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X-chromosome and kidney function:
evidence from a multi-trait genetic analysis
of 908,697 individuals reveals sex-specific
and sex-differential findings in genes
regulated by androgen response elements

A list of authors and their affiliations appears at the end of the paper

X-chromosomal genetic variants are understudied but can yield valuable

insights into sexually dimorphic human traits and diseases. We performed

a sex-stratified cross-ancestry X-chromosome-wide association meta-

analysis of seven kidney-related traits (n = 908,697), identifying 23 loci

genome-wide significantly associated with two of the traits: 7 for uric acid

and 16 for estimated glomerular filtration rate (eGFR), including four novel

eGFR loci containing the functionally plausible prioritized genes ACSL4,

CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel

sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R,

and three sex-differential findings with larger genetic effect sizes in males at

DCAF12L1 andMST4 and larger effect sizes in females at HPRT1. All prioritized

genes in loci showing significant sex-interactions were located next to

androgen response elements (ARE). Five ARE genes showed sex-differential

expressions. This study contributes new insights into sex-dimorphisms of

kidney traits along with new prioritized gene targets for further molecular

research.

Chronic kidney disease (CKD) affects about 10% adults globally1. By

increasing the risk of kidney failure, cardiovascular disease and

hospitalization2, CKD imposes a high economic burden on the

healthcare systems3. CKD is predicted to become the fifth cause of

death by 2040 due to an aging society with increased prevalence of

CKD risk factors4. Clinical options to prevent, treat or ameliorate CKD

are still limited as are CKD randomized controlled trials5. A peculiar

characteristic of CKD is its sexual dimorphism, with higher prevalence

in women but faster progression in men6. Investigating the genetic

basis of CKD defining traits and kidney function markers accounting

for its sexual dimorphism is important to identifymolecular targets for

tailored pharmaceutical and non-pharmaceutical solutions.

Thus far, hundreds of loci have been identified by genome-wide

association studies (GWAS) of kidney function related traits7–12,

extending the overall understanding of the biological basis of CKD and

related conditions. However, these studies were mainly limited to

autosomal variants and did not consider sex stratification. As formany

other common traits, also for CKD-defining traits X chromosome

variants are understudied although sexually dimorphic genetic fea-

tures are more likely to be identified on this chromosome given the

differential genetic makeup in males and females. Reasons include

analytical challenges due to the differential number of X chromosome

copies as well as the X-inactivation in females. Some recent GWAS that

included the X chromosome in the analysis unraveled several loci,
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however sex-differential effects received limited attention13–15. Since

hormones act as transcription factors, hormone response elements in

the genome such as androgen response elements (ARE) could provide

functional explanations of genetic sex interactions16. Indeed, a causal

relationship between testosterone and CKD was found in men only17.

Here, we conducted a cross-ancestry X chromosome-wide asso-

ciation meta-analysis pooling results of 40 studies on up to 908,697

individuals (up to 757,070 European, 152,793 Asian, and 26,371 African

ancestry individuals, depending on the trait). We investigated four

kidney function markers and three related diseases while accounting

for sex-specificity. We identified 23 loci, four of which were not yet

described in relation to kidney traits. By means of statistical fine-

mapping, colocalization and a comprehensive bioinformatic annota-

tion effort, we prioritized the most likely genes within each locus and

identified potential functional consequences. Emphasis was placed on

between-trait comparisons and on the analysis of sex-differential

effects. For the main CKD-defining trait creatinine-based estimated

glomerular filtration rate (eGFR), we identified male-specific effects at

FAM9B and EDA2R/AR and female-specific effects at DRP2, along with

three sex-differential loci at DCAF12L1 (larger effect in males), MST4

(larger effect in males), and HPRT1 (larger effect in females). ARE are

predicted for all of these genes and some also showed sex-biased gene-

expression providing functional evidence that could explain the sex-

specific and sex-differential findings.

Results
Cross-ancestry X chromosome-wide association study
Weconductedoverall and sex-stratifiedfixed-effectmeta-analyses of X

chromosome-wide association scans of seven kidney-related traits and

diseases from 40mainly population-based study groups totaling up to

908,697 individuals with a mean age of 55.7 years (Supplementary

Data 1 and 2). Specifically, we analyzed eGFR (n = 773,980, mean =

91.33ml/min/1.73m²), uric acid (UA; n = 710,704, mean = 5.09mg/dl),

urinary albumin-to-creatinine ratio (UACR; n = 455,053, mean= 9.65

mg/g), blood urea nitrogen (BUN; n = 180,748, mean = 15.05mg/dl),

CKD (n = 908,697, including 40,785 cases), microalbuminuria (MA;

n = 517,768, 36,578 cases), and gout (n = 195,018, 2412 cases). Sex ratios

were roughly balanced for all traits (45–59% female, Supplementary

Data 3). About 80% of study participants were of European ancestry.

After processing, up to 271,730 high-quality single nucleotide

polymorphisms (SNPs; Supplementary Data 3), in the overall analysis

we identified 14 independent loci significantly associated with eGFR

and seven independent loci significantly associated with UA (Fig. 1;

Table 1). None of the other phenotypes showed genome-wide sig-

nificant associations. QQ plots revealed no signs of genomic inflation

(Supplementary Fig. 1). Regional association plots of all loci are pro-

vided as Supplementary Fig. 2. The index variants at the identified loci

explained 0.13% and 0.066% of the eGFR and UA variability, respec-

tively. Heritability of both traits attributable to X-chromosomal var-

iants was estimated and compared between sexes. Estimates for males

were significantly larger (eGFR: 0.95% vs. 0.44%, p = 2.8 × 10−7, UA:

0.59% vs. 0.40%, p =0.031, see Supplementary Fig. 3).

In the HUNT study (N = 69,389), which was used for validation of

the 14 loci associated with eGFR, effect directions were consistent for

all index variants and effect sizes were in good agreement (Supple-

mentary Fig. 4, Pearson’s r = 0.96, p = 1.1 × 10−8). Ten loci showed

nominally significant effects in the HUNT study in accordancewith the

expected statistical power (Supplementary Data 9). The variants

explained 0.15% of the eGFR variance in HUNT, a value similar to that

found in our meta-analysis.

Sex-stratified analysis
Sex-stratified analyses revealed an additional genome-wide significant

locus for eGFR in males at Xq12 (p = 3.8 × 10−8; Table 1), bringing the
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Fig. 1 | Miami-Plot of variants associatedwith eGFR and UA. Results of the cross-

ancestry X chromosome-wide association analysis for eGFR (positive panel) andUA

(negative panel). Chromosomal position and cytobandsof genome-wide significant

associations are indicated on the X-axis. The y-axis reports the (negative) log10(p-

values) of associations (β coefficient of additive genetic effect in linear regression

analysis, two-sided). Values in [−1.3,1.3] are not displayed. Color coding indicate the

strata where the smallest P-value was observed: overall = gray; male = blue;

female = red; and black = not genome-wide significant. Horizontal dashed lines

represent the genome-wide significance threshold (α = 5 × 10−8), correcting for

multiple testing. Each locus is characterized by candidate gene name, novelty and

sex interaction. Bold italics gene names indicate loci with sex interactions and are

again color-coded according to the sex with the higher genetic effect size. Novel

loci are marked by a box.
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Table 1 | Results of the cross-ancestry X chromosome-wide association analysis of eGFR and UA

Locus
Number

Index variant Cytoband/Base
Position

Best
association

# indepen-
dent SNPs

Effect/Other
Allele

Effect Allele
Frequency

Beta (SE) P value Phenotypic variance
explained (%)

P value Sex
Interaction

Candidate
genes

1 rs139036121 Xp22.31 / 8,912,628 eGFR-Male 1 T/C 0.27 −0.0032 (0.00037) 1.0 × 10−17 0.024 2.0 × 10−7 FAM9B

