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1 INTRODUCTION

Ultra-high field (UHF) MRI offers higher SNR1,2 with

potential for better spatiotemporal resolutions and has

found extensive use in a numerous applications including

functional neuroimaging.3,4 However, the usage of higher

static magnetic fields (B0) leads to a RF magnetic (B+
1 )

field with a lower wavelength, which then becomes com-

parable to the size of the imaging targets.5 This results in

greater non-uniformity of the flip angle distributions at

UHF.6 Image artifacts are caused by this non-uniformity

and must be eliminated for better image evaluation. B+
1

fields are subject-dependent and therefore subject-specific

correction is required.7,8

Parallel transmission (pTx) has been instrumental for

handling B+
1 inhomogeneities at UHF.9–13 Prior to scan-

ning, many pTx methods solve an optimization problem

to generate the associated RF pulse for a target magne-

tization magnitude, which builds on a magnitude least

squares (MLS) objective function.3,9,14,15 However, since

this calculation is time-consuming and needs to be done

when the patient already lies in the scanner, there is inter-

est in speeding up this process.16 One such approach is

the use of subject-independent methods, such as the uni-

versal pulses.17 In this setup, the optimization problem

is solved for a target magnetization over an existing

database ofB+
1 maps fromdistinct subjects. Thus, this strat-

egy aims to produce sufficient B+
1 homogeneity for the

training set of subjects, but its performance may be sub-

optimal compared to subject-specific methods.18 Hybrid

methods have been proposed to improve this strategy

by taking subject-specific information into account while

using universal pulses as a starting point for optimiza-

tion.19,20 More recently, machine learning methods have

been proposed as an alternative to these optimization

techniques.21–23 A specific absorption rate (SAR)-efficient

method uses kernelized ridge regression to learn B+
1 shim-

ming weights.21 In another work, a fully-connected neu-

ral network is proposed to find B+
1 shimming weights.22

However, fully-connected neural networks require more

tunable parameters than convolutional neural networks

(CNNs) of similar depth and also cannot handle different

input sizes. Therefore, CNNs are used in a subject-specific

pulse design that predicts 2D spatially selective RF (2DRF)

pulses for a single channel B+
1 map.23 Other deep learn-

ing (DL) methods for indirectly enhancing pTx RF pulse

design include generative adversarial networks to predict

B+
1 distributions in the head following displacement.24

Multi-channel B+
1 maps have been utilized for a classifica-

tion type approach with CNNs25 for better RF pulse ini-

tialization. Additionally, reinforcement learning has been

applied to RF pulse design.26 However, to the best of

our knowledge, there are no works that use CNNs to

directly output RF pulses with multi-channel B+
1 maps as

inputs. Furthermore, the aforementioned methods have

been trained using supervised learning, where a reference

pTx RF waveform was calculated using computationally

costly optimization algorithms across the whole training

database.

In this work, we propose a strategy for unsupervised

DL for pTx using CNNs with multi-channel B+
1 maps as

input. We evaluate its feasibility in static pTx design at 7T.

The proposedmethod outperforms the traditional unregu-

larized MLS method quantitatively in terms of RMS error

(RMSE), and coefficient of variation (CoV). Our method

has comparable excitation energy demand. Furthermore,

the proposed method improves upon unregularized MLS

in reducing nulls in the flip angle maps.

2 METHODS

2.1 Imaging data and pre-processing

B+
1 maps were obtained at University Hospital (Uni-

versitätsklinikum) in Erlangen, Germany, with approval

from the local Ethical Review Board. In vivo brain imag-

ing was performed on 143 healthy subjects utilizing a

7T MAGNETOM Terra whole-body MR system (Siemens

Healthcare, Erlangen, Germany) with an 8Tx/32Rx head

coil (Nova Medical, Wilmington, MA), which led to

3824 2D sagittal slices that were used for the training

database.

