in 7/9 cases,

with two patients showing metastatic disease (M2: 1/9, M3: 1/9)

(Supplementary Fig. 2a). The median age of children included in this

cohort was 2 ± 0.70 years and 7/9 patients were male (Supplementary

Fig. 2b, c). In accordance with earlier studies, the clinical outcome in

the presented cohort were overall favorable. However, a total of three

out of nine children experienced relapses of their disease (Supple-

mentary Fig. 2d, e).

A subset of tumor cells is transcriptionally similar to non-
malignant astrocytes
To investigate intra- and intertumoral transcriptional heterogeneity

within MBEN, we isolated nuclei from fresh frozen material and sub-

sequently applied two complementary methods of snRNA-seq (see

methods), namely the 10X V2 3’- (n = 9) and the SMARTseq V2.5-pro-

tocols (n = 6). After initial quality control (Supplementary Fig. 3a–g),

28,132 and 1526 nuclei were used for downstream analyses, respec-

tively. In order to ensure that snRNA-seq datasets faithfully repre-

sented the respective tumor, a fingerprint analysis using bulk RNA-

sequencing profiles was conducted (Supplementary Fig. 4a). Further-

more, comparative clustering revealed concordant results between

both methods, confirming that both techniques covered the same cell

types (Supplementary Fig. 4b). Subsequently, we integrated both

datasets to arrive at an integrated snRNAseq dataset resulting in

29,658 cells for further in-depth analysis (Fig. 2a, Supplementary

Fig. 4c, d)31. Non-malignant cells were identified based on established

marker genes or recently published single cell atlases and comparison

to a reference dataset of the fetal cerebellum, which we recently

published32–34. This approach resulted in the identification of astro-

cytic cells, oligodendrocytes/oligodendral precursors, monocytes/

endothelial and fibroblast/ perivascular cells (Fig. 2b, Supplementary

Figs. 3e–g, 4e, f). Apart from monocytes, no significant immunolo-

gical infiltration, for instance by T- or NK-cells, was observed, con-

firming earlier studies that described MB as an immunologically cold

tumor35. Surprisingly, analyzing genome-wide copy number varia-

tions (CNV) per individual cluster using inferCNV revealed a clear

CNV-signature related to one case (MB295) in the astrocytic cluster

(Fig. 2c)36. Since SMARTseq V2.5 generates whole transcriptome

reads that can be used for the analysis of single nucleotide variants

(SNVs), we investigated whether we could identify cells with both an

astrocytic phenotype and pathogenic SNVs. Strikingly, a small num-

ber of astrocytic cells (n = 3) from sample MB266 indeed harbored

the same mutation within the SHH pathway gene SMO as detected

using bulk sequencing, further confirming our initial findings that a

fraction of astrocytic cells in MBEN is derived from malignant pre-

cursors (Fig. 2d–f). In order to identify which astrocytic cells were

malignant and non-malignant, respectively, we analyzed both snRNA-

seq datasets separately and without correcting for patient-related

batch effects. We hypothesized that malignant cells would cluster

according to patient, while non-malignant cells would congregate in

one cluster, as observed in other single cell studies37. Using this

approach, we could indeed separate malignant from non-malignant

cells within the astrocytic cluster, which partly clustered in mixed,

non-malignant, and partly in malignant, patient-specific clusters

(Fig. 2g, Supplementary Fig. 4g–j). Whereas the number ofmalignant

astrocytic cells varied by sample, they were identified in every case

(Supplementary Fig. 4g). Based on these findings, we hypothesized

that the subpopulation of MBEN cells with astrocytic features

represent astrocytic-like cells, which is supported by experimental

studies that indicate that murine MB cells can transdifferentiate into

tumor-derived astrocytes38–40.

Taken together, we found that besides malignant cell sub-

populations MBEN contains various non-malignant cells with glial,

monocytic, vascular and endothelial transcriptional signatures. Inter-

estingly, snRNA-seq using two complementary methods revealed a

distinct subpopulation of tumor cells that correspond to astrocytic-

like cells.

Article https://doi.org/10.1038/s41467-023-44117-x

Nature Communications |          (2024) 15:269 2



Cell stages in MBEN recapitulate cerebellar granular
development
In order to study MBEN cells in greater detail, non-malignant cell

populations, including non-malignant astrocytes, were excluded from

further tumor cell analysis. Re-analysis restricted to malignant cells

revealed five distinct clusters and one additional one, which was

entirely driven by upregulation of heat shock- and ribosomal-

associated genes, indicating an artificial effect most likely induced by

cellular stress associated with sampling (Fig. 3a). Only one cluster was

actively proliferating as indicated by S- and G2M-signatures (Fig. 3b).

The different cell populations showed distinct expression patterns

matching those of individual CGNP developmental stages. Two clus-

ters, of which one was proliferating, showed upregulation of marker

genes of early CGNPs in the EGL (e.g., BARHLH1, ZIC1, ZIC3, PTPRK) and

SHH-pathway members (PTCH1, SMO, HHIP, GLI1, GLI2). Additionally,

the proliferating cluster expressed genes that are implicated in epi-

genetic regulation and chromatin remodeling (e.g., EZH2, SUZ12, CTCF,

YY1, RAD21) (Fig. 3c, Supplementary Fig. 5d, SupplementaryData 2)41–45.

These genes have been shown to be involved both in the orchestration

of cerebellar development and the oncogenesis of numerous cancer

types45,46. Clusters three and fourwere characterized by the expression

of markers of intermediately differentiated, migrating (GRIN2B,

CNTN2, ASTN1, SEMA6A) and postmitotic, differentiated CGNPs

(GABRA1, GABRA6, GRIN2C), respectively (Fig. 3c, Supplementary

Fig. 5e–i)41,47–49. A fifth cluster was formed by astrocytic-like cells.

Notably, we observed that markers associated with astrocyte-immune

cell interactions in murine models (e.g., IGF1, IL4) did not show any

specificity in human tumors, being spread across all cell types inMBEN

samples38. In addition, astrocytic-like cells showed upregulation of

stromal and of early cell stage markers (LAMA2, SOX2, SOX9) as well as

SHH-pathwaymembers (e.g.,HHIP, BOC, GLI2) (Fig. 3c, Supplementary

Fig. 5a–c), but no significant proliferative activity. Pseudotemporal

ordering using Slingshot50 revealed a continuous lineage starting from

theproliferating, early CGNP-like cell states, spanning the intermediate

ones and finally congregating in the postmitotic, neuronally differ-

entiated cells (Fig. 3d). This lineage resembled physiologic differ-

entiation of CGNPs into normal granular neurons during cerebellar

development and was confirmed in an independent cohort of MBEN

cases in an accompanying study by Gold et al. Astrocytic-like cells

branched off early in the trajectory and prior to the appearance of

markersof cellmigration (Fig. 3d). In addition,weusedmonocle2 as an

additional pseudotime ordering tool on sample MB295, which inclu-

ded a large fraction of astrocytic-like malignant cells. The obtained

trajectory strongly reflected the main pattern that we observed from

Slingshot, with early CGNP-like cells at the start, and neuronally dif-

ferentiated cells at the end of the trajectory (Supplementary Fig. 5j–y).