2 rs5909184 Xp22.13 / 18,482,665 eGFR-All 1 T/C 0.34 0.0027 (0.00028) 4.9 × 10−22 0.013 0.36 CDKL5

3 rs72616719 Xp11.23 / 47,166,532 eGFR-All 1 A/G 0.58 −0.0015 (0.00026) 9.9 × 10−9 0.0044 0.59 CDK16, USP11

4 rs189618857 Xq12 / 66,156,010 eGFR-Male 1 A/T 0.83 0.003 (0.00055) 3.8 × 10−8 0.013 1.5 × 10−3 AR, EDA2R

5 rs2063579 Xq21.1 / 79,925,246 eGFR-All 1 G/A 0.7 −0.0015 (0.00028) 4.3 × 10−8 0.0039 0.14 BRWD3

6 rs1802288 Xq22.1 / 99,890,204 eGFR-All 1 T/C 0.17 −0.0028 (0.00038) 8.7 × 10−13 0.0084 0.065 TSPAN6

7Aa rs3850318 Xq22.1 / 100,938,892 eGFR-All 1 C/G 0.62 −0.002 (0.00031) 7.0 × 10−11 0.0057 0.85 ARMCX2,

ARMCX4

7B rs149995096 Xq22.1 / 100,479,327 eGFR-Female 1 T/C 0.18 −0.0031 (0.00052) 2.2 × 10−9 0.0093 5.1 × 10−4
DRP2

8 rs11092455 Xq22.2 / 102,925,716 eGFR-All 1 T/C 0.44 0.0016 (0.00027) 4.5 × 10−9 0.0052 0.26 MORF4L2,

TCEAL3

9 rs181497961 Xq22.3 / 106,168,067 eGFR-All 2 A/G 0.023 −0.012 (0.00099) 1.4 × 10−35 0.026 0.81 CLDN2

10 rs5942852 Xq23 / 109,094,393 eGFR-All 1 C/T 0.76 −0.002 (0.00031) 3.0 × 10−11 0.0058 0.42 ACSL4

11 rs16275 Xq24 / 118,582,383 eGFR-All 1 G/A 0.68 −0.0016 (0.00027) 2.6 × 10−9 0.0046 0.73 SLC25A5

12 rs5931180 Xq25 / 125,656,689 eGFR-All 1 A/T 0.37 −0.0021 (0.00026) 9.8 × 10−16 0.0084 0.38 DCAF12L1

13 rs5933079 Xq26.2 / 131,251,326 eGFR-All 1 T/C 0.26 0.0022 (0.0003) 1.7 × 10−13 0.0071 0.025 MST4

14 rs5933443 Xq26.3 / 133,797,249 eGFR-All 1 A/T 0.68 0.0029 (0.0003) 1.7 × 10−22 0.013 0.047 HPRT1

15 chr23:152898260 Xq28 / 152,898,260 eGFR-All 1 A/C 0.54 −0.0026 (0.00027) 7.9 × 10−23 0.013 0.97 DUSP9, FAM58A

16 rs6625094 Xq12 / 66,301,811 UA-All 1 T/G 0.82 −0.024(0.0033) 3.8 × 10−13 0.01 0.13 AR, EDA2R

17 rs34687188 Xq13.1 / 71,509,443 UA-All 1 AT/A 0.72 0.017(0.0028) 2.6 × 10−9 0.0069 0.6 CITED1, PIN4

18 rs34884874 Xq22.1 / 100,885,798 UA-All 1 CT/C 0.75 0.023 (0.0027) 6.2 × 10−17 0.014 0.36 ARMCX2,

ARMCX4

19 rs34815154 Xq22.1 / 102,552,032 UA-All 1 A/AT 0.37 −0.014 (0.0024) 1.7 × 10−8 0.0062 0.34 MORF4L2,

TCEAL3

20 rs112708523 Xq25 / 125,602,218 UA-All 1 A/AT 0.4 −0.018 (0.0024) 3.0 × 10−14 0.011 0.034 DCAF12L1

21 rs202138804 Xq26.3 / 133,799,101 UA-All 2 A/AGT 0.76 −0.016 (0.0027) 5.2 × 10−9 0.0066 0.86 HPRT1

22 rs4328011 Xq28 / 152,898,261 UA-All 2 A/G 0.55 0.009 (0.001) 2.0 × 10−17 0.011 0.15 DUSP9, FAM58A

Listed are genome-wide significant loci on chromosome X associatedwith eGFR (first 16 rows) and UA (last seven rows). Association statistics and two-sided p-values of β-coefficients of additive genetic effects are provided for themost associated variant in each

locus (index variant). We used the threshold of α = 5 × 10−8 to correct for multiple testing. Respective analysis group is provided in column 4. Novel loci are presented in bold while novel sex-interactions are underlined. EAF = frequency of the effect allele.
aEGFR locus 7 was split up since secondary analyses revealed two independent loci, one for the overall analysis and one female-specific.
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total number of significant loci to 22. Colocalization analyses of male

and female associations at these 22 loci suggested the same

causal variant in eight instances (posterior probability PP of H4 ≥ 75%

Supplementary Data 4). An effect mainly driven by associations in

males was suggested at six loci. Of note, for locus 7 (Xq22.1) detected

in the eGFR overall analysis, colocalization analysis suggested

different causal variants in males and females (PP(H3) = 95%). At this

locus, a detailed analysis revealed a female-specific association with

eGFR at variant rs149995096 (pfemale= 2.2 × 10−9, pmale =0.071,

pinteraction = 5.1 × 10−4), which was not correlated with the index variant

rs3850318 of this locus (linkage disequilibrium, LD r2 =0.016,

pfemale = 8.2 × 10−6, pmale = 2.5×10−7, pinteraction =0.85). The locus is

located at a neighboring haploblock of the signal detected in the

overall analysis (Fig. 2). Therefore, we added this hit to our locus list by

splitting locus 7 into 7A for theoverall hit and 7B for the female-specific

hit. Thus, a total of 23 loci were detected (Table 1).

SNP by sex-interaction testing of the 23 index variants identified

five nominally significant interactions for eGFR and one for UA (Fig. 3,

Supplementary Data 4) including the female-specific finding at locus

7B (Xq22.1). Two variants located in locus 1 (Xp22.31) and 4 (Xq12),

respectively, showed significantly larger effects in males while being

not significant in females. Accordingly, they were classified as male-

specific variants, as further supported by the respective colocalization

analyses (Supplementary Data 4).

100,188,892 100,563,892 100,938,892 101,313,892 101,688,892

Chromosome 23 (bp)

0

2.1

4.2

6.3

8.4

10.5

−
lo

g
1

0
(O

b
s
e

rv
e

d
 p

)

0

4

8

12

16

20

24

R
e

c
o

m
b

in
a

ti
o

n
 r

a
te

 (
c
M

/M
b

)

P=7.02e−11
r
2

[0.8−1.0]
[0.5−0.8)
[0.1−0.5)
[0.0−0.1)
NA

ARL13A

TRMT2B

TMEM35

CENPI

DRP2

TAF7L

TIMM8A

BTK

RPL36A

GLA

HNRNPH2

ARMCX4

ARMCX1

ARMCX6

ARMCX3

ARMCX3−AS1

RP4−545K15.5

RNU6−30

         ARMCX2

NXF5

ZMAT1

TCEAL2

TCEAL6

BEX5

LL0XNC01−19D8.1

NXF2

NXF2B

LL0XNC01−19D8.