Several standard pre-processing steps were applied to

B+
1 maps to preserve lower and peripheral regions (includ-

ing the upper cervical spine, skull, nose, and jaw) and

excluding erroneous measurements which correspond to

low SNR, such as in the presence of air, or by phase dif-

ferences or motion between the prepared and unprepared

gradient echo sequences acquired during B+
1 mapping.20

First, a binary mask was generated for each sagittal slice

by interpolating itWind to a target FOV with a normalized

threshold of 0.5. Then, a universal binary mask,Wuni, was

obtained to eliminate possible outlier effect from B+
1 maps

by thresholding the sum of the individual masks with a

normalized threshold of 0.4. Wind and Wuni are binary

matrices representing all voxels.20 Concurrently, the B+
1

maps were spatially interpolated such that all subjects

have the same FOV= 156× 176mm2 and in-plane resolu-

tion= 4× 4mm2. Finally, B+
1 maps were normalized by the

98.5th percentile among all B+
1 maps from all subjects to

avoid possible outlier effects.20
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2.2 Proposed processing
for multi-channel B+

1
maps

and unsupervised training

We propose to concatenate multichannel B+
1 maps,

B+
1 (x, y, c), along a spatial (y) dimension to yield 2D data,

B+
1c(x, y), transforming the problem for shift-equivariant

processing, amenable to CNNs. Once this input is gener-

ated, the real and imaginary parts of the complex maps

are given as different channels leading to two input chan-

nels. The network itself is a feed-forward CNN, depicted

in Figure 1. Convolutions and max-pool operations use

5× 5 and 2× 2 kernels, respectively. ReLU is utilized for

activation. The real and imaginary parts of the complex

shimming weights for each coil are obtained at the output

of this network.

The network is trained in an unsupervised manner

with RMSE loss:

J =
1

m

m∑

i=1

√√√√‖‖‖|A
(i)b(i)| − a(i)

‖‖‖
2

W(i)

N(i)
(1)

where i denotes the training sample, m is the number of

datasets in the database, A(i) is the system matrix gen-

erated via the B+
1 maps for each transmit coil at each

spatial location vectorized as column vectors, a(i) is the tar-

get flip angle map, the diagonal matrix W(i) obtained by

elements-wise multiplication ofW(i)

ind
andWuni, N(i) is the

number of elements in W(i), and b(i) is the B+
1 complex

shimming weights for each coil, that is the output of the

neural network. Theweighted norm
‖‖‖|A

(i)b(i)| − a(i)
‖‖‖
2

W(i)
is

defined as
(|||A

(i)b(i)
||| − a(i)

)T
W(i)

(|||A
(i)b(i)

||| − a(i)
)
.

The databasewas randomly split into 80% training, 10%

validation, and 10% testing. The CNN was trained using

stochastic gradient descent (SGD) with a learning rate of

10−3 with batch size of 1 over 100 epochs. All training

and testing were performed using PyTorch and processed

on a workstation with the following specifications: Intel

E5-2640V3 CPU (2.6GHz and 256GB memory) and an

NVIDIA Tesla V100 GPU with 32GB memory. Implemen-

tation of the proposed method will be provided online

(https://imagine.umn.edu/research/software).

2.3 B+

1
shimming experiments

Target flip angle maps, a(i), were obtained by multiplying

the W(i) with desired flip angle �. Hard constraints were

not considered. Soft constraints or regularization terms

were also not included to avoid confounding factors due to

F IGURE 1 Flowchart of the proposed method. B+
1 maps of different coils are concatenated in the y dimension for shift-equivariant

processing. Real and imaginary parts are concatenated in the channel dimension, as usual. The neural network layers and corresponding

layer output sizes are depicted.
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tuning of weight hyperparameters. Thus, only the unregu-

larizedMLSobjective functionwas used. For this study, the

target flip angle was arbitrarily chosen as � = 5.7◦, lending

itself to the small flip angle regime.