Interestingly, astrocytic-like cells demonstrated a slightly different

location within the trajectory as compared to the cluster-based

approach using slingshot and were found at the earliest time point

prior to the clustersof early, CGNP-like cells. (SupplementaryFig. 5j, o).
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Fig. 1 | Method spectrum and molecular features of the MBEN patient cohort.

a Visual summary of all methods that were applied to investigate theMBEN cohort.

b t-SNE depicting a clustering of theMBEN cohort (n = 9) with a reference cohort of

391 molecularly characterized MBs. All nine samples clustered with the SHH-

subtype. c Pie chart summarizing the alterations in the SHH-pathway that were

detected using DNA panel seq. d H.E. staining showing the two characteristic his-

tological components of MBEN. The black asterisk marks the internodular com-

ponent, whereas the black arrow points towards a tumor nodule. All nine cases

were histologically diagnosed as MBEN. Scale bar = 300 µm. e Representative cor-

onalMRI image in anMBENpatient showing a large cerebellarmass with grapevine-

like appearance. In order to design Fig. 1a, the two images “genomesequencer9” (by

DBCLS, licensed under https://creativecommons.org/licenses/by/4.0/), and “mul-

tiwell-plate-3d” (by Servier, licensed under https://creativecommons.org/licenses/

by/3.0/) from the database https://bioicons.com were used. Source data are pro-

vided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-44117-x

Nature Communications |          (2024) 15:269 3



Correlating our snRNA-seq data with transcriptomic profiles of the

aforementioned in vivo study38, MBEN-derived astrocytic-like cells

showed clear similarity to both normal and astrocytic-like cells from

the respective SHH-MB mouse model (Fig. 3e). In order to further

validate our findings, we mapped our MBEN dataset onto a recently

published, comprehensive snRNA-seq atlas, spanning the whole

embryonal and fetal development of the cerebellum51. This analysis

fully reflected cells-of-origin associations identified for SHH

medulloblastoma34 and confirmed results of thepseudotime trajectory

analysis. Whereas cells from the beginning of the MBEN trajectory

resembled transcriptional signatures of early CGNPs, the intermediate

MBEN cluster showed the highest concordance with intermediate

developmental stages of CGNP differentiation (Fig. 3f). Lastly, the

neuronal-like cluster at the end of the trajectory clearly mapped onto
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differentiated granular neurons and astrocytic-like cells showed high

similarity with astrocytes from the developing cerebellum. There was

no significant association between the percentage of each cluster per

patient andeither ageof onset, sexor relapse status as calculatedusing

Spearman correlations.

In summary, different MBEN cell populations mimicked distinct

cell stages of the normal CGNP lineage, spanning the whole develop-

mental trajectory. The cell stages of MBEN development differed

markedly in theirmajor expressionprograms, andproliferative activity

was lost after the early CGNP-like MBEN cells started to differentiate.

Functional in silico analyses reveal biological mechanisms
underlying MBEN differentiation
A number of core biological mechanisms and cellular functions play a

pivotal role in CGNP development. These include, amongst others, the

SHH pathway, NMDA/glutamate signaling, the expression of bone

morphogenic proteins (BMPs) as well as Ca2+-signaling41,42,47,48,52–57. We

sought to investigate whether similar processesmight influenceMBEN

development. First, we examined intra- and inter-cluster communica-

tionby analyzing ligand-receptorpairs basedon snRNA-seq expression

data (Fig. 4a, b)58. Astrocytic-like cells were the only cells that showed

high-confidence interactions with all other clusters via APOE signaling,

which is in line with previous findings that astrocytic cells act as the

main supplier and redistributor of cholesterol in the CNS59. Intra-

cluster communication within the differentiated neuronal-like cluster

was dominated by genes which are involved in voltage-dependent

signaling, especially with regard to Ca2+-signaling, such as RIMS1,

CACNA1C andCALM160. These findings were corroborated by analyzing

the expression of a transcriptomic Ca2+-signaling signature including

1805 genes61. Indeed, Ca2+-signaling was strongly connected to later

cell stages within MBEN (Fig. 4c). Another group of genes that is

involved in CGNP development relates to BMPs thatmay also suppress

MB proliferation in vitro41,62. Interestingly, a BMP-related signature

showed strong expression in astrocytic-like cells, suggesting that these

cells might be involved in triggering the differentiation process by

suppressing proliferative activity in MBEN (Fig. 4d). The hypothesis

that similar processes as in physiological CGNPdevelopment are active

inMBENwas further confirmed by cluster-specific gene ontology (GO)

analysis (Supplementary Fig. 6, Supplementary Data 3)63. All clusters

showed significant enrichments for GO terms directly connected to

synaptic organization and activation, glutamate signaling, and Ca2+-

homeostasis (Supplementary Fig. 6, Supplementary Data 3).

Astrocytic-like cells showed high expression of genes connected to

cAMP-metabolism, possibly indicating that malignant astrocytes may

be involved in energy supply for surrounding cells, thus resembling

astrocytic functions in normal CNS64.

In order to complement these findings, we performed a cluster

specific transcription factor (TF) activity analysis using the DoRothEA

tool65,66. To this end, overall TF activity per cluster and changes in TF

activity betweenMBEN stages that followed each other were calculated

(Fig. 4e, Supplementary Fig. 7, Supplementary Tables 4, 5). SOX2 and

FOXA1, two pioneer TFs which are involved in maintaining chromatin

accessibility throughout early development67, were active along the

entire differentiation process. In contrast, E2F1 and E2F4, which are

particularly involved in cell cycle regulation68, were downregulated

shortly after the start of the trajectory. In addition, MYC, which was

among the most active TFs in (proliferating) early-like CGNPs, was

downregulated in later MBEN cell stages. EOMES, a marker of unipolar

brush cells and intermediate cortical neurons34,69, increased in activity

once (proliferating) early CGNP-like cells differentiated into migrating

CGNP-like cells and astrocytic-like cells. Similarly, NEUROD1, a TF that

has been described as an inducer of differentiation and thus tumor

suppressor gene in MB, increased activity throughout the MBEN dif-

ferentiation process (Fig. 4e, Supplementary Data 4, 5). Surprisingly,

despite clear differences in expression profiles, astrocytic-like cells

showed overall similar TF activities to other clusters, possibly due to

their shared developmental roots. Notably, NR1H3, a TF that is strongly

involved in cholesterol homeostasis70, showed markedly increased

activity in astrocytic-like cells.

Taken together, complimentary functional in silico analyses con-

firmed that biological mechanisms of physiological CGNP develop-

ment are mimicked in MBEN differentiation. Furthermore, astrocytic-

like cells showed upregulation of BMPs and were connected to energy

and cholesterol homeostasis.

Transcriptomic analysis of MBEN based on microdissected tis-
sue shows differences between the internodular- and nodular
compartments
In order to correlate our findings with the bicompartmental histology

of MBEN, we applied targeted microdissection to FFPE samples over-

lapping with our study cohort, allowing to obtain bulk RNA-seq data-

sets from nodular and internodular tumor areas separately (n = 26).

After expression variance inspection and fingerprint verification of

corresponding samples (Supplementary Fig. 8a, b) we corrected for

patient-related batch effects of the original tissue (details in methods)

and detected genes differentially expressed between nodular and

internodular compartments (Fig. 5a, Supplementary Data 6). When we

investigated the expression of these genes in our snRNA-seq datasets,

we observed clear patterns. For example, TRIM9, which was nodular-

specific in the microdissection data, was strongly expressed in inter-

mediate CGNP-like and neuronal-like snRNA-seq clusters (Fig. 5b).

Similarly, TMEM108 from internodular derived microdissections

demonstrated a strongfit to clusters of early CGNP-likeMBEN cells and

astrocytic-like cells (Fig. 5c). To further confirm these findings, we

performed gene set variation analysis71 that demonstrated differ-

entiatedMBEN clusters being strongly enriched with nodular, whereas

the early CGNP-like populations were in close match to internodular

transcriptome profiles (Fig. 5d). Interestingly, astrocytic-like cells were

more specific to the internodular compartment. These findings were

corroborated by performing a deconvolution analysis on our micro-

dissected bulk-RNA sequencing datasets with the cluster signatures of

our snRNA-seq dataset as reference in order to estimate the con-

tributions of differentiated, neuronal-like and proliferating, early

CGNP-like cells to the two histological components72. We found

Fig. 2 | SnRNA-seq reveals a subset of MBEN-cells with similarity to astrocytes.

a UMAP-projection of the integrated dataset (10X snRNA-seq + SMARTseq V2.5

snRNA-seq) shows intratumoral heterogeneity in MBEN (nine samples, n = 29,658

cells). b Heatmap depicting marker genes for indicated cell types of all nine clus-

ters. The first five clusters represent malignant MBEN cells. Clusters 6–9 are iden-

tified as perivascular fibroblasts/ pericytes, astrocytic cells, oligodendrocytes/

oligodendroglial precursors and a mixture of microglia and endothelial cells.

c InferCNV-analysis using non-malignant cells as a control confirms malignant

origin for the vast majority of cells as well as a CNV signature of malignant cells in

the astrocytic cluster. d IGV-representation of case MB266 showing pathogenic

SNVs within the gene SMO. Three cells with an astrocytic phenotype harbour the

same SNV as detected using bulk sequencing. eUMAP projection of the SMARTseq

V2.5-dataset without correction for patient batch effects (six samples, n = 1526

cells). Cells were mapped to a reference dataset (Sepp et al., bioRxiv 2021) to

identify cells with an astrocytic phenotype. As shown, these clustered close to

malignant cells. The zoom-in highlights three cells with an astrocytic phenotype

and SMO-mutations. f UMAP projection as in d (six samples, n = 1526 cells). Cells in

which the same SNVs as in bulk sequencingweredetected are highlighted in red. As

shown, three cellswithin the astrocyticpopulation harbor SNVs.gUMAPprojection

of the 10X snRNA-seq dataset whichwas not corrected for patient-associated batch

effects (nine samples, n = 28,132 cells). Whereas the majority of cells are clustering

according to patient, significant mixing of cells occurs in two clusters (encircled),

representing non-malignant cells. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-44117-x

Nature Communications |          (2024) 15:269 5



significant differences that reflected the results of our

microdissection-based sequencing analysis (Supplementary Fig. 8c, d).