Regional Association Plot of locus 7 − eGFR ALL
SNP: rs3850318;  I2: 0;  MAF: 0.23

a

100,188,892 100,938,892 101,688,892

Chromosome 23 (bp)

0

2.1

4.2

6.3

8.4

10.5

−
lo

g
1

0
(O

b
s
e

rv
e

d
 p

)

0

4

8

12

16

20

24

28

32

R
e

c
o

m
b

in
a

ti
o

n
 r

a
te

 (
c
M

/M
b

)

P=2.21e−09

eGFR FEMALE
SNP: rs149995096;  I2: 0.2;  MAF: 0.18

b

100,188,892 100,938,892 101,688,892

Chromosome 23 (bp)

0

2.1

4.2

6.3

8.4

10.5

−
lo

g
1

0
(O

b
s
e

rv
e

d
 p

)

0

4

8

12

16

20

24

28

32

R
e

c
o

m
b

in
a

ti
o

n
 r

a
te

 (
c
M

/M
b

)

P=1.15e−07

eGFR MALE
SNP: rs2858167;  I2: 0;  MAF: 0.24

c

Fig. 2 | Regional association plot of locus 7 at Xq21.1. Comparison of association

plots of eGFR at locus 7 at Xq21.1 between analysis groups overall, males and

females. The same genomic region is displayed for overall (a), female (b) and male

analysis (c), respectively. The y-axes report the (negative) log10(p-values) of the

associations (β coefficient of additive genetic effect in linear regression analysis,

two-sided). The primarily identified index variant rs3850318 showed no sex-

dimorphism and is confined to the same haploblock as the best associated SNP in

males (c). Colocalization analysis revealed an independent association (PP(H3) =

95%), which is significant in females only (rs149995096) and corresponding to a

neighboring haploblock (b). Subgroup-specific top-hits aredepicted asfilled circles

or marked as empty circles (blue = overall, green =male, magenta = female). In red,

we highlight the candidate genes for this locus (a).
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Fine-mapping
Conditional analysis revealed a second independent variant at three

loci, one for eGFR (locus 9, Xq22.3) and two for UA (loci 21 at Xq26.3

and 22 atXq28) in the overall analysis. No further independent variants

arose from the fine-mapping analysis of the sex-specific subgroups.

Annotations of independent variants per analysis can be found in

Supplementary Data 6.

Analysis of heterogeneity between ancestries
Meta-regression analysis accounting for ancestries confirmed the

associations observed at all loci (Supplementary Data 11). Only the

index variant rs4328011 at locus 22 (Xq28) showed heterogeneous

effects on UA across ancestries (pHet-Anc = 5.9 × 10−19; Supplementary

Fig. 5), likely due to allele frequency differences across ancestries (G

allele frequency: 48% in African Americans, 42% in Europeans, 62% in

Asians according to the ALFA data base of dbSNP version 155). These

frequencies align with the data included in the presented meta-

analysis.

For UA, meta-regression revealed two further loci with genome-

wide significance (Supplementary Fig. 6). One identified by SNP

rs57434549 (Xq13.1, p = 1.6 × 10−12, pHet-Anc = 1.3 × 10−9) showed a posi-

tive effect of the T allele on UA in Europeans and Asians, but a negative

effect in African Americans. This was also observed within the MVP

study, which contains substantial proportions of participants of Eur-

opean and African American ancestries. Frequencies of the T allele

were 19% inAfricans, 39% in Europeans, and 51% in Asians, according to

ALFA, which is confirmed by our data. The association was also found

in ref. 15. The second locuswas identifiedby variant rs1802288 (Xq22.1,

p = 2.4 × 10−8, pHet-Anc = 1.4 × 10−6, frequencies of the T allele: African

Americans = 3%, Europeans = 17%, Asians = 0.06%). This SNP was also

detected as associated with eGFR in our cross-ancestry meta-analysis

(locus 6). Annotations of variants are provided in Supplementary

Data 12.

Comparison of eGFR and UA hits
To investigate whether eGFR and UA loci shared the same underlying

variant, we performed LD analysis between index variants and colo-

calization analyses of overlapping loci. In total, we observed seven

physically overlapping loci of eGFR and UA signals comprising eight

index variants of eGFR and six index variants of UA (Table 2). To be

conservativewith claiming different loci, overlapwas assumed if either

LD r2 ≥0.1 or PP(H4) ≥ 50%. Accordingly, associations at the eGFR loci

4, 7A, 8, 12, 14, and 15 shared the same causal variant with the UA loci

16, 18, 19, 20, 21 and 22. In contrast, colocalization analysis revealed

distinct signals for the female-specific eGFR signal at locus 7B and the

UA-associated locus 18 (PP(H3) = 99%, r2 =0.02), and between loci 6
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Fig. 3 | SNP-by-Sex interaction analysis.We tested all identified 23 index variants

for interaction with sex. Comparisons of effect sizes (β coefficient of additive

genetic effects) and respective 95% confidence limits between males (x-axis) and

females (y-axis) are displayed. Six variants achieved nominal significance (red =

higher effect size in females, blue = higher effect size in males).

Table 2 | Analysis of the overlapping of eGFR and UA loci

Region eGFR, UA Cytoband Indexvariant eGFR/index variant UA Best associations Discordant Effect LD r
2 PP H3 (%) PP H4 (%) Overlap

4, 16 Xq12 rs189618857/rs6625094 Male/Overall Yes 0.9 73 27 Yes

6, 18 Xq22.1 rs1802288/rs34884874 Overall/Overall Yes 0 75 25 No

7A, 18 Xq22.1 rs3850318/rs34884874 Overall/Overall Yes 0.96 7 93 Yes

7B, 18 Xq22.1 rs149995096/rs34884874 Female/Overall Yes 0.02 99 0 No

8, 19 Xq22.1–2 rs11092455/rs34815154 Overall/Overall Yes 0.28 45 54 Yes

12, 20 Xq25 rs5931180/rs112708523 Overall/Overall No 0.98 47 53 Yes

14, 21 Xq26.3 rs5933443/rs202138804 Overall/Overall Yes 0.99 48 52 Yes

15, 22 Xq28 chr23:152898260/rs4328011 Overall/Overall Yes 1 0 1 Yes

We analyzed possible overlaps of eGFR and UA loci by comparing best associations of respective index variants. Overlap evaluation is based on linkage disequilibrium (LD) r2 between variants and

colocalization results (H3 = nosharedsignal,H4 = hared signal). PP = posterior probability. To beconservativewithclaimingdifferent loci,weevaluated r2 ≥0.1 orPP(H4) ≥50%asevidence for overlap.

Values relevant for overlap evaluation are displayed in bold. Full colocalization results are provided in Supplementary Data 5c.
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(eGFR overall) and 18 (UA overall) (PP(H3) = 75%, r2 = 0). Of note, effect

directions between eGFR and UA were opposite for all overlaps as

expected, except for the overlapof loci 12 and 20 (Table 2). UA locus 17

(Xq13.1) showed no overlaps with eGFR loci and, thus, represents the

only primary UA locus found in our analyses.

Cross-phenotype comparisons of loci
Since serum creatininemay also reflectmusclemetabolism in addition

to kidney function, we analyzedwhether eGFR index variants were also

associated with BUN. As expected, we observed opposite effect

directions for 15 out of the 16 eGFR-related index SNPs. Locus 5, Xq21.1

was the only exception, but the effect was not significant in BUN

(Fig. 4). From the 15 opposite effects, nine were nominally significant,

classifying them as likely associated with kidney function rather than

creatinine metabolism.

To assess clinical relevance, we also checked whether the eGFR

index variants were associated with CKD risk. Indeed, this was the case

for all index variants except for locus 15 (Xq28), for which no CKD

association statistic was available. From the available 15 associations, all

were in the opposite effect direction compared to eGFR, 11 were nom-

inally significant and five reached a p <0.001 (Supplementary Data 5a).

Wealso assessed the relevanceofour indexvariantswith respect to

kidney damage.Only one of the loci showed significant associationwith

UACR andMA, with opposite effect direction compared to eGFR (locus

1, Xp22.31). Finally, we compared the effect direction of eGFR and UA,

and found the expected inverse directions for all but one of the (over-

lapping) loci (locus 12/20, Xq25; Fig. 4, Supplementary Data 5a, b).