For comparison, the unregularized MLS optimization

problem,9 formulated as minb(i)
‖‖‖|A

(i)b(i)| − a(i)
‖‖‖
2

W(i)
, was

solved separately for each slice i from the database to find

the complex shimming weights for 100 distinct initializa-

tions with magnitudes ranging from 5.7/
√
8 to 5.7*

√
8,

and with phases spanning −π to π, along with the default

CP initialization in the vendor-supplied software imple-

mented in MATLAB. Additionally, to provide a fair assess-

ment of inference times, a PyTorch version ofMLSwas also

implemented based on the MATLAB code.

The methods were quantitatively evaluated for each

slice using

RMSE =

√√√√ ‖‖‖
|||A

(i)b(i)
||| − a(i)

‖‖‖
2

W(i)

N(i)
(2)

Coefficient of variation (CoV) =
std

(|||A
(i)b(i)

|||
)

mean
(|||A

(i)b(i)
|||
) (3)

and energy demand

Etotal =
bHb

a2
. (4)

Statistical differences in RMSE, CoV, and Etotal were

assessed for normality using a one-sample Kolmogorov–

Smirnov test with a significance level of 5%. Subse-

quently, a paired t-test was used for Gaussian distribu-

tions, while aWilcoxon signed-rank test was employed for

non-Gaussian distributions, both with a significance level

of p< 0.05.

Additionally, an analysis of the null problem in flip

anglemaps21,27was alsomade. In order to detect nulls, that

is areas of severely low flip angle, the following steps were

applied: (1) A binary mask was generated by thresholding

the normalized flip angle maps above level td, which was

empirically set to 0.6 (Figure S1). (2) Difference images

were calculated between this mask and the normalized

target magnetization, which is 1 in all the pixels of inter-

est and 0 otherwise. (3) Image opening, which performs

image erosion followed by dilation, was applied to remove

spurious pixels in the difference image. (4) The number

of nonzero pixels in this image was used as a surrogate

for the number of pixels corresponding to nulls, with 0

corresponding to no nulls in the flip angle maps.

Finally, to test the robustness and performance of

the proposed training strategy to the size of the training

database, a stress test was conducted. To this end, the

model’s performance was evaluated using varying num-

bers of training samples on an approximately logarithmic

scale {1, 2, 6, 15, 35, 86, 211, 514, 1254, 3059}. These train-

ing samples corresponded to {1, 1, 1, 1, 2, 3, 9, 21, 48, 115}

subjects, respectively.

3 RESULTS

Figure 2 depicts best, median, and worst-case flip angle

maps, assessed through the RMSE metric, for both the

MLS and the proposed method. Figure 2A shows the best,

median and worst cases for MLS, along with the corre-

sponding DL images. These have RMSE values of 0.49◦,

0.94◦, and 1.52◦ for MLS, and 0.53◦, 0.61◦, and 0.46◦ for

DL, respectively. The corresponding CoV values are 0.08,

0.17, and 0.27 for MLS and 0.09, 0.11, and 0.08 for DL.

Similarly, Figure 2B shows the best, median and worst

cases for DL, along with the corresponding MLS images.

The corresponding RMSE values are 0.88◦, 1.26◦, and

0.63◦ for MLS, and 0.33◦, 0.71◦, and 1.11◦ for DL, respec-

tively, while the CoV values are 0.12, 0.16, and 0.11 for

MLS and 0.06, 0.13, and 0.20 for DL. We also note that

the inference times for MLS and proposed DL method,

both implemented in PyTorch, among test samples were

129.47± 93.25 and 0.75± 0.04ms for single initialization,

F IGURE 2 Example of best, median, and worst-case flip

angle maps (based on the RMSE metric) for the MLS (A) and

proposed method (B). The corresponding results for each image are

also provided below for comparison.
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F IGURE 3 CoV, RMSE, and energy demand results for MLS and the proposed method are shown in the violin plots. According to these

plots, the proposed method performs better than the MLS method in terms of RMSE and CoV, highlighting improved field homogeneity,

while having similar energy consumption. * indicates that results are significant with p< 0.05.

respectively. The training process itself, over the dataset

of 3059 samples, required approximately 11min for 100

epochs for the proposed method.