Spatial transcriptomics correlates cell stages in MBEN to its
histologic compartments
Our microdissection-based expression analysis revealed clear differ-

ences between the twoMBEN compartments, however, it did not allow

to investigate the detailed spatial distribution of the MBEN cell stages

that were identified using snRNA-seq. Thus, we performed spatial

transcriptomic analysis via single molecule RNA-in situ hybridization

on three representative samples (smRNA-FISH/RNAscope). For RNA-

scope, twelve genes were chosen as markers for the different snRNA-

seq clusters, and also considering biological significance (e. g., GLI1

and PTCH1 as SHH-pathway members) (Fig. 6a, b, Supplementary
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Data 7). Twogeneswereexcludeddue topatient-specific expression or

lack of discriminatory power in the spatial dataset, with 10/12 genes

being selected for downstreamanalysis (Supplementary Figs. 9, 10a–j).

After spot detection and nuclei segmentation, transcripts per nucleus

were quantified and used to construct spatially derived single cells,

which were then mapped back to the scanned image (Supplementary

Figs. 9, 10a–j). Based on marker gene expression alone, the bicom-

partmental histology of MBEN could be readily reconstructed. Using

RBFOX3, a gene that encodes for the neuronal marker protein NeuN

being specific for differentiated neuronal cells, and the embryonal

gene LAMA2, found to be differentially expressed in non-malignant

stromal and astrocytic(-like) cells, we could distinguish between the

nodular (RBFOX3 high, LAMA2 low), and internodular (RBFOX3 low,

LAMA2 high) compartment (Supplementary Fig. 11a–f). These findings

were further confirmed when we used the full set of all ten genes.

Clusters of the RNAscope-derived single cells fully reconstructed both

the snRNA-seq and microdissected tissue-derived findings, i.e., pre-

migratory cycling and non-cycling early CGNP-like clusters, LAMA2-

positive cells that included both stromal and astrocytic cells and

migrating as well as postmigratory neuronally differentiated cells

(Fig. 6c). Whereas the first three cell types were restricted to the

internodular tumor compartment, postmigratory, differentiated cells

were only found in the nodular areas (Fig. 6d–h). Intermediate,

migrating cells were observed in both compartments. These visual

observations were supported by quantifying the probability of each of

the five cell types to be located next to each other, respectively, which

confirmed that non-proliferating and proliferating early CGNP-like and

LAMA2-positive cells (including astrocytic, vascular, and stromal cells)

were co-localizing (Fig. 6g). In contrast, early CGNP-like and late stage

neuronally differentiated MBEN cells were clearly less likely to be

located next to each other (Fig. 6g).

Taken together, a targeted spatial transcriptomics approach

confirmed our observations based on snRNA-seq and revealed that

different normal CGNP-related cell stages of the MBEN developmental

lineage could be mapped to the internodular and nodular compart-

ments, respectively.

The tumor microenvironment in MBEN differs between inter-
nodular and nodular compartments
The restricted number of marker genes using smRNA-FISH did not

allow to differentiate between astrocytic and stromal cells. We there-

fore extended the spatial analysis by using the Molecular Cartography

platform from Resolve Biosciences on four representative samples

(Supplementary Data 8). In line with our prior findings, the expression

patterns of single genes, such as LAMA2 and NRXN3, were already

sufficient to reconstruct the bicompartmental MBEN histology on the

transcriptomic level (Fig. 7a). In total, 92,666 DAPI-segmented cells

were subjected to downstream analysis. We were able to recover all

major MBEN cell stages, namely proliferating and non-proliferating

early CGNP-like, migrating CGNP-like and neuronally differentiated

tumor cells (Fig. 7b, c, Supplementary Fig. 12a–e, Supplementary

Fig. 13a–e, Supplementary Data 9). Furthermore, one small cluster was

dominated by proliferative activity only, whereas another cluster

expressed genes of CGNPs in later developmental stages and was thus

termed “late CGNP-like”. These two clusters, which were not dis-

tinguished as clearly in our snRNA-seq data, most likely represented

subsets of proliferating, early CGNP-like and late stage neuronally

differentiated MBEN cells. Notably, the gene TMEM108 (identified as

differentially expressed inourmicrodissection-basedgene enrichment

analysis) could be confirmed as a marker for the internodular MBEN

compartment (Supplementary Fig. 13a). In addition, the designed

extended gene panel allowed for identification of non-malignant cell

types, such as stromal, vascular/endothelial, immune cells and astro-

cytic cells (Fig. 7b, c, d). In general, the molecular cartography work-

flow retrieved larger number of non-malignant cells from the tumor

microenvironment, than snRNA-seq (Supplementary Fig. 12c–e, Sup-

plementary Fig. 14a). This was particularly relevant for stromal, endo-

thelial, and immune cells, of which the majority were identified as

monocytes. Interestingly, the number of astrocytic cells (non-malig-

nant astrocytes and astrocytic-like tumor cells) was comparable across

both platforms (Supplementary Fig. 12d,e). The monocytic cells could

be further subdivided into two distinct populations, which were pri-

marily distinguished by the expression of CD16 and CD163 (Supple-

mentary Fig. 14c–k). Whereas CD16 has been described as a marker of

proinflammatory monocytes leaning towards the M1 polarization

phenotype, CD163 is generally seen as a marker of anti-inflammatory

M2 monocytes73. Overall, the ration of CD163+- to CD16+-monocytes

was 9:1, hinting at a generally more anti-inflammatory tumor micro-

environment (Supplementary Fig. 14b). Next, we aimed at determining

whether these two subpopulations could be identified as microglia or

bone marrow-derived macrophages. To this end, we performed an

enrichment analysis of MSiGdb cell type marker genes74 with sub-

sequent statistical testing using chi-squared tests. Based on the sta-

tistically most significant terms, CD163+ cells mostly resembled

microglia (p = 4.88× 10−14). Furthermore, across this population, weak

expression of the microglia marker TMEM119 was observable (Sup-

plementary Fig. 14e). Themost significant hits for theCD16+population

were associated with dendritic cells (p = 2.01 × 10−14) and macrophages

(p = 4.79 × 10−14) (Supplementary Data 10). However, due to the com-

parably low number of genes and the limitations of gene enrichment

analysis, these results remained inconclusive. Oligodendrocytes

seemed to be generally underrepresented in the MBEN tumor micro-

environment. Non-malignant astrocytes could not be distinguished

from astrocytic-like cells due to missing CNV information. However,

we observed that a fraction of tumor cells was transcriptionally similar

to astrocytic cells (Fig. 7d). Notably, astrocyte marker genes, such as

NPAS3, CD44 and LAMA2, were also expressed in a fraction of early

CGNP-like cells, which were identified as potential precursors of

astrocytic-like cells in our snRNA-seq trajectory analysis (Figs. 3d, 7b, e,

Supplementary Fig. 13b–d).

Next, we sought to investigate the spatial distribution of each cell

type based on the annotation described above. Similar to the results

that we observed using smRNA-FISH, the internodular compartment

was formed by (proliferating) early GCNP-like cells, whereas the nod-

ular compartment consisted of neuronally differentiated tumor cells.