Replication of previous findings
We investigated genome-wide significant X-chromosomal index var-

iants reportedpreviously13–15 for associationswith kidney-related traits.

A total of 46 associations with variants distributed over 19 cytobands

were retrieved from these studies. From the 34 associations with

available summary statistics in our study, we successfully replicated all

at nominal one-sided significance (Supplementary Data 10).

Enrichment of ARE genes
According to our gene-prioritization strategy, we assigned candidates

with AREs to all of the six loci with sex-interactions. As identified by a

simulation study (see methods), this represents an enrichment

(p = 0.014). Moreover, for two of the loci, genes predicted to be

regulated by AREs18 could be assign, again representing an enrich-

ment (p = 0.025).

Single locus results
Accounting for the locus overlaps between eGFR and UA, 17 non-

overlapping loci remained and will be discussed in the following. A

total of 13 of these loci where previously described in refs. 13–15. For

five of these loci, we discovered new sex-differential findings, while

four lociwherenot yet described, including a sex-specificone (Table 1).

We assigned functionally plausible candidate genes to all of the loci,

following a gene-prioritization strategy (see methods). Detailed rea-

soning for selection of candidate genes can be found in the Supple-

mentary Notes 1.

Known loci
Our gene-prioritization strategy confirmed previously proposed can-

didate genes for loci 2 (Xp22.13: CDKL5) and 15/22 (Xq28: DUSP9), and

proposed new or additional candidate genes for known loci 3 (Xp11.23:

USP11/CDK16), 5 (Xq21.1: BRWD3), 8/19 (Xq22.2: MORF4L2, TCEAL3), 11

(Xq24: SLC25A5), 15/22 (Xq28: FAM58A) and 17 (Xq13.1,CITED1,PIN4), see

Fig. 1, Table 1 and the Supplementary Notes 1 for a detailed reasoning.

Known loci with sex-interactions
Wediscovered sex-interactions atfive previously described loci. Genes

with AREs could be assigned as candidate genes for each of them:
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Fig. 4 | Cross-phenotype comparison of eGFR and UA loci. We visualized cross-

phenotype p-values of association (β coefficient of additive genetic effects) of our

23 index variants showing associations with eGFR or UA to assess potential kidney-

related function (BUN), clinical relevance (CKD) and kidney damage (UACR, MA)

and to compare eGFR and UA associations. Variants are ordered according to

Table 1 and statistics of the best associated analysis group are shown per index

variant (see left column). While eGFR and UA are tested two-sided (discovery),

associations with the other traits were tested one-sided assuming the opposite

effect direction of eGFR for eGFR hits and the same effect direction with UA for UA

hits. Of note, effect sizes of eGFR and UA are always opposite except for one locus

(locus 12/20, Xq25).
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Locus 1 (Xp22.31). The strongest association with eGFR was

observed for rs139036121 in males. BUN was not significantly asso-

ciated with this locus. We observed a pronounced sex-interaction

with no association in females (Fig. 3). The locus is pleiotropic, with a

variety of other GWAS associations including several sex-specific traits

such as testosterone levels and male-pattern baldness19,20. Moreover,

we observed colocalization between eGFR and testosterone associa-

tions at this locus in males (PP(H4) = 99%) with opposite effect direc-

tions, i.e., the eGFR association could be driven by a primary

testosterone effect (Supplementary Data 14). The nearest candidate

gene is FAM9B, which has an ARE 70 kb upstream of its transcription

start side (TSS)18.

Locus 4/16 (Xq12). The index variant rs189618857 was associated with

eGFRonly inmales, with a strong sex-interaction (pIA= 1.5 × 10−3, Fig. 3).

The associationwith BUNwasnot significant. The index variant is in LD

with the index variant of UA locus 16. Other GWAS traits associated at

this locus comprise sex hormone-binding globulin levels,male-pattern

baldness, fasting insulin, estradiol levels with the same effect direction

and prostate cancer risk. Rs189618857 maps to a gene desert. The

credible set (CS) of variants identifiedwithin this very large eGFR locus

comprised 537 variants, including strong CADD score variants

(CADD> 10) near EDA2R, a plausible candidate gene encoding the

ectodysplasin A2 receptor21. LD with expression quantitative trait loci

(eQTLs) of EDA2R and AR were also observed for this locus (Supple-

mentaryData 7).AR encodes the androgen receptor, and has upstream

estrogen response elements22. It therefore constitutes another plau-

sible candidate gene of this locus23. An ARE was estimated 5kB

upstreamof its TSS18. EDA2R also has anARE in somedistance from the

gene body. Both genes were shown to be regulated by the ARE (AR up-

regulated, EDA2R down-regulated18). Moreover, AR shows significantly

higher gene expression in females while EDA2R shows higher expres-

sion in males in several tissues24. Thus, both EDA2R and AR are plau-

sible candidates here.

Locus 12/20 (Xq25). The index SNP rs5931180 was associated

with eGFR in the overall analysis. Relation to kidney function was

supported by a significant inverse association with BUN. The variant

is in LD with the index variant of UA locus 20 showing significantly

larger effects in males (Fig. 3). In contrast to other overlaps of eGFR

and UA, we observed the same genetic effect directions for eGFR and

UA. The credible set comprised 66 variants for eGFR and 45 variants

for UA, with a sharp signal centered on the genes MTND4P24 and

DCAF12L1. DCAF12L1 has an ARE 3 kb downstream (3’UTR) of the TSS

and is higher expressed inmales in kidney cortex24, possibly explaining

the sex-differential effect. Therefore, it is considered the likely

candidate here.

Locus 13 (Xq26.2). The index SNP rs5933079 was most strongly

associated with eGFR, with larger effect size in males. CKD and UA but

not BUN were associated with opposite effect direction. The credible

set contained 39 variants, including variants with strong deleterious-

ness scores (CADD> 10) near FRMD7, RAP2C and within MST4,

respectively. There are AREs near RAP2C (50kp upstream) and MST4

(28kB downstream), while both genes are also found to be down-

regulated by their AREs18. There is additional kidney-related evidence

related to MST425,26. Moreover, MST4 was shown to correlate with

androgen receptor status in prostate cancer cell lines revealing male-

specific functionality27. Thus, we propose this gene as the most likely

candidate here.

Locus 14/21 (Xq26.3). The strongest association at locus 14 was

observed for rs5933443 for eGFR in the overall analysis, with a sig-

nificant sex-interaction showing larger effects in females, and sig-

nificant BUN association in the opposite direction. The index variant is

in strong LD with rs202138804 associated with UA. CS variants map to

the gene bodies of PLAC1, HPRT1, FAM122B, and PHF6, with the

strongest CADD scores observed for PLAC1. Three of these genes show

AREs in some distance (PLAC1, HPRT1, FAM122B), two also show

estrogen response elements (PLAC1, HPRT1) possibly explaining the

sex-interaction. HPRT1 also shows higher expression in females24.

HPRT1 encodes hypoxanthine phosphoribosyltransferase, a central

enzyme in the generation of purines such as UA. Thus, the biological

link to the observed association with UA is closer than the one

observed with eGFR. Rare loss-of-function variants in HPRT1 are a

cause of Lesch-Nyhan Syndrome featuring highly elevated levels of UA

(OMIM-ID 308000)28. In consequence, HPRT1 is the most plausible

candidate gene at this locus.

Novel loci
Four loci were not yet described in the literature. Another strong sex-

interaction was found for one of them.

Locus 6 (Xq22.1). The locuswasmost strongly associatedwith eGFR in

the overall analysis (rs1802288). It was also associated with CKD and

UA, but not BUN. The association with UA achieved genome-wide

significance after adjusting for ancestry with MR-MEGA (Supplemen-

tary Fig. 6A, B). The locus was described for association with height.

