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Detection of senescence using machine
learning algorithms based on nuclear
features
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Hiromi Kudo5, Domhnall McHugh1,2, Laura Bousset 1,2,

Jose Efren Barragan Avila 3, Roberta Forlano 6, Pinelopi Manousou6,

Mathias Heikenwalder3,4,7, Dominic J. Withers 1,2, Santiago Vernia 1,2,
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Cellular senescence is a stress response with broad pathophysiological impli-

cations. Senotherapies can induce senescence to treat cancer or eliminate

senescent cells to ameliorate ageing and age-related pathologies. However,

the success of senotherapies is limited by the lack of reliable ways to identify

senescence. Here, we use nuclear morphology features of senescent cells to

devisemachine-learning classifiers that accurately predict senescence induced

by diverse stressors in different cell types and tissues. As a proof-of-principle,

we use these senescence classifiers to characterise senolytics and to screen for

drugs that selectively induce senescence in cancer cells but not normal cells.

Moreover, a tissue senescence score served to assess the efficacy of senolytic

drugs and identified senescence in mouse models of liver cancer initiation,

ageing, and fibrosis, and in patients with fatty liver disease. Thus, senescence

classifiers can help to detect pathophysiological senescence and to discover

and validate potential senotherapies.

Senescence is a cellular response that limits the replication of old,

damaged, and cancerous cells. Senescent cells undergo a stable cell

cycle arrest, produce a bioactive secretome (the senescence-

associated secretory phenotype or SASP), and undergo many char-

acteristic phenotypic changes1. Amongst those changes, senescent

cells reprogram their metabolism, acquire a flat and enlarged mor-

phology, display an increase in lysosomal mass2, rearrange their

chromatin3–5, and undergo nuclear changes6–9.

Senescent cells accumulate during aging, are present in cancerous

and fibrotic lesions, and are often associated with disease10. Research

in the last decade has shown that beyond these associations, lingering

senescent cells contribute to aging and disease progression11. Conse-

quently, there is growing interest in identifying drugs that selectively

kill senescent cells, referred to as senolytics12. Clinical trials using

senolytic drugs are still in their infancy13,14 yet hold enormous poten-

tial, given the broad range of senescence-associated pathologies10.

A key requirement for the success of senolytic clinical trials, and

indeed to better understand senescence biology, is the reliable iden-

tification of senescent cells. Multiple markers to identify senescent

cells exist, such as senescence-associated β-galactosidase (SA-β-Gal)
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activity15, that reflects the increased lysosomalmass of senescent cells2.

However, non-senescent cells such as macrophages often stain posi-

tive for SA-β-Gal, and SA-β-Gal can only be detected in vivo using

cryosections, which complicates its use as a biomarker. Anotherwidely

used senescent marker is the cyclin-dependent kinase inhibitor

p16INK4a, which is induced as part of the senescence program to arrest

cells16. However, p16INK4a is oftendeleted in cancer cells and it is difficult

to detect p16Ink4a in mouse tissue sections with current antibodies.

Therefore, due to a combinationof technical issues and the complexity

and heterogeneity of senescence, there is no such thing as universal

senescencemarkers, and there is a need to rely onmultiple markers in

combination1,17.

Recently, imaging-based approaches have been developed to

identify senescence18–20. While these reports prove that image-based

classifiers can identify senescent cells, to what extent such classifiers

can be used easily by other labs, identify a variety of senescent cell

types, or be applied to other contexts and questions, is unclear.

Here, we take advantage of nuclear features to devise machine-

learning algorithms that identify senescence. We devise a family of

algorithms that detect a wide range of senescent cells, from cancer

cells to primary fibroblasts, with high accuracy. These algorithms

require less computational power than image-based deep neural net-

works and can be adapted for use with data obtained from open-

source image analysis software, which facilitates their use by others.

Finally, we took advantage of our nuclear feature-based senescence

classifiers to identify drugs that selectively induce senescence in can-

cer cells and to monitor senescence in different mouse models and

patient samples. In summary, these senescence classifiers can help to

elucidate the pathophysiological roles of senescence and assist in the

discovery and validation of senotherapies as well as to better stratify

patients.

Results
Nuclear features can be used to devise classifiers that predict
senescence in human cells
To identify nuclear features that can be used to detect senescent cells,

we induced senescence in A549 human lung adenocarcinoma cells by

treating them with the chemotherapeutic agent etoposide, a topoi-

somerase II inhibitor (Fig. 1a). In contrast with DMSO-treated cells, a

high percentage of etoposide-treated cells stained positive for

senescence-associated-β-galactosidase (SA-β-Gal) (Fig. 1b). Moreover,

most etoposide-treated cells were negative for BrdU staining, indi-

cating cell cycle arrest, had upregulated DNA damage (as assessed by

γH2AX staining), and increased levels of p53 and its target the cyclin-

dependent kinase inhibitor p21CIP1, consistent with senescence (Sup-

plementary Fig. 1a–d). To further examine senescence induction, we

took advantage of quantitative immunofluorescence (IF) and searched

for cells expressing a combination of thosemarkers (such as cells that

were BrdU negative and p21CIP1 positive, Fig. 1c and Supplementary

Fig. 1e; double p53 /p21CIP1 positive, Fig. 1d and Supplementary Fig. 1f;

and double p53 /γH2AX positive, Supplementary Fig. 1g). The above

analysis shows that most of the etoposide-treated A549 cells were

senescent.