Intermediate cell stages that expressed markers of migrating CGNPs

were found in both histological areas (Fig. 7f–i). We then used cell

proximity network analysis to investigate which cell types co-localize

Fig. 3 | MBEN differentiates along a cerebellar developmental trajectory.

a UMAP-plot of the merged snRNA-seq-dataset (10X snRNA-seq + SMARTseq

V2.5 snRNA-seq) restricted to malignant cells only (n = 9 patients). Clusters are

namedbasedon their similarity tomajor stages of physiological cerebellar granular

neuronal precursors (CGNP) development. b Dotplot illustrating proliferation

activity based on gene signatures of S- and G2M-cell cycle activity, which is

restricted to one cluster only. Color code of the x-axis as in a. c Heatmap showing

the expression of important cerebellar developmental genes in the dataset per

indicated cluster. d UMAP-projection with overlayed pseudotime trajectories

shows twomajor lineages, with themajority of cells following a granular cerebellar

trajectory, and a small subset differentiating into astrocytic-like cells. e Astrocytic-

like cells show transcriptional similarity to murine astrocytes and murine

astrocytic-like cells, but not to MB cells with transcriptional similarity to CGNPs

(Yao et al., Cell, 2020). Color code of the y-axis as in a. f Feature plots of the dataset

highlighting similarity ofMBEN associated tumor cells to non-malignant cells of the

developing cerebellum. GCP = granular cerebellar precursors (Sepp et al., bioRxiv,

2021) (n = 9 patients/27,782 cells each). Source data are provided as a Source

Data file.
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in MBEN (Supplementary Fig. 13e). Strikingly, there were marked dif-

ferences between astrocytes/astrocytic-like cells and other non-

malignant cells in terms of spatial distribution (Supplementary

Fig. 13e, Supplementary Fig. 15a–j, Supplementary Fig. 16a–j). Stromal

cells, vascular cells, and monocytic cells, which clustered separately

from tumor cells in the UMAP-projection, were strongly enriched in

the internodular compartment and co-localized with early CGNP-like,

proliferating MBEN cells. In contrast, cells with an astrocytic pheno-

type were found in close proximity to migrating, late CGNP-like and

postmitotic neuronally differentiated cells. However, the majority of

astrocytic cells did not localize within the nodular compartment.

Instead, they were found at the rim of the tumor nodules, forming a

transition zone between the two histological MBEN parts (Fig. 7j, k). In

order to further validate the localization of astrocytic cells inMBEN,we
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stained a cohort of MBENs with available FFPE-derived tissue (n = 12)

astrocytic marker GFAP. In full concordance with our spatial tran-

scriptomics data, GFAP was expressed in the peripheral zone of the

nodular MBEN compartment (Supplementary Fig. 17a–d). GFAP-

positive cells showed various appearances, ranging from mature

astrocytes with numerous processes to small, primitive-like cells.

Interestingly, reactive astrocytes as characterized by Nestin-

expression75, were only found in 1/5 cases of the TCL1-, but 6/7 cases

of the TCL2-subtype (Supplementary Fig. 17a–d, Supplementary

Table 1). To follow this up, we analyzed the expression of GFAP and

Nestin in MBENs as compared to DNMBs. Whereas these markers were

significantly correlated in MBEN, this was not the case in DNMBs,

indicating that there are differences between the astrocytic cell

population in these related, but different tumors (Supplementary

Fig. 17e, f).

Taken together, expanded spatial transcriptomic analysis

revealed that the tumor microenvironment in MBEN differs between

areas of early CGNP-like and neuronally differentiated tumor cells

(Fig. 8). This data suggests that cells that contribute to the tumor

microenvironment in MBEN influence different stages of its differ-

entiation process.

Discussion
In this study, we applied an integrated multi-modal transcriptomics

approach to unravel the underlying biology of the histomolecular

heterogeneity of MBEN. Our data indicate that histologically appar-

ent nodular and internodular areas reflect a spectrum of cell stages

that are connected through an underlying developmental trajectory

which mimics the physiological differentiation of the CGNP-lineage

during cerebellar development. Throughout this process,MBEN cells

lose proliferative activity and differentiate into a neuronal-like phe-

notype, which is thought to explain the favorable prognosis in most

patients including case reports of maturation into benign

gangliocytomas23,24. Our results are supported by an accompanying

study from Gold et al., who identified the same MBEN lineage in an

independent snRNA-seq dataset and used spatial proteomics assays

to observe similar patterns of cellular organization as in our spatial

transcriptomics experiments. These insights are of high interest

given that a distinct biological property of pediatric cancer is a block

of developmental maturation rather than gained ability to de-

differentiate. In line with this conclusion, (epi-)genetic maturation

blocks have been identified as an emerging topic in pediatric

oncology representing potential targets for new therapeutic

avenues76. Our data suggest that reactivation of CGNP-associated

signaling pathways mimicking normal development and distinct

intercellular communication processes result in this phenomenon. It

remains enigmatic though, why these processes differ in more

aggressive variants of SHH-MB, such as TP53-mutated SHH-MB.

Interestingly, Gold et al. find evidence that late stage, neuronally

differentiated MB cells are more common in MBEN than in more

aggressive SHH-MB, indicating a potential maturation block in the

developmental lineage of these cells. One hypothesis is that tumor

formation in MBEN largely depends on SHH-pathway activation in

proliferating CGNPs, but without the potential to form a more

aggressive phenotype15. The consistent upregulation of SHH-

mediated transcription factors may be strong enough to induce

neoplastic transformation in early CGNPs in the EGL, which exhibit

high proliferative and migratory potential even under physiological

circumstances. Similar to early CGNPs, undifferentiated MBEN cells

exhibited upregulation of SHH-signaling, whereas late stage MBEN

cells showed activation of cellular processes such as Ca2+- and NMDA

receptor-signaling, which are characteristic for more differentiated

CGNPs in the developing cerebellum77. These findings indicate that

shared molecular functions between embryogenesis and MBEN for-

mation may exist. Furthermore, it seems likely that epigenetic reg-

ulation, for instance via the PRC2-complex, may play a role in MBEN-

differentiation, which is underlined by the fact that EZH2 was upre-

gulated in proliferating, early CGNP-like MBEN cells42,45.

Several studies recently applied single cell RNA-sequencing to

MB27,28,39,78. Hovestadt et al. reported that infant SHH-MB showed

transcriptional similarity to intermediate and late stage CGNPs, while

adult tumors correlated with undifferentiated CGNPs and unipolar

brush cell-progenitors27. Interestingly, studies by Hovestadt et al. and

Vladoiu et al., which focused mainly on group 3/4-MB, did not report

on the existence of tumor cells with astroglia signatures, while this cell

type was also identified in a study on murine SHH-MB models by

Ocasio et al.39. This raises the intriguing hypothesis that astrocytic-like

cells associated with MB may be characteristic for SHH-MB. One his-

topathologic study reported that astrocytic differentiation and GFAP-

positivity were restricted to MB cells from nodular tumors and not

present in classic MB, however, this study dates back to a time when

MBEN was not yet established as a distinct entity79. The hypothesis of

CGNP-derived tumor cells developing into astrocytic-like cells is sup-

ported by the fact that CGNPs can differentiate into astroglial cells

upon exposure to elevated levels of SHH80. Whereas the main devel-

opmental, CGNP-like trajectory was validated across twomethods and

datasets, the exact position of astrocytic-like cellswithin this trajectory

was more ambiguous. Since these cells did not show proliferative

activity, were located within the bicompartmental MBEN transition

zone and based on the findings by Yao et al., who showed in a murine

SHH-MB model that astrocytic-like tumor cells were not stem cells, it

seems likely that this cell population does not represent a cell of origin

for MBEN38. However, additional studies—including functional mod-

eling—will be necessary to determine the exact developmental role of

this enigmatic cell type. Based on our current knowledge, it seems

likely that malignant astrocytic cells stem from early CGNPs in the

EGL34,38,80. The original publication that coined the term “MBEN” by

Giangaspero et al. already described astrocytic, GFAP-positive tumor

cells in the internodular compartment, which is why we suggest giving

MBEN-associated astrocytic-like cells the byname “Giangaspero

cells”16.

Microglia, astrocytes, and astrocytic-like malignant cells play an

important role in the formation and progression of SHH-MB38,40,81–83.