The credible set contained only the index variant with a pronounced

CADD score of 29.9. The SNP is a missense mutation in TSPAN6

(Ala108Thr, Supplementary Fig. 7). A relationship of this gene with

kidney function was not yet described. However, of note, another

member of the TSPAN family, namely TSPAN33 located at chromo-

some 7 was proposed as a candidate gene of eGFR association in the

study of ref. 14.

Locus 7/18 (Xq22.1). The strongest association was observed for

rs3850318 with eGFR in the overall analysis. The variant was also

associated with BUN, CKD and UA, i.e., this association overlaps with

locus 18 of UA (rs34884874, colocalization PP(H4) = 93%). Moreover,

the index variant is in LD with associations with creatinine and UA

reported in Sakaue et al.15. We observed co-localizations of the eGFR

and the UA signals with an eQTL signal of ARMCX2 in kidney tubu-

lointerstitial tissue (eGFR: PP(H4) = 82%, opposite effect direction, UA:

PP(H4) = 95% same effect direction, Fig. 5, Supplementary Data 8, 15),

thus prioritizing this gene.

Since colocalization analysis betweenmale and female eGFR results

at this locus strongly supported the hypothesis of different signals

(PP(H3) = 95%, Supplementary Data 4), we analyzed this phenomenon in

more detail by looking at the sex-stratified results of eGFR. The top-

variant in males was rs2858167, which is 62kB away from rs3850318, still

the variants are in LD (r2 =0.83, Fig. 2). The SNPdid not achieve genome-

wide significance in males and no significant sex-interaction was

observed (pIA=0.32). Conversely, the top-variant in females was

rs149995096, which is 460 kb away from rs3850318 and is not in LDwith

this variant nor with the male top-hit (r2 <0.018). Of note, rs149995096

achieved genome-wide significance in females while the effect in males

was not even nominally significant (pIA=5.1 × 10
−4). Thus, this variant is an

independent female-specific hit of this locus. Moreover, this variant was

not in LD with other reported GWAS variants, i.e., it represents a novel

finding. CKD but not BUN was associated. The variant is in the coding

sequence of DRP2 and the credible set comprising 92 variants also

contains variants with high CADD scores within or near this gene. Since

the associationwith BUNwas not significant, the eGFR association could

also be related tomuscle mass. In this regard,DRP2 could be a plausible

candidate due to its relationship to creatinine via involvement inmuscle

dystrophy29. Of note, the gene has an ARE 17 kb downstream of the TSS

and shows higher expression in females in several tissues24. Since there

is no evidence of X-inactivation escape of this gene30,31, this gene-

expression difference is likely caused by different regulation but it is
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unlikely that this explains the observed eGFR association due to lack of

colocalization of gene-expression and eGFR signals at this locus (Sup-

plementary Data 8).

Locus 9 (Xq22.3). At this locus, the index variant rs181497961 was

associated with eGFR in the overall analysis, without sex-interaction.

The variantwas also associatedwith BUN andCKDwith opposite effect

directions. Ref. 14 reported an independent (r2 =0.093) eGFR asso-

ciation about 600kB away from this variant, namely rs56121637, which

also showed genome-wide significance in our analysis (p = 8.3 × 10−10).

Ref. 32 also found this variant to be associated with creatinine. Both

groups proposed RNF128 as the causal gene.

Conditional analysis revealed the presence of another indepen-

dent variant at this locus, namely rs111410539 not in LD with the var-

iants mentioned above (r2 <0.1). Due to the small allele frequencies of

the variants, the respective credible sets were large, comprising 408

and 1583 variants, respectively. Of note, rs181497961 did not achieve

the highest PP of its credible set, which was attributed to rs111775083

with a higher effect allele frequency of 5.6%. No eQTL co-localizations

were detected for this locus. The index variant is in the gene body of

MORC4 and CLDN2. Although, several high CADD score variants within

different gene bodies are in the CS, we consider the gene CLDN2 as a

highly plausible candidate due to its known role in nephrolithiasis

development according to OMIM-ID 300520 and the kidney pheno-

types of CLDN2 knock-out mouse models33.

Locus 10 (Xq23). The top-SNP of this locus rs5942852 was best asso-

ciated with eGFR in the overall analysis. The variant was associated

with CKD but not with BUN. No correlated GWAS hits were found,

suggesting that this association is a novel finding. The credible set

comprises 54 variants. The top-variant is nearRPS5P7 and there is also a

high CADD variant nearby (CADD= 12.6). However, this gene has no

known functional relationship to kidney traits. Although 120kB away,

the locus co-localizes with an eQTL of ACSL4 with the same effect

direction in blood (PP(H4) = 98%, Fig. 5) and other tissues. ACSL4 also

known as FACL4 could be a plausible candidate since it was linked to

Alport syndrome34.

Discussion
We performed a cross-ancestry meta-analysis of genetic associations

between X-chromosomal variants and seven kidney traits in up to

908,697 individuals. Particular emphasis was placed on sex-stratified

analyses to account for the specific nature of X-chromosomal genetics.

Moreover, we performed cross-phenotype comparisons of genetic

associations to provide a comprehensive characterization of the iden-

tified loci with respect to their associations with different kidney traits.

Fig. 5 | Results of eQTL-colocalization analysis.We present selected positive

colocalization findings of eQTLs and kidney traits. We display genes showing co-

localization posterior probabilities (PP) larger than 75% for kidney-related tissues

(tubulointerstitial (TI)) or for kidney-related genes in other tissues (stomach (Sto),

thyroid (Thy), muscle skeletal (MS), whole blood (WB)) for at least one kidney trait

in at least one analysis subgroup. Color coding corresponds to posterior prob-

abilities of hypotheses H3 (different signals for kidney trait and eQTL, red) and H4

(same signal, i.e., colocalization, blue). Arrows show same (↑↑) or opposite (↑↓)

directions of effects of trait and eQTL. Toassess this relationship,weused the index

variant of each locus, respectively for locus 8 the best available proxy (rs12851072,

r2 =0.97). In case of co-localizations in multiple tissues, we showed the results for

kidney-related tissuesor the tissuewith the strongest support forH4. All results can

be found in Supplementary Data 8. Direction of effects are provided in Supple-

mentary Data 15. Crosses represent combinations not tested due to lack of signal

for the kidney-related trait.
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In total, we identified 23 loci, seven for UA and 16 for eGFR. Loci of UA

weremostly overlappingwith those of eGFR, i.e., only oneof theUA loci,

namely Xq13.1, showed no association with eGFR. Four of the eGFR loci

represented novel findings and established genome-wide significant

associations for functionally plausible prioritized genes, namely ACSL4,

CLDN2, DRP2, and TSPAN6. The DRP2 locus was female-specific.

Further, we identified novel sex-interactions with genetic variants

at five additional, previously described loci, comprising two male-

specific (FAM9B, AR/EDA2R) and three sex-differential findings, two

with stronger genetic effects inmales (DCAF12L1, MST4) and onewith a

stronger effect in females (HPRT1). All prioritized genes of these loci

contain hormone response elements, in particular AREs, providing

possible functional explanations of the sex-specific or sex-differential

effects at these loci.

Several lines of evidence suggest that sex hormones may play a

role in kidney function and may contribute to sexual dimorphism of

CKD. Higher levels of the sex hormone binding globulin (SHBG), a

modulator of several sex hormones, have been causally associated

with lower CKD risk35 and gout36 in men but not in women. Androgens

are inversely associated with kidney function in men,37 with testos-

terone being causally associated with lower creatinine- and cystatin-

based eGFR as well as increased risk of CKD and albuminuria in men17.

Dihydrotestosterone may lead to dysregulation of several metabolic

pathways associated with diabetes and CKD38. In contrast, lower

estrogen levels are associated with an increased incidence of CKD39.

Thus, there is a continuum between the pre- and post-CKD onset role

of sex hormones on kidney function, with androgens being risk factors

and estrogens being protective40.