Figure 3 shows violin plots for the RMSE, CoV, and

energy demand metrics. The average RMSE, CoV, and

energy demand across test subjects for the proposed

method and the best cases for all initializations from

MLS for � = 5.7◦ are 0.94◦ ± 0.24◦ (mean± std), 0.14± 0.03,

and 17.22± 9.89 for MLS, and 0.71◦ ± 0.20◦, 0.13± 0.04

and 17.82± 5.84 for the proposed method, respectively.

The differences in RMSE, CoV, and energy demand

are statistically significant (p< 0.05). We note that the

energy demand was not Gaussian-distributed, hence the

Wilcoxon signed-rank test was used. Further evaluation

of the correlations among these quantitative measures,

including COV, RMSE, and energy demand, for both MLS

and proposed method are provided in Figure S2 using a

correlation matrix plot.

Figure 4 depicts representative images that highlight

an instance of the nulls appearing in flip anglemaps gener-

ated using the MLS technique. The proposed method with

unsupervised training is able to mitigate this issue. Quan-

titative assessment reveals that a null is observed with a

13.84% and 4.70% frequency for MLS and the proposed

method, respectively, among testing datasets.

Figure 5 illustrates results of the stress test conducted

on the proposed method by varying the number of train-

ing samples on an approximately logarithmic scale. While

the network underperforms with a very limited number

of samples as expected, its performance starts to improve

with as few as 86 samples, corresponding to three sub-

jects. With only 514 training samples, corresponding to 21

subjects, it matches the performance of the full database

consisting of 3059 samples from 115 subjects. These find-

ings highlight the efficiency of the proposed DL training

in this scenario, as it achieves noteworthy results with a

substantially reduced number of training samples, mak-

ing it a promising solution even in resource-constrained

scenarios.

4 DISCUSSION

In this study, we proposed an unsupervised DL method

with CNNs for multi-channel pTx design. We demon-

strated its feasibility through static B+
1 shimming at 7T,

employing a slice-by-slice shimming technique,28,29 which

offered an additional degree of freedom compared to

regional approaches.30 Our method enhanced the unifor-

mity of flip angle profiles quantitatively, displaying favor-

able results compared to the unregularizedMLS technique

in terms of RMSE and CoV metrics while maintaining a

comparable energy consumption level.

DL methods have received attention for speeding up

pTx design while maintaining subject-specific process-

ing. However, to the best of our knowledge, previous

methods for directly estimating RF pulses did not han-

dle multi-channel B+
1 maps when using CNNs. A previ-

ous work that used neural networks with multi-channel

maps relied on fully-connected neural networks,22 which
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F IGURE 4 Representative flip angle (FA) for MLS and proposed methods showing the null problem in the MLS method. The difference

images are produced by subtracting the target magnetization, as described in (2), from the solution obtained using a threshold. This figure

shows that the proposed method successfully finds complex shimming parameters so that there are no significantly large nulls in the

resulting image. The green circles on the obtained MLS solution point the null which does not exist in the proposed method. The proposed

method is close to the desired magnetization with CoV= 0.11, RMSE= 0.60◦ compared to the MLS solution with CoV= 0.26, RMSE= 1.47◦.

F IGURE 5 A stress test to evaluate the performance of the neural network trained on different numbers of samples on an

approximately logarithmic scale. Interestingly, the network starts performing reasonably with as few as 86 samples and achieves comparable

performance to the full database with only 514 samples.

require more parameters and cannot work across differ-

ent input sizes, as opposed to CNNs. On the other hand,

previous DL approaches that used CNNs for RF pulse esti-

mation have used single coilB+
1 maps,

23 and concatenation

along the channel dimensionwith B0maps. Here, building

on our insights frommulti-slice image reconstruction,31,32

we concatenated multichannel B+
1 maps along a spatial

dimension, which enabled shift-equivariant processing

suitable for CNNs. We also note that multi-coil B+
1 input

has been used for a classification-type task previously.25

Supervised training has been popular for applications

of DL to pTx.21–24 However, this necessitates additional
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computational resources and time to find reference RF

waveforms. In this study, this extra computation is elim-

inated via unsupervised learning, speeding up training.