We attempted to distinguish between malignant and non-malignant

astrocytes based on their clustering behavior andCNVs. This approach

was without alternatives in light of the current lack of MBEN models,

and future investigations will be needed to further unravel the func-

tional and genomic differences between these two cell types in the

human setting. However, several studies have generated convincing

evidence that both normal and tumor-derived astrocytes may support

Fig. 4 | Biological processes that regulate MBEN differentiation mimic CGNP

development. a Heatmap depicting the frequencies of predicted interactions for

each pair of potentially communicating cell stages amongstMBEN cells. bDotplots

depicting the most confident receptor-ligand-interactions within and between

differentMBEN cell stages. The interaction specificity weights indicate how specific

a given interaction is to the sender and receiver cell stages. c UMAP-plot showing

the expression of a Ca2+ signaling signature along MBEN differentiation (nine

samples, n = 27,782 cells). To improve visibility, only cells with expression levels

above the 25th quantile are highlighted.dDotplot showing the expression of a BMP

protein signaturealongMBENdifferentiation. eVisualizationof transcription factor

(TF) activities within and betweenMBEN cell stages. Above each cell stages, the top

five expressed TFs are indicated. Furthermore, the five most up- and down-

regulatedTFs that changedduring eachdevelopmental stepof theMBEN trajectory

are given (see also Fig. 3d). In order to design e, the image “Blue Astrocyte” (by

Andrew Hardaway, licensed under https://creativecommons.org/licenses/by/4.0/)

from the database https://scidraw.io/ was used. Source data are provided as a

Source Data file.
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Fig. 5 | Microdissection reveals transcriptional differences between inter-

nodular andnodular tumor areas that correspond todistinctMBENcell stages.

a Heatmap showing differential gene expression between internodular (red col-

umn) and nodular (blue column) MBEN compartments. b, c TMEM108, a marker of

the internodular compartment, ismainly expressed in early CGNP-like cells. Feature

plot on the left depicting gene expression in the snRNA-seq dataset. Boxplot on the

right showing expression (measured in batch-effect adjusted RPKM) in micro-

dissected MBEN tissue (limma statistical method p-val = 0.02 with adjustment for

multiple genes and tumor samples batch effect) inspected in n = 13 biologically

independent samples. d, e TRIM9, a marker of the nodular compartment, is mainly

expressed in later stages of MBEN development. Feature plot on the left depicting

gene expression in the snRNA-seq dataset. Box plot on the right showing expres-

sion in microdissected MBEN tissue (limma statistical method p-val: 0.03 with

adjustment for multiple genes and tumor samples batch effect) inspected in n = 13

biologically independent samples. f Mapping of the expression signatures of

microdissected internodular and nodular histological compartments to the dif-

ferent snRNA-seq clusters via Gene set variance analysis (GSVA) shows distinct

transcriptional similarities between differentiated cells and the nodular compart-

ment, and early-CGNP like cellswith the internodular areas.b, cThe center line, box

limits, whiskers, and points indicate the median, upper/lower quartiles, 1.5× inter-

quartile range and outliers, respectively. Source data are provided as a Source

Data file.
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SHH-MB proliferation and growth in murine models38,81–83. Our data

indicate that cellswith an astrocytic phenotype are found at the border

between the two compartments, co-localizing with MBEN cells in their

migrating and later, postmitotic differentiation stages. In contrast, all

other non-malignant cell types were in close proximity to early CGNP-

like tumor cells. Given the fact that astrocytes are known to influence

surrounding cells via paracrine signaling, these patterns suggest that

astrocytic cells may have a direct influence on the differentiation

process of MBEN, whereas other non-malignant cell types are mostly

involved in supporting its proliferating subpopulations, or, in the case

of microglia, trying to suppress tumor growth84. Whereas it was not

possible to safely distinguish between different subtypes ofmonocytic

cells, we identified two distinct populations that resembled the pro-

and anti-inflammatory M1 and M2 phenotype, respectively.
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Interestingly, the number of anti-inflammatory monocytes was sig-

nificantly higher. With these observations in mind, the internodular

compartment of MBEN can be understood as a source of neoplastic

cells, which then migrate into the nodular compartment while losing

proliferative potential.

DNMB, another histological variant of SHH-MB, also shows a

bicompartmental structure, but represents a biologically and clinically

distinct phenotype. Results of Gold et al. indicate that the nodular

areas may vary in their level of differentiation, with MBEN tumors

being more likely to contain cells resembling later stages of differ-

entiation. Interestingly, we observed that the astrocytic markers GFAP

and Nestin were expressed in correlation in MBEN, but not in DNMB.

These findings indicate that there may be differences between MBEN

and DNMB with regard to the role of astrocytic cells within the tumor

microenvironment. To date, murine or cell models that faithfully

preserve the unique histological composition of MBEN and could be

used to perform functional analyses are lacking.

By comparing snRNA-seq and spatial transcriptomics methods,

we found that the number and types of cells from the tumor micro-

environment that could be identified with each protocol differed. This

was particularly true formonocytes, highlighting the need to integrate

a spectrum of methods to investigate their role in neuro-oncological

diseases.

Our study resolves the intratumoral heterogeneity ofMBEN at the

single cell level and reveals the spatial relation between the different

cell types in the context of its bicompartmental histological structure.

Thus, it provides a framework for similar analyses in other malig-

nancies with intratumoral heterogeneity85. Finally, further deepening

our understanding of the biological principles underlying both intra-

tumoral differentiation processes andmaturation blocks are expected

to guide the development of drugs that either induce or overcome

these phenomena in embryonal cancer types.

Methods
Material and data collection, inclusion, and ethics
This study was performed after approval by the ethics committee of

the Medical Faculty of Heidelberg University. All experiments in this

study involving human tissue or data were conducted in accordance

with theDeclaration ofHelsinki and relevant national and international

ethical regulations. Cases from earlier studies onMBEN were screened

regarding the availability of fresh frozen tissue15,25,86. Clinical data and

tissue of all nine cases in the study were collected from patients from

the international DKFZ cohort after receiving written informed con-

sent, including the publishing of clinical and epidemiological data,

from the respective patients or their legal representatives and after

approval by the ethic board of the Medical Faculty of Heidelberg

University. Clinical and epidemiological data, including informationon

sex/gender, was retrospectively derived from clinical records. DNA-

methylation profiling, DNA-panel sequencing and bulk-RNA sequen-

cing data was partly derived from earlier studies12,86.

DNA-methylation profiling and CNV analysis
DNA methylation profiling was performed using the Infinium Human

Methylation 450k and EPIC BeadChips as previously described9.

Subsequently, the Heidelberg Brain Tumor Methylation Classifier

v11b6 (https://www.molecularneuropathology.org) was applied for

molecular classification. Copy-number variation analysis from 450k

and EPIC methylation array data was performed using the conumee

Bioconductor package version 1.12.0 (Hovestadt V, Zapatka M, 2017).

RNA-bulk sequencing
Bulk RNA-seq data were analyzed as described previously86. Shortly,

reads alignment was performed with STAR tool87 and gene expression

counts were computed with the Subread package88.

DNA-panel sequencing
Molecular barcode-indexed ligation-based sequencing libraries were

constructed using 200ng of sheared DNA. Libraries were enriched by

hybrid capture with custom biotinylated RNA oligo pools covering

exons of 130 cancer-associated genes. Paired-end sequencing was

performed using the NextSeq 500 (Illumina). Sequence data were

mapped to the reference human genome using the Burrows–Wheeler

Aligner and were processed using publicly available SAM tools89. Only

variants annotated as “exonic”or “splicing”were included, “intergenic”

and other untranslated regions were excluded. Recurrent gene muta-

tions of PTCH1, SUFU, and SMO were also assessed with residual DNA

from the same pool used for sequencing by polymerase chain reaction

followed by direct Sanger sequencing of the corresponding exons.