Wedemonstrated thatmore candidate geneswithAREswere found

than expected by chance. AREs are small spanning only 14 base pair

positions. Accordingly, we did not observe physical overlaps between

our credible sets and AREs. However, it is still conceivable that AREs

result in sex-differential gene expression due to different intensities of

androgen receptor binding, resulting in sex-dependent modulations of

genetic effect sizes of the regulated genes. Indeed, five of the candidate

genes also showed sex-biased gene-expression in several tissues (Sup-

plementary Data 13)24. Olivia et al. also demonstrated that chromosome

X genes showed an enrichment of sex-biased gene expressions and

eQTL sex-interactions, motivating the conduct of sex-stratified and

interaction analyses for X-chromosomal variants to understand the

genetics of sex dimorphisms. In particular, this also applies for kidney

traits, given our observation of a significantly higher X-chromosomal

heritability in males compared to females for eGFR and UA.

Our analyses are based on the assumption of complete

X-inactivation in women with random selection of the inactivated

chromosome. The pseudoautosomal regions were excluded from the

analysis. X-inactivation is a complex, not fully understood process with

several open questions e.g., regarding chromosome selection, pro-

gression, cell typedependence andstability41. Deviations fromtheabove

assumptions have been described such as escape from X-inactivation42,

which may contribute to sex-biased gene-expression. In case of incom-

plete X-inactivation, effect sizes ofwomen are over-estimated according

to our model, which could result in false positive interactions showing

higher effects in females. In our case, this could affect the interactions

observed at our female-specific candidate DRP2 and the interaction at

HPRT1 showing larger effect sizes in females. Under a model assuming

no inactivation, both genetic sex-interactions would be non-significant

(Supplementary Data 4). However, to the best of our knowledge, these

genes were not described as X-inactivation escapees30,31.

No genome-wide significant findings were detected for UACR and

BUN, the two other quantitative kidney-related traits. For BUN the low

sample size could contribute to this result. Since there is no standard

protocol for urine collection and because of issues in measuring urine

albumin, reliability of UACR assessment could be compromised

reducing statistical power to detect associations43,44. Likewise, the

binary traits CKD, MA and gout showed no genome-wide associations,

demonstrating the lower power of binary traits compared to quanti-

tative traits. However, it needs to be acknowledged thatwe applied the

stringent cut-off for genome-wide significance despite analyzing only

chromosomeX variants. We performed cross-phenotype comparisons

using all traits but found only locus 1 (Xp22.31) to be nominally asso-

ciatedwith UACR andMA. Regarding eGFR signals, 11 respectively nine

nominally significant co-associations with CKD respectively BUN were

observed, all with the expected directions of effects.

The fact that about 80%of the study participants were of European

ancestry has limited the power to identify genetic heterogeneity across

ancestries. Nevertheless, by meta-regression analysis, we identified

heterogeneity at the Xq28 locus, likely related to the pronounced allele

frequency differences between ancestries. We identified another UA

locus at Xq13.1 showing different effect directions between African and

European/Asian ancestries. The variant was also found in a study of

Asian subjects15. Possible ethnic heterogeneity of this locus needs to be

validated by other studies with larger percentages of African ancestries.

For all loci, we assigned likely candidate genes by our gene-

prioritization strategy mainly considering high CADD score variants,

eQTL colocalization results, and, in case of sex-interactions, AREs.

Regarding the new loci, at Xq22.1, we found a missense mutation of

TSPAN6 associated with eGFR. Another member of the tetraspanin

family was also found to be associated with eGFR14. This family of

membrane proteins is ubiquitously expressed and involved in a mul-

titude of cellular processes. Although a direct role with respect to

kidney function was not yet described, the gene family was shown to

be associated with immune function and could be involved in chronic

inflammatory processes that contribute to CKD45. At the same cyto-

band, we detected a female-specific association, for which we assigned

DRP2. Due to its described involvement in muscle dystrophy29, we

cannot exclude that this association may be related to muscle mass

rather than kidney function. Indeed, BUN was not associated with the

index variant. The locus was in close proximity but statistically inde-

pendent of the known ARMCX2 locus. At Xq22.3, we assigned CLDN2

for its known role in nephrolithiasis development and a knock-out

mouse model that showed kidney stone formation33. This locus is in

proximity to the known RNF128 described by others32. Indeed, we

observed two independent variants at this locus, one supporting

RNF128while the other is in the gene body of CLDN2. Since the signals

are driven by low-frequency variants, further analyses are required to

confirm the proposed locus heterogeneity. Finally, at Xq23 we

assigned ACSL4 as a plausible candidate based on eQTL colocalization.

This gene was found to be deleted in a family with Alport syndrome34.

Limitations of our study are the relatively small size of non-

European ancestry samples, as well as for some of the kidney traits.

Associated variants explained about 26% and 13% of the estimated

eGFR and UA X-chromosomal heritabilities, respectively. Larger and

more diverse studies are required to find further X-chromosomal

variants, to analyze their sex interactions and to unravel their hetero-

geneity due to genetic ancestry. Moreover, other eGFR formula could

be considered and other kidney function parameters with known sex-

dimorphisms such as kidney function decline should be analyzed in

future studies46. Y chromosomal markers are also understudied and

should be included in future analyses. In the present study, we did not

control for diabetesmellitus status. None of our index variants were in

LD with a diabetes variant and only one (AR/EDA2R locus) was in LD

with fasting insulin as a diabetes related trait.

In conclusion,weperformed a comprehensive genetic association

analyses of chromosomeX variants regarding a variety of kidney traits.

We discovered significant associations at four new loci, as well as six

loci with new genetic sex interactions. Gene prioritization identified

plausible candidate genes for all loci. In particular, candidate genes of

loci showing SNP-sex interactions showed AREs and sex-biased gene

expression, which could explain the observed interactions. These
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findings contribute new insights into sex-dimorphisms and hormone

dependanceof kidney traits alongwith newprioritizedgene targets for

further molecular research.

Methods
Study design
Weperformed a cross-ancestry X-chromosome-wide association study

of seven kidney traits namely the quantitative traits eGFR, serum UA,

UACR, BUN, and the binary traits (CKD, gout, and MA). Sex-stratified

and combined analyses were performed for 40 studies including up to

908,697 subjects (Supplementary Data 3) and considering up to

1,032,701 SNPs. We searched for additional SNP associations by per-

formingmeta-regression analyses considering ethnic origin. Results of

eGFR were replicated in independent samples of the HUNT study

(N = 69,389). Genome-wide significant loci were tested for sex inter-

actions and were compared between traits. The study design is

depicted in Supplementary Fig. 8.

Collecting individual study data
Analyses are based on data collected in the framework of the CKDGen

consortium47. A centrally designed and standardized analysis plan

including scripts for phenotype definition, covariate handling,

recommendations for data quality assurance and pre-processing,

analyses modes requested and troubleshooting information was pro-

vided to all participating study groups. Only studies with approved

local ethics votes and available written informed consent of study

participants were considered. Details can be found in the corre-

sponding publications of the autosomal analysis results7–9.

Quantitative phenotypes
Individual study details of measurement protocols and population

distributions of kidney traits are shown in Supplementary Data 1.

Phenotype definitions of eGFR andBUNare explained in detail in ref. 9.

In brief, eGFR of adults was estimated based on serum creatinine using

the 2009CKD-EPI equation48, winsorizing at 15 and200ml/min/1.73m2

as detailed previously. Studies of children or adolescents (age ≤ 18

years) used a revised formula proposed by ref. 49. When blood urea

but not BUN was available, BUN was calculated by dividing blood urea

in mg/dl by 2.14. UA was analyzed in mg/dl. Urinary albumin values

below the lower limit of detection (LOD) of the laboratory assay were

set to the LOD. UACR inmg/gwas obtained as [urinary albumin, mg/l]/

[urinary creatinine, mg/dl]/100.