Senescent cells are known to change chromatin architecture and

nuclear morphology4,8,9. To assess the nuclear morphology of

senescent and control A549 cells, we stained the nuclei with 4′,6-

diamidino-2-phenylindole (DAPI) and used a high-throughput auto-

mated microscopy system (IN Cell Analyzer 2500HS). Although

nuclear morphology and size were heterogeneous, a high proportion

of senescent A549 cells had bigger nuclei that were morphologically

distinct from those of control cells (Fig. 1e). We used image analysis

software (IN Carta) to examine individual nuclear features, including

nuclear area, gyration radius, compactness, chord ratio, displace-

ment, elongation, and form factor. All of these nuclear features,

except form factor, were significantly different between senescent

(etoposide-treated) and control (DMSO-treated) A549 cells (Fig. 1f

and Supplementary Fig. 2a).

As none of these nuclear features alone could distinguish senes-

cent cells from non-senescent cells, we used these features to devise

machine-learning classifiers that could predict senescence. To this

end, we developed datasets to train random forest and classification

tree-basedmachine-learning algorithms (Supplementary Fig. 2b, c and

Supplementary Table 1). Initially, we generated two senescence clas-

sificationmodels (Supplementary Table 2), termed AEM (classification

tree-based) and AERFM (random forest-based). Given that themajority

of the etoposide-treated cells were senescent (Supplementary Table 3)

and conversely the majority of the DMSO-treated cells were not

senescence, to simplify the training of these algorithms, we assumed

that all the etoposide-treated cells were senescent and all the DMSO-

treated cells were non-senescent (Fig. 1g). Analysis of the training sets

showed thatboth classifiers identified senescence inetoposide-treated

A549 cells to a similar extent as staining for SA-β-Galactosidase activity

(Fig. 1h), which we validated with test data from new samples (Fig. 1i).

Analysis of precision-recall and receiver operating characteristic (ROC)

curves, which represent sensitivity as a function of fall-out, showed

high specificity in the detection of senescent cells by both the AEMand

AERFM classifiers (Supplementary Fig. 2d, e).

To explore whether this approach could be widely adopted, we

took advantage of CellProfiler21, an open-source image analysis soft-

ware. CellProfiler allowed us to examine 17 nuclear features. Like what

we observed with In Carta, most nuclear features were significantly

different in senescent cells (Supplementary Fig. 3a). AEMCP (classifi-

cation tree-based) and AERFMCP (random forest-based) classifiers

trained using datasets produced with CellProfiler, identified senes-

cence in both training and test datasets of etoposide-treatedA549cells

to a similar extent as SA-β-Galactosidase immunostaining (Supple-

mentary Fig. 3b, c). Quality parameters further validated the classifiers

generatedwith CellProfiler data (Supplementary Fig. 3d, e).Overall, we

infer that machine-learning algorithms based on nuclear features can

identify senescent cells.

Predictors can distinguish senescent cells from those under-
going quiescence or DNA damage
One of the defining characteristics of senescent cells is their stable cell

cycle arrest1,17. Because quiescent cells are also arrested in the cell

cycle, we wanted to determine whether our classifiers can distinguish

senescent cells from quiescent cells. To this end, we compared A549

cells that were growing (10% FBS), quiescent (0.5% FBS), and senescent

(treated with 2μM etoposide, Fig. 2a). BrdU incorporation confirmed

that a significant proportion of A549 cells cultured in 10% FBS were

dividing, whereas most cells cultured in 0.5% FBS or treated with

etoposidewere arrested (Fig. 2b, c). In contrast, only etoposide-treated

A549 cellswere senescent, as shownby SA-β-Gal staining (Fig. 2b, d).As

expected, both the AEM and AERFM classifiers predicted a significant

proportion of senescent cells in the etoposide-treated cultures (Fig. 2e

and Supplementary Fig. 4a). Importantly, A549 cells cultured in 0.5%

FBS were not classified as senescent by our algorithms, even though

most cells were arrested (Supplementary Fig. 4b).Overall, these results

indicate that our senescence classifiers can accurately distinguish

senescent cells not only from growing but also from quiescent cells.

Since cell confluency can affect proliferation rates and be a con-

founding factor when staining for SA-β-Gal activity22, we assessed our

classifier on proliferating or senescent cells seeded at different den-

sities (Fig. 2f). These experiments show that our classifier was able to

accurately identify senescent cells regardless of confluency (Fig. 2g, h

and Supplementary Fig. 4c).

DNA damage occurs in most types of senescence and is a key

driver of senescent phenotypes23. To understand if the nuclear chan-

ges detected by our algorithm reflected alterations caused by a DNA

damage response rather than senescence, we compared how the AEM
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classifier identified cells undergoing DNA damage (DD, induced after

36 h of γ-irradiation) or senescence caused by the aurora A kinase

inhibitor MLN805424 or etoposide (Fig. 2i). While A549 cells under-

going DD or senescence with