Nuclei isolation
Prior to nuclei isolation90, all necessarymaterials (douncer and pestles,

falcon tubes, pipette tips)were pre-coated using coating buffer (sterile

phosphate buffered saline (PBS), filtered with Millex HA filter units

0.45 µl). Fresh frozen tissue was placed on dry ice and cut with a

scalpel. Next, the tissuewasput into 5ml of lysis buffer containingDTT

and Triton-X (0.1%), and subsequently lysed using a glass douncer and

pestle. The nuclei were filtered two times (100 µM and 40 µM filters)

and centrifuged for 5min at 500 x g and 4 °C, followed by twowashing

steps (5min, 500 x g, 4 °C) using a PBS-containing washing buffer. The

resulting pellet was resuspended in 1ml of storage buffer. Nuclei were

checked for integrity and the absence of cell debris under a light

microscope and subsequently counted using a Luna Automated Cell

Counter (Logos Biosystems).

SnRNA-seq 10X Genomics
The 10X Genomics 3’-Single Cell RNA-sequencing V2 protocol was

applied to all samples according to the manufacturer’s instructions

using 10X Chromium Single Cell 3’ Reagent Kits v2 (https://www.

10xgenomics.com/). 14,000 nuclei were loaded per sample and pro-

cessed with the Chromium Controller. The resulting cDNA-libraries

were quantified with Qubit fluorometric quantification (ThermoFisher

Scientific) and quality assessment was done using the TapeStation

system (Agilent). Sequencing was performed according to the manu-

facturer’s instructions.

SnRNA-seq SMARTseq V2.5
Whole transcriptome snRNA-seq was performed following an adapted

SMARTseq protocol (SMARTseq V2.5) for nuclei91. For each sample,

Fig. 6 | Spatial transcriptomics map developmentally distinct cell stages to

spatially distinct tumor compartments. Dotplots showing the expression of the

ten genes chosen for spatial transcriptomics in the snRNAseq- (a) and the smRNA-

FISH-dataset (b) for each cluster, respectively. c Harmony corrected UMAP-

clustering of smRNA-FISH-derived single cells shows distinct clusters (three sam-

ples, n = 110,508 cells). d–f Mapping single cells back to the original scans reveals

spatially distinct localization of cells from each cluster with regard to the bicom-

partmental structureofMBEN. Color code corresponds to c. Each image represents

one sample. g Network visualization quantifying the probability of co-localization

of cells from each cluster. Red and blue colors indicate high and low probability for

co-localization, respectively. (Proliferating) early CGNP-like and stromal/astrocytic

cells are co-localizing, whereas early and late stages of the MBEN trajectory are

spatially separated. h A scan of the sample MB295 shows clear correlation of the

smRNA-FISH-derived clusters to spatially distinct regions of MBEN, as they were

found in all three investigated samples. Lower panel left: Zoom-in with pseudo H.E.

staining. Lower panel right: Corresponding mapping of single cells illustrates the

spatial architecture of the transition zone between the two histological compart-

ments ofMBEN, which ismainly formed by early CGNP-like,migrating and stromal/

astrocytic cells. Scale bars in d –f =200 µm. Scale bars in h =200 µm (large image),

100 µm (Zoom-ins). Source data are provided as a Source Data file.
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single nuclei were sorted in 384-well plates into 1 µl of lysis buffer

containing RNaseinhibitors and a polyT oligo. For the reserve tran-

scription reaction, we used a TSO with LNAs (Eurogentec) at a final

concentration of 3 µM and the Maxima H Minus reverse transcriptase

(Thermo) under molecular crowding conditions with 7.5% PEG-8000.

Subsequently, PCR was performed with the KAPA HiFi HotStart

ReadyMix (KAPA Biosystems), followed by a purification step with

AMPure XP beads (Beckman) using the Agilent Bravo system. Library

preparation was done via the Nextera XP Library Prep kit (Illumina)

using 350ng of cDNA as input. The reaction volume of each step was

reduced by a factor of three and all pipetting steps were done with the

mosquito LV (SPTlabtech). After pooling all libraries from one plate,
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quantification and quality control using the Qubit fluorometric quan-

tification (ThermoFisher Scientific) and TapeStation system (Agilent)

was performed, and the cDNA libraries were sequenced on a

Nextseq550.

Analysis of snRNA-seq raw data
Initial processing of 10X data (reads alignment, counts computation

per cell) was performed with CellRanger v3 pipeline. The SMARTSeq V

2.3 (SS2.5) data was processed per sample representing a cell with bulk

RNA-seq derived procedure as described previously86. Briefly, single

nucleus Smart-seq2 reads alignment was performed with STAR v

2.4.1d, gene expression countswerecomputed for eachcell per sample

with Subread 1.6.4 tool, and afterwardsmerged into a gene expression

matrix via custom Python scripts within the python 2.7 environment.

For both protocols hg19 human genome reference combined with

gencode v19 gene annotation were used. For gene expression counts

computations exons were merged with introns due to single nuclei

protocol specificity92.

Computed cell gene expression counts were further analyzed

per sample with Seurat v4.0.3 toolkit93. Filtering control limits

(minimum number of molecules/genes) were identified based on the

quality control inspection. The doublets detection was performed

with theDecontX v1.1.0 tool94. Copy number profilingwas performed

with InferCNV v1.10.136,95. Signatures for Ca2+ and BMP signaling were

constructed using the module score function within Seurat. Gene

ontology analysis was performed using the PANTHER classification

system (Annotation version: 2021-02-01) with DEGs per cluster as

input (http://www.pantherdb.org/)63. The results were visualized

with the REVIGO web application by clustering based on semantic

similarities96.

Initially 10X and SS2.5 datasets were analyzed separately; their

identified clustersweremerged into pseudobulk blocks and compared

via correlation. Non-tumor cells were further annotated based on

inspection of clusters from merged datasets: the clusters containing

cells from multiple samples were considered as normal while consist-

ing from one sample on 95% as a tumor. Afterwards, the datasets (full

and tumor only) were merged using Harmony v0.1.0 package31 con-

sidering both sample and protocol as batch effects. This approachwas

validated using an entropy analysis that showed ROGUE-scores97

around 0.9 for all clusters, indicating high internal cluster stability

(ROGUE v1.0 package). Trajectories were identified via Slingshot

v2.0.0 on the full merged cohort and Monocle2 v2.20.0 on target

samples as described in the respective studies50,98. The similarity of

tumor cells to normal cerebellum cell types was analyzed using the

SingleR v1.8.1 package32.

In order to test for associations between different cell states and

the variables age of onset, sex, and relapse status, the percentage of

each cell state per patient was calculated. Subsequently, Spearman

correlation was used to test for any significant associations.

For Transcription factor (TF) activity estimation the python

version of DecoupleR v1.3.0 package was used99. The needed con-

version from Seurat objects to AnnData objects was done with the

SeuratDisk library (https://mojaveazure.github.io/seurat-disk/). TF

activity estimation was performed based on DoRothEA which is a

comprehensive prior knowledge resource containing curated TFs

and their targets66. This network was derived from the OmniPath

database100 via DecoupleR (R package: OmnipathR v3.7.0). In DoR-

othEA, each TF-target interaction includes a confidence level anno-

tation ranging fromA to E based on the supporting evidence where A

is the highest confidence level and E is the lowest. For this analysis,

TF-target pairs coming from the three highest confidence levels (i.e.,

A, B and C) were used to create a predictive model for TF activity

estimation. Here, we apply amultivariate linearmodel to every cell in

our samples to estimate the log-transformed gene expressions using

weights assigned to the interactions between TFs and genes. After

the model is trained, the resulting t-values of the slopes serve as

scores. A positive score indicates an active pathway, while a negative

score indicates an inactive pathway. The resulting activities were

Fig. 7 | The distribution of non-CGNP-like cells in MBEN differs between inter-

nodular and nodular tumor compartments. a Representative scan of MB299

shows gene expression of the neuronal differentiation marker NRXN3 (purple) and

LAMA2, a marker gene that is strongly expressed in stromal and astrocytic(-like)

cells (green). The spatial expression of these two genes is sufficient to reconstruct

the bicompartmental structure of MBEN. b UMAP projection showing the cluster-

ing of single cells derived from molecular cartography, which reconstructs all

stages of MBEN development that were identified with snRNA-seq alongside none-

malignant cell types (n = 4 patients/92,666 cells). c Heatmap depicting marker

genes of the different clusters from c. d Single cells were mapped onto the full

MBEN snRNA-seq dataset, with clear evidence that non-malignant cell types could

be assigned to astrocytes, fibroblasts, and microglia, respectively. e UMAP-plots

showing the expression of the astrocytic marker genes NPAS3, CD44 and LAMA2,

which are expressed in astrocytic and a fraction of early CGNP-like cells ((n = 4

patients/ 92,666 cells each). The feature plot shows the respective expression in

MBEN clusters from snRNA-seq data. f Representative scan of MB266 in which

single cells were projected back into the spatial space. By integrating all cell types

derived from single cell construction, the bicompartmental structure of MBEN is

reconstructed. The color code is equivalent to b. Mapping of g proliferating, early

CGNP-like, h intermediate, migrating, and i neuronally differentiated MBEN-cells.