Disease phenotypes
CKD cases and controls were identified as those individuals who had

an eGFR <60 and ≥60ml/min/1.73m2, respectively. MA cases and con-

trols were identified as havingUACR> 30 and <10mg/g, respectively, as

detailed in7. Gout was defined either by self-report, use of urate-

lowering therapy, or by ICD codes, as described previously in detail8.

Genotyping
Genotyping was performed study-wise using micro-array platforms

(see Supplementary Data 2 for details). Genotype calling, quality con-

trol and pre-processing was performed by each individual study,

independently. Studies performed genotype imputation using either

the Haplotype Reference Consortium v1.1 or the 1000 Genomes pro-

ject phases 1v3 or 3v5 panels, using a variety of standard imputation

software or own computational pipelines (Supplementary Data 2).

Study-wise settings of the software were not collected by our con-

sortium, but we compared standard errors of provided effect esti-

mates for males and females at chromosome X and autosomes for

obviousdeviations fromtheexpectations (details seebelow). In caseof

peculiarities, we queried the study centers. Imputed genotypes were

analyzed as allele-dosages. Variants were annotated according to the

NCBI build version b37.

Single study association analyses
eGFR, UACR and BUN were logarithmized (natural logarithm) and

residualizedwith respect to age, and untransformed values ofUAwere

residualized with respect to age prior to association analysis. More-

over, UACR residualswere inversenormal transformedprior togenetic

association analysis.

Studies performed sex-stratified analyses of X-chromosomal

variants. All analyses were performed using appropriate regression

models (linear regression of quantitative traits or logistic regression

of binary traits) considering allele-dosages as independent predictors.

Further adjustments of continuous phenotypes e.g., with respect

to relatedness, ethnic principal components or study-specific covari-

ables were left at the discretion of the single study analysts.

Binary traits were also adjusted for age. Software packages used

for association analyses included PLINK, SNPTEST, EPACTS

and other (Supplementary Data 2). Single study summary statistics

were uploaded to a server for central quality control and meta-

analyses.

Study quality control and harmonization
Single study results were quality controlled by comparing allele fre-

quencies with those of the respective references discarding variants

with >20% deviation using the R package EasyQC50. We also filtered

variants with an imputation quality score <0.5 (e.g., MACH r2 or

IMPUTE info score), minor allele count <6, minor allele frequency

<0.01, and SNPs within the pseudoautosomal regions. This resulted in

up to 271,730 high-quality SNPs used for genetic association analysis

(Supplementary Data 3).

Allele-dosages of chromosome X were harmonized across

studies. Imputation software setting-specific coding of allele dosages

(i.e., 0/1 vs. 0/2 formale A/B genotypes, respectively 0/0.5/1 vs. 0/1/2 for

female AA/AB/BB genotypes) were identified through comparison of

standard errors of X-chromosomal analyses of males and females with

those of the respective autosomal analyses. This resulted in a char-

acteristic pattern allowing the inference of X-chromosomal allele cod-

ing. Ambiguous cases were clarified with the single study analysts. All

summary statistics were harmonized to a male 0/2 vs. female 0/1/2

genotype coding.

Cross-ancestry meta-analysis of chromosome X variants
We first combined the summary statistics of males and females per

study using fixed-effect inverse variance estimates. For this purpose,

we harmonized the variant sets by filtering variants for whichmale and

female allele frequencies differed by more than 20%. The genomic

control factor λGC was determined on the basis of chromosome X

variants only. Genomic control correction was applied in case of

λGC > 1. After combining the sexes, genomic control was applied for the

single-study results of the overall analysis, if necessary.

Meta-analysis of studies was carried out for three analysis groups,

overall, males and females, by summarizing their respective single-

study statistics using inverse variance estimates. For the purpose of

locus identification, we only considered variants for which summary

statistics of at least ten studies were available. This excludes the phe-

notype “gout” from locus identification (Supplementary Data 3). I2

statistics were used to assess heterogeneity across studies. Variants

with I2 > 95%were discarded.We also discarded variants with weighted

minor allele frequency <0.02 or weighted info score <0.8. Study

sample sizes served as weights. Association p < 5 × 10−8 were con-

sidered genome-wide significant.

Variance explained
Explained variance of single-SNP associations was calculated using

the formula r2 = β2/(β2 +N*se(β)2), where β is the estimate of the fixed-

effectmodel, se(β) is the respective standarderror, andN is the sample

size51.
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Locus definition
Genome-wide significant findings were only found for eGFR and UA.

Genomic loci containing genome-wide significant associations were

defined separately for each trait and primarily in the overall analysis.

For each trait a locus was defined as the SNP with the lowest P value

(index SNP) across chromosomeXwith a corresponding 1-Mbsegment

centered around this index SNP. This procedure was repeated until no

further genome-wide significant SNPs remained. Since this procedure

did not cover all genome-wide hits found in males for eGFR, we ana-

logously defined loci for the eGFR male subgroup and included them

into further analyses. If two loci of a trait overlapped, they were

merged to one locus keeping the index SNP with the lower P value as

the new index SNP of the merged locus. This step was also repeated

until no overlapping loci remained for the considered trait.

Interaction analysis
We performed genetic sex-interaction analyses of all index SNPs.52

Thus, we calculated the differences between sex-specific meta-effect

estimates and standardized it by their corresponding standard errors

considering the correlation of test statistics between males and

females. We determined the Spearman rank correlation of the X-

chromosome-wide beta-estimates of males and females for that pur-

pose (ρeGFR =0.16, ρUA =0.12). A total of 23 SNPs were tested for

interaction. To have summary statistics for both sexes for all index

SNPs, we did not filter variants due to low number of available studies

for this purpose (minimum number of studies was eight for UA). Since

escape from X-inactivation could bias interaction analyses towards

larger effect sizes in females, we also performed a sensitivity analysis

assuming the extreme case of no inactivation. For that purpose, beta

estimates and standard errors of female effects were halved prior to

interaction analysis.

We also performed colocalization analyses of male and female

statistics for all loci to test for a shared underlying causal variant.

Colocalization analyses were performed using the “coloc.abf”

function from the R package “coloc” (available on CRAN) based on

ref. 53. Bayesian posterior probabilities (PP) for the five hypotheses

were computed: H0: No associations within locus, H1: Associations

within males only, H2: Associations within females only, H3: Associa-

tion in both sexes but different causal variant and H4: Association

within both sexes with the same causal variant. We considered a pos-

terior probability of ≥75% as sufficient support for one of the

hypotheses.

Cross-trait comparisons
All index variants were looked up in our meta-GWAS of BUN to assess

potential relevance for kidney function using the same classification as

in ref. 9. In brief, relevance is considered “likely” if respective BUN

associations showed opposite effect directions when compared to

eGFR and nominal significance in one-sided testing. Relevance is

“unlikely” if significance is achieved with the same effect direction as

eGFR. All other cases are classified as “inconclusive”. Index variants

were also tested for associations with the binary trait CKD to assess

clinical relevance, and UACR and MA to assess relevance for kidney

damage. We performed one-sided testing (p < 0.05) according to the

expected directions of effects, i.e., we expected opposite effect

direction for eGFR hits and the same effect direction for UA hits. We

also compared the associations of eGFR and UA.

Identification of independent variants per locus
We identified independent SNPs per locus by performing conditional

analyses. A LDmap was estimated on the basis of the UKBB study—the

largest contributing study, as recommended54. For that purpose,

samples were filtered for white British ancestry, complete sex and

relatedness information and carrying sex chromosome configurations

that are either XX or XY in agreement with the reported sex. Summary

statistics of our cross-ancestry meta-analyses were used to identify

independent variants since the effect of other than European ances-

tries on meta-analysis results was small throughout (Supplementary

Fig. 9). For each locus, the GCTA function COJO SLCT55 was applied to

identify independent variants in a step-wise forward selection process.