Furthermore, supervised training implicitly ties the perfor-

mance of the trained network to the conventional method

used to generate the reference RF waveform. In partic-

ular, generating a reference label in this study involves

solving a nonconvex optimization problem based on B+
1

maps, specifically the MLS method. Consequently, super-

vised training would learn to predict the MLS solution,

albeit using a CNN for improved efficiency. Thus, the

performance of supervised learning would be inherently

limited by theMLS solutions. On the other hand, unsuper-

vised learning bypasses this issue by directly minimizing

the difference to target magnetization through a loss func-

tion. By avoiding reliance on MLS solutions as reference,

unsupervised learning holds potential for superior perfor-

mance in B+
1 shimming. This is similar to the use of DL

in image reconstruction when acquisition of ground-truth

data is infeasible, in which unsupervised methods out-

perform other conventional methods such as compressed

sensing or parallel imaging.32–34 This strength of unsuper-

vised learning is best exemplified in its ability to tackle

the null problem associated with MLS.27 Better results

are obtained using the proposed unsupervised learning,

whose performance is not limited by the conventional

approach that is used to generate a referenceRFwaveform,

since the latter itself suffers from this issue. Conversely, it

is worth noting that, while unsupervised learning incorpo-

rates physics information in the loss function, it does not

solve an explicit objective function as the MLS algorithm,

making it potentiallymore challenging to interpret, partic-

ularly for failure modes.

One of the drawbacks of the proposed method is the

need for a large training database. In vivo acquisition

of such data containing more than a thousand slices is

time-consuming and resource-intensive. While the results

of the stress test on the number of training samples sug-

gest fewer datasets may be sufficient, this may still put

constraints on implementing similar DL techniques for

new acquisition schemes. We note that synthetic B+
1 maps

have also been proposed in the literature, which would

eliminate the curation of B+
1 map databases.

23,35 We also

note newer efforts for circumventing the acquisition of B+
1

maps in the pTx pipeline by estimating it from B−
1 maps.

36

The synergistic combination of our approach with such

techniques warrants further investigation.

During initial experiments, several different network

architectures of varying depths, including residual net-

works and U-nets, were studied. However, their per-

formance did not substantially differ from the simple

feed-forward CNN employed in this study. As a result, the

current CNN architecture was chosen due to its expedited

training speed and inherent simplicity. The 100-to-200

epochs were determined to be sufficient for training

(Figure S3). Opting for the lower number reduced the

training time and resources.

Our current implementation does not have explicit

constraints on power, voltage, or SAR. Among these, volt-

age constraint is the simplest to enforce through the addi-

tion of an appropriate nonlinear activation at the network

output, such as sigmoid or ReLU6, as in.37However, power

or SAR constraints are substantially more difficult. To the

best of our knowledge, inclusion of hard quadratic con-

straints with DL methods is an open question, although

progress has been made in the broader artificial intelli-

gence community.38–43 One step in this direction would be

to use a soft constraint on power or SAR by incorporat-

ing an additional term into the loss function. However, the

performance and robustness will substantially depend on

tuning the weight for this soft constraint term. Nonethe-

less, hard constraints on SAR or power remain an open

question that is critical for pTx problems.

The results in the article used a target � = 5.7◦, which

is in the small flip-angle regime, where the forward

operator is described by a linear system matrix A. To

make the model applicable to higher flip angles, a Bloch

simulation-based system function needs to be imple-

mented in the loss function. There are existing publicly

available implementations in PyTorch44 and in MAT-

LAB,45 which will be investigated in future studies. We

also note that the incorporation of Bloch simulation-based

methods in training would increase the total computa-

tional time. Thus, further studies are needed for the large

flip angle regime.