Whereas early CGNP-like cells are restricted to the internodular compartment,

neuronally differentiated cells form the tumor nodules. Migrating MBEN-cells are

spread throughout both compartments. j Expression patterns of NRXN3 (marker

for differentiated neuronal-like MBEN cells) and AQP4 (astrocyte marker) in a

representative scan of MB266. k Astrocytic(-like) cells (red) are located at the

transition border of the nodular compartment, which is formed by differentiated,

neuronal-like cells (green). Scale bars in f–k 400 µm. Source data are provided as a

Source Data file.
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Fig. 8 | MBEN histology recapitulates physiological CGNP development. Gra-

phical summary that visualizes the spatial and transcriptomic structure of MBEN

and its compartments on the single cell level. The images “erythrocyte” (by Servier,

licensed under https://creativecommons.org/licenses/by/3.0/) from the database

https://bioicons.com/ as well as “Blue Astrocyte” (by Andrew Hardaway, licensed

under https://creativecommons.org/licenses/by/4.0/) and “Microglia Resting” (by

John Chilton, licensed under https://creativecommons.org/licenses/by/4.0/) from

the database https://scidraw.io/ were used.
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summarized per cluster by their mean with the summarize_acts

function. Theminimum standard deviationwas set to zero to retrieve

all results.

In order to analyze cell-cell communication between cell types, we

conducted a ligand-receptor analysis with the Ligand-receptor Analy-

sis framework v0.1.6 (LIANA). LIANA combines different prior knowl-

edge resources and different in silicomethods by taking the consensus

of the ligand-receptor predictions. The tool was used with default

settings as described in the tutorial at https://saezlab.github.io/liana/

articles/liana_tutorial.html58. This results in the usage of the methods

CellPhoneDB, Connectome, log2FC, NATMI, SingleCellSignalR and

CellChat. A consensus between these methods was reached by apply-

ing the robust rank aggregate method. Five expertly curated CCC

resources derived from the Omnipath database, namely CellPhoneDB,

CellChat, ICELLNET, connectomeDB2020 and CellTalkDB, were used

as prior knowledge.

Microdissection
Microdissection with subsequent RNA isolation was performed on

FFPE-derived histological slides from 26MBEN patients as previously

described101. The main analysis of microdissected samples was per-

formed as for standard bulk RNA-sequencing86. The clustering was

performed from normalized gene expression counts with a focus on

top 500 highly variable genes. Differentially expressed genes

between nodular and inter-nodular blocks were detected via the

limma package, with considering the tumor sample for batch effect

correction and usingminimum limits of 0.5 for log2 fold change, and

0.05 for adjusted p-values. Further, nodular and inter-nodular

detected groups of differentially expressed genes were used as a

reference for Gene Set Variation Analysis71 on the genes identified as

markers of clusters in MBEN single cell data. The MuSIC deconvolu-

tion method (R package: MuSiC v0.9) was applied on the bulk

internodular and nodular RNA-seq datasets using the snRNA-seq

derived MBEN cell stages as the ref. 72. Afterwards, the proportions

of predicted cell types between groups were compared using two

sided t-tests.

Immunohistochemistry
IHC was conducted on 4-µm thick FFPE tissue sections mounted on

adhesive slides followed by drying at 80 °C for 15min. For IHC ana-

lysis, a mouse monoclonal GFAP (GA5; Cell signalling, catalogue

number #3670) and Nestin (MAB5326; Merck/Sigma-Aldrich) anti-

bodies were applied. IHC was performed with an automated immu-

nostainer (Benchmark; Ventana XT) using antigen-retrieval protocol

CC1 and a working antibody dilution of 1:2000 for GFAP and 1:200

Nestin with incubation at 37 °C for 32min. The antibody against

Nestin has been validated by the manufacturer (Merck/Sigma-

Aldrich) by detecting Nestin in a Western Blot Analysis on 10 μg of

Huvec Lysates (Dilution: 1:1000) as well as Immunohistochemistry on

formalin fixed, paraffin embedded (FFPE) tissue (1:200) and Immu-

nocytochemistry on formaldehyde fixed cultured cells (1:200) as

described and stated in themanufacturer’s description (https://www.

merckmillipore.com/DE/de/product/Anti-Nestin-Antibody-clone-

10C2,MM_NF-MAB5326). The antibody against GFAP has been vali-

dated by the manufacturer (Cell Signaling) by detecting GFAP in a

Western Blotting Analysis (Dilution: 1:1000), Immunohistochemistry

on FFPE- (1:50 - 1:200), and FF-tissue (1:400 - 1:800), Immunocy-

tochemistry (1:400 - 1:800), and Flow Cytometry (1:400 - 1:1600) as

described and stated in themanufacturer’s description (https://www.

cellsignal.com/products/primary-antibodies/gfap-ga5-mouse-

mab/3670).

smRNA-FISH (RNAScope)
Histological sample preparation. Sectioning of fresh/frozen tissue

derived from patients MB266, MB295 and MB299 was performed at

−20 °C on a cryostat (Leica) and 8-10 µm sections were mounted on

Superfrost Plus slides (ThermoFisher). Cryosections were stored at

−80 °C until further use.

VirtualH&Estainingandprobehybridization. 12-plex singlemolecule

RNA-FISH (smRNA-FISH) was performed using the RNAScope HiPlex

assay (ACDbio/biotechne) as described in the ‘RNAScope HiPlex Assay

User Manual (324100-UM)’ with minor adaptions (Supplementary

Data 7). Briefly, sections were fixed in 4% paraformaldehyde (PFA) for

60min, washed two times with PBS and dehydrated in Ethanol. For

virtual H&E staining (PMID: 29531846), sections were stained with

Eosin (Sigma, 1:10 diluted in 0.45M Tris acetic acid, pH=6) for 1min at

room temperature, washed in H2O and incubated for 15min in 4x SSC

buffer. Sectionswere then stainedwithDAPI for 30 sec andmounted in

Prolong Gold Antifade (ThermoFisher). After the first virtual H&E

imaging round (R0), the coverslip was removed by incubation in 4x

SSC buffer for 15-30min. Afterwards, sections were washed in PBS

once and again dehydrated in Ethanol. Sections were then treatedwith

Protease IV (ACDbio) for 30min at RT, washed 2x with PBS and incu-

bated with transcript-specific (Supplementary Data 7) and amplifier

probes according to the manufacturer´s instructions. Between ima-

ging rounds, fluorophores of the previous imaging rounds were

cleaved to enable consecutive rounds of imaging, with each round

targeting a new set of transcripts. Up to four transcripts were labeled

per imaging round by Alexa488, Atto550, Atto647 and Alexa750

fluorescent dyes. For MB266 and MB299, four transcripts ( + DAPI)

were imaged in three imaging rounds (R1-R3). For MB295, three tran-

scripts (Alexa488, Atto550, Atto647 and DAPI) were imaged in four

imaging rounds using the ‘RNAScopeHiPlex Alternate DisplayModule’

(R1-R4).

Microscopy. smRNA-FISH images were acquired on an Andor Dra-

gonfly confocal spinning-disk microscope equipped with a CFI

P-Fluor 40X/1.30 Oil objective. The region of interest was selected

based on the DAPI signal and 50 z-slices were acquired with a step

size of 0.4 µm (20 µm z-range) per field of view (FOV). Lasers and

filters were set to match fluorescent properties of DAPI and above

mentioned dyes. Tiles were imaged with a 10% overlap to ensure

accurate stitching.

Image analysis. Pre-processing of images was performed in ImageJ.

Images were projected in z using Maximum Intensity Projection.