Association statistics conditional to previously selected variants were

calculated using the GCTA function COJO COND. The default colli-

nearity cut-off of 0.9 was used for all analyses. Conditional p-values

below the genome-wide cut-off of 5 × 10−8 were considered indepen-

dently significant. Conditional analysis was performed per trait, locus

and subgroups with genome-wide significant variants within the

respective locus.

Credible set analysis
To determine likely causal variants, we calculated credible sets for

all independent hits56,57. Search was restricted to the respective locus

of an independent variant. Conditional statistics were considered

in case of multiple independent variants per locus. We used the

R package “gtx” to calculate Approximate Bayes Factors for the var-

iants in the locus using respective (conditional) effect estimates and

standard errors. Priors for the standard deviation were estimated

empirically based on the difference of the 97.5% and the 2.5% per-

centile of thedistributionof effect sizeswithin the locus. Results varied

in between 0.00069 and 0.00826. PP were calculated using the

derived Bayes factors and were ordered to define the cut-off for 99%

credibility.

Bioinformatic annotation of variants
Variants were annotated with a number of bioinformatics resources58.

In brief, variants were annotated by Ensembl 201859 based gene look-

up in a region of ±250 kb around the variant, deleteriousness scores

(CADD score60 and Regulome score61), linkage disequilibrium (LD,

r2 > 0.3) with other GWAS variants according to the GWAS catalog62

downloaded at July 19th 2022 and LD with eQTLs of the GTEx V8

catalogue (dbGaP Accession phs000424.v8.p2)63, downloaded at June

9th 2020. LD was calculated on the basis of 1000 Genomes Phase 3,

version 5 reference panel for European populations. A variant was

considered unreported, if not in LD (r2 >0.3) with a variant previously

reported for the respective trait.

Colocalization analysis of gene-expression quantitative trait loci
We tested for overlapping causal variants between kidney trait asso-

ciations and gene-expression quantitative trait loci (eQTLs). For this

purpose, we used eQTL data from the current release of GTEx V8 and

of the NephQTL database (glomerular and tubulointerstitial tissues of

the kidney, NEPTUNE)64,65. Genome-builds of GTEx (hg38) and our

GWAS (hg19)wereharmonized by liftingGTEx eQTLs to hg19 using the

SNP lookup table provided by GTEx (see above). For primary inter-

pretation, we considered the following tissues: kidney cortex (primary

tissue of interest), adrenal gland (due to involvement in aldosterone

signaling, importance for water and salt homeostasis and production

site of sex hormones), whole blood (best power due to highest number

of known eQTLs) and muscle skeletal (as alternative source of serum

creatinine anddifferentmetabolism inmales/females) fromGTEx, and,

kidney glomerular and kidney tubulointerstitial from NephQTL. For

each independent genome-wide significant SNP per analysis group, we

considered annotated nearest genes (±250 kb window) and genes

regulated in cis (cis-eQTLs with r2 ≥0.3 with the index variant). Anno-

tation of gene symbols with Ensembl-ID for GTEx and Entrez-ID for

NEPTUNE was done with an annotation table for chromosome X from

HGNC66 (downloaded November 25th 2022). For colocalization ana-

lysis, we used the intersection of available eQTLs with those analyzed

in our X-chromosome-wide meta-analysis. PP ≥ 75% for H4 (shared

signal) were considered as sufficient evidence for colocalization of the

signals of the kidney trait and the respective gene expression. In
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contrast, PP ≥ 75% for H3 (independent signals) was considered as

sufficient evidence for independent signals.

Analysis of overlap of eGFR and UA signals
To identify loci for which eGFR and UA can be traced back to the same

variant, we determined positional overlap between eGFR and UA loci.

We then calculated the LD (r2) between the respective top-associated

variants using the UKBB LD-map (see Identification of independent

variants per locus). To be conservative with claiming independent loci,

a value of r2 ≥0.1 was considered as overlap. Moreover, we performed

formal colocalization analysis between eGFR and UA signals for the

merged SNP lists of both loci. Colocalization analysis was performed

for the stratum displaying the lowest index p-value (male, female,

overall). Again, to be conservative a PP(H4) ≥ 50% was counted as

overlap for this analysis.

Colocalization analysis with testosterone
We performed colocalization analysis of our loci with testosterone to

check whether signals could be primarily driven by testosterone. We

used the summary statistics of ref. 67 for that purpose. PP(H4)≥ 75%

was considered as sufficient evidence for colocalization.

Validation analysis in HUNT study
Weused the HUNT study to validate our findings in the overall analysis

of eGFR. A locus was considered validated, if the top-variant of the

meta-analysis was nominally significant in HUNT with the same effect

direction (one-sided tests).

Cross-ancestry meta-regression analysis of chromosome X
variants
To account for mixed ethnicities of our contributing studies, we

applied meta-regression analysis as implemented in the MR-MEGA

package (v0.1.2)68. Ethnicitywas accounted for by three axes of genetic

variation calculated on the basis of the autosomal data. The chromo-

some X-wide findings of our meta-analysis were checked for ethnic

heterogeneity of the effects by considering the p-value of the respec-

tive estimates (panc-het) and by visually inspecting Forest-Plots

regarding reported study ethnicity.

Frequency of androgen response elements and respective gene
regulations
Candidate gene assignments of variants showing genetic sex-

interactions were partly based on the presence of AREs according to

Wilson et al.18. To assess how frequent this annotation occurs by

chance, we randomly selected and annotated 1000 variants from our

analysis. It revealed that AREs of tier three or better occurred in 49% of

our SNP annotations while proven ARE induced regulation of gene-

expressionwas found for only 4.3% of themarkers. Formal enrichment

analysis of actually found genes with (regulating) AREs was performed

using the exact binomial test.

Assignment of candidate genes
We used our secondary analyses and annotation of our independent

variants to prioritize genes at our loci. Gene-prioritization is based on

the following (ordered) criteria.

(1) Missensemutationswith highCADD score (>10) in the credible set

of the variant with PP > 1%.

(2) Co-localization of locus with an eQTL at a kidney tissue.

(3) Co-localization of locus with an eQTL of a gene with known

relevance to kidney function (see below) in any tissue.

(4) For variants showing sex-interactions only: nearby genes of

known kidney function with androgen response elements (AREs)

based on Wilson et al.18 with minimum tier three elements.

(5) Genes with known kidney function nearby high CADD score var-

iants (>10) in the credible set of a variant.

(6) Genes with known kidney function nearby the variant.

(7) Co-localization of locus with an eQTL of any gene in any tissue.

(8) Genes nearby high CADD score variants (>10) in the credible sets

of the variant.

(9) Genes nearby the variant.

At this, possible functional relationship of a gene with kidney

phenotypes or diseases was assessed by searching Coremine Medical,

Online Mendelian Inheritance in Man (OMIM) and Pubmed.

X-chromosomal heritability
WeusedGCTA to estimateX-chromosomalheritability of eGFR andUA

for the analysis groups overall, male and female. A random subset of

200,000 UKBB samples were analyzed for that purpose.

Look-up of reported variants
We retrieved X-chromosomal SNP associations from the studies of

refs. 13–15 and tested them for associations with kidney traits of our

study. Trait associations reported in these studies were restricted to

kidney traits analyzed in our study, creatinine levels and glomerular

filtration rate. Nominal one-sided significance with the same effect

direction was considered as successful replication.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics for this study are publicly available at http://

ckdgen.imbi.uni-freiburg.de/datasets/Scholz_2023. Further data are

provided in the Supplementary Data file. Data sets used in this study

are NephQTL (https://nephqtl.org/), GTEx V8 data (https://gtexportal.

org/home/protectedDataAccess), the HUNT Study (https://www.ntnu.

edu/hunt) and the UK Biobank (https://www.ukbiobank.ac.uk/).

Code availability
All analysis scripts are provided at GitHub https://github.com/

GenStatLeipzig/CKDGen_ChrX.
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