While our study concentrated on single slice acquisi-

tions, there is also a demand for shimming in non-selective

volumetric or multi-slice scenarios.46 To this end, we

adopted our method to both of these setups by replac-

ing the 2D CNNs with their 3D counterparts. In the first

case of volumetric 3D B+
1 shimming (Figure S4), MLS

shows better RMSE and CoV compared to DL, although

the difference is non-significant (p= 0.63 for RMSE and

0.06 for CoV,Wilcoxon signed-rank test). Furthermore, DL

has significantly improved energy demand compared to

MLS (p< 0.05, Wilcoxon signed-rank test). In the second

case of multi-slice imaging with two slices, where 1313

training samples are available, proposed DL significantly

improves on MLS in all metrics (Figure S5). Address-

ing the challenges associated with insufficient training

database size47 and fine-tuning the CNN model parame-

ters may lead to further improvements for 3D B+
1 shim-

ming scenarios, although this was beyond the scope of

our study.

Throughout this study, testing was retrospectively per-

formed on in vivo data that were acquired previously.
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This allowed us to test the methods thoroughly on a large

database and isolate cases with adverse failures, such as

the null issue in the MLS method, instead of a small num-

ber of examples acquired post-training. Thus, an inherent

limitation of our study is the lack of new acquisitions

to compare the shimming performance of DL and MLS

prospectively.

The pTx design pipeline presents time-consuming

challenges beyond just RF pulse design, notably in B+
1

mapping, potentially B0mapping, ROI selection, masking,

and sequence preparation. Our proposed approach tackles

only theRFpulse design part, offering enhanced speed and

generalizability, and may potentially find applications for

real-time pTx design.48

We note that static B+
1 shimming was used to estab-

lish proof-of-concept. In this setting, optimization-based

methods are still relatively fast and accurate. Thus, the

benefits of DL approaches may not be as pronounced.

Nonetheless, further investigations for more complicated

pTx pulse designs are warranted to fully harness the poten-

tial of our approach. Future studies will aim to extend

the work to more complicated pTx pulse designs and

incorporate additional constraints, such as SAR or peak

power.

5 CONCLUSIONS

The proposed unsupervised DL strategy for CNNs with

image domain concatenated inputs enables fast pTx pulse

design, outperforming the unregularized MLS method

in terms of homogeneity for static B+
1 shimming in the

2D small flip angle regime without constraints in this

proof-of-principle study.
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Figure S1. The percent null generation results for thresh-

old values on the flip angle maps are shown for both

magnitude least-squares (MLS) and the proposed method.

A threshold for both methods was chosen to be 0.6, indi-

cated by the green dashed line in the figure. The dashed

black line indicates that the MLS method produces nulls

in the image even though the threshold is set to the desired
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flip angle. This is because some flip angle maps generated

by the MLS method overestimate the desired flip angle.

Figure S2. Correlation matrix plot for the quantita-

tive measures, revealing the correlations between various

variable pairs. Non-relevant correlations are not shown,

and the upper triangular section represents the signifi-

cance level of these correlations (r: Pearson correlation

coefficient).

Figure S3. The figure illustrates the training and test

loss, indicating that the model does not exhibit signs of

overfitting.

Figure S4. Performance of our approach for 3D B+
1 shim-

ming. In this setting, the MLS method performs bet-

ter than our approach in terms of CoV and RMSE,

but our method has significantly better energy demand.

Note that in this case, the training database size com-

prises 98 subjects, which is lower than the size indi-

cated in our stress test (Figure 5). Thus, if 3D shimming

is the target application, further performance gains may

be achieved for the DL approach using a larger train-

ing database, which warrants further investigation. * and

NS indicates that results are significant with p< 0.05

and not significant, respectively (The distributions were

assessed for normality. All distributions were found to

be non-Gaussian and the Wilcoxon signed-rank test was

employed for all of them).

Figure S5. Performance of our approach for multi-slice

B+
1 shimming for two slices using a 3D CNN. In this set-

ting, the proposed method outperforms MLS in terms of

RMSE, CoV, and energy. * indicates that results are sig-

nificant with p< 0.05 (The distributions were assessed

for normality. CoV and energy distributions were found

to be non-Gaussian and the Wilcoxon signed-rank test

was employed for these distributions. RMSE distribu-

tions were found to be Gaussian and paired t-test was

employed).
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