Illumination correction was performed on the DAPI and Eosin ima-

ges for virtual H&E visualization using the BaSiC plugin102. Image

tiles were stitched using ‘Grid/Collection stitching’ and registered

afterwards based on the DAPI signal using ‘Register Virtual Stack

Slices’ using the Affine feature extraction model and the Elastic

bUnwarpJ splines registration model. Virtual H&E transformation of

DAPI and Eosin staining was performed in R using the EBImage tool

and custom script103. Nuclei were segmented by the Cellpose v 2.0.5

python tool using the ‘cyto’ model and a model match threshold of

1.5104. Nuclei outlines were exported to ImageJ and transformed to

ROIs using the ROImap function of the LOCI plugin. Spot detection

was performed using the RS-FISH plugin in ImageJ (10.1101/

2021.03.09.434205) with Sigma set to 0.93. The threshold for spot

detection was adapted for each patient and fluorophore individu-

ally (range: 0.004 – 0.0086). Transcripts were assigned to nuclei

using a custom KNIME script that overlaps the DAPI and spot signal

and counts spots per nuclei. Nuclei metadata including x/y coor-

dinates and other features were extracted using the ‘Segment Fea-

tures’ node in KNIME.

Downstream analysis. Raw transcript count matrices were generated

from KNIME outputs in R using custom script. Transcript counts for

LRRTM4 and FOS were removed from the analysis due to strong

Article https://doi.org/10.1038/s41467-023-44117-x

Nature Communications |          (2024) 15:269 15



discrepancies to snRNA-seq data. smRNA-FISH data was further ana-

lyzed with the R package Seurat v4.0.3105: Cells were filtered by tran-

script count ( < 5 and >100 transcripts) as well as by nuclei size ( < 90

and > 2000 pixels). smRNA-FISH data was normalized using scTrans-

form v0.3.2106, visualized using principal component analysis and

clustered using the Louvain algorithm. Clusters with similar marker

gene expression and high correlation of their average gene expression

profiles were merged and assigned to cell types according to their

marker expression as detected in snRNA-seq data. Further spatial

analysis and visualization of smRNA-FISH data including spatial net-

works was performed using the Giotto v1.1.1 tool in R107. Cell type-

specific nuclei mask images were generated using KNIME and visua-

lized with napari (https://napari.org).

Molecular Cartography (Resolve Biosciences)
To ensure that both spatial transcriptomicmethods were comparable,

smRNA-FISH marker genes were included in our MB panel, alongside

marker genes of the developing cerebellum, oncogenes, and markers

of non-malignant cell types. OCT-embedded samples were cryo-

sectioned as described above into 10 µm sections onto an MC slide.

Fixation, permeabilization, hybridization and automated fluorescence

microscopy imaging were performed according to the manufacturer’s

protocols (Molecular preparation of human brain (beta), Molecular

coloring, workflow setup) except for a few adaptations indicated

below. Briefly, slides were thawed at room temperature and dried at

37 °C. Subsequently, the MC observation chamber was assembled by

attaching sticky wells (8-well) to the MC slide. Sections were fixed,

permeabilized, rehydrated and treated with TrueBlack (Biotium)

autofluorescence quencher. In contrast to the MC protocol provided

by Resolve Biosciences, we diluted the quencher 1:20 as specified by

Biotium. Next, the sections were thoroughly washed and primed

before the specific probes against our genes of interest were hybri-

dized at 37 °C overnight. The probe sequences were designed by

Resolve Biosciences’ proprietary algorithm and are hence not listed

here. After hybridization, the sections were washed, and the MC

observation chamber was transferred to the MC machine for eight

automated iterations of coloring and imaging to decipher the tran-

script localization of the 100 different genes of interest in the tissue108.

Therefore, regions of interest (ROIs) were selected for each section

(MB263,MB266,MB295,MB299) based on a brightfield overview scan.

In the last imaging round, Nuclei were stained with DAPI yielding a

reference image for nuclei segmentation. After the run, the MC soft-

wareperforms registrationof the raw images, assigns transcripts to the

combinatorial color codes detected and combines individual tiles to

ROI panoramas. The outputs are text files containing the transcript

coordinates in 3D as well as maximum projections of DAPI images for

each ROI.

After the MC run, we stained the tissues with an anti-NCAM

antibody and eosin for virtual H&E images as described above. All

following steps are carried out at room temperature and washing

was always done 3x with PBS unless specified otherwise. Sections

were washed, fixed in 4% paraformaldehyde (PFA) for 30min,

washed again, permeabilized with 0.2% Triton X-100/PBS for 12 min

and washed again. Next, the sections were blocked for 1 h in 10%

goat serum/PBS and then incubated with a 1:200 dilution of the

primary antibody (mouse anti-NCAM/CD56 from ThermoFisher

Scientific, MA1-06801, lot: 17425) in 10% goat serum/PBS for 1 h.

After washing 3×5min with 0.002% NP-40/PBS, the sections were

incubated with a 1:300 dilution of the secondary antibody (goat

anti-mouse Alexa568) in 10% goat serum and washed again before

and after a 15 min incubation with 5 µM DAPI. After washing 1x with

double-distilled water, the sections were incubated with Eosin mix

(1 vol Eosin Y SigmaHT110216 to 9 vol Tris Acetic acid buffer 0.45M,

ph6) for 1 min. After ten washes with double-distilled water, MC

imaging buffer was added to the sections and they were imaged on

the Andor Dragonfly microscope described above with the follow-

ing setup: 60x objective, 41 z-slices at 0.3 µm distance, 10% overlap

between tiles for stitching, EM gain 200, excitation at 405 nm

(DAPI), 488 nm (Eosin) and 647 nm (immunofluorescence) with

appropriate emission filters.

DAPI images were flatfield-corrected using a separately recor-

ded flatfield and darkfield image. Stitching and registration of

the Dragonfly DAPI image to the MC DAPI image (from round 8)

and the calculation of the virtual H&E images was done as

described above.

The detection of cell boundaries was performed with QuPath

v0.3.2109. Afterwards, gene expression counts were computed per cell

and extracted using Resolve Bioscience plugin in the ImageJ2 toolkit.

Formed gene expression matrix analysis (filtering, clustering,

visualization) was performed with Seurat toolkit93. The samples were

merged using the Harmony v0.1.0R package with batch effect

adjustment31. Cell states and types were annotated by comparison to

the snRNA-seq dataset and by visual inspection of marker genes.

Clusters which only differed marginally in gene expression were

combined. Additional spatial analysis (closest cell connections detec-

tion) was performedwith Giotto v1.1.1 toolkit analogous to the analysis

of the smRNA-FISH dataset107.

Statistical analysis and visualisations
The Kaplan-Meier-method was applied to analyze and visualize pro-

gression free and overall survival. The respective analysis were per-

formed using the R packages survival v3.2.11 (https://github.com/

therneau/survival) and survminer v0.4.9 (https://github.com/

kassambara/survminer). Descriptive statistics and visualizations were

conducted using the R base and ggplot2 v3.3.3 packages.

Writing
The Large LanguageModel (LLM) ChatGPT by OpenAI (July20 version)

was used to assist in the formulation of the abstract of this paper.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The snRNA-seq and bulk-sequencing (RNA, microdissected) data have

been deposited in GEO database and is available under the combined

accession number GSE239854. All raw images andprocessed data after

cell segmentation from spatial transcriptomics experiments have been

deposited at the BioImage Archive and can be accessed under the

accession numbers S-BIAD825, S-BIAD826. In addition, the raw counts

for Molecular Cartography have been uploaded to GEO (accession

number: GSE247736). TheDNAmethylation data copy number profiles

and DNA sequencing mutation results were integrated from the cor-

responding medulloblastoma molecular landscape study deposited at

European Genome-Phenome Archive under accession number

EGAS0000100195312. All raw data acquired by DNA methylation pro-

filing is available via GEO (accession number: GSE247741). The fastq

files from DNA sequencing are available via SRA (SRA-ID: 473652,

BioProject: PRJNA1044021). The remaining data are available within

the Article, Supplementary Information. Sourcedata are providedwith

this paper.

Code availability
Scripts for processing the raw data and generating the figures are

available via the GitHub repository: https://github.com/kokonech/

MBEN_snData_analysis and have been uploaded to Zenodo

(DOI:10.5281/zenodo.10047009)110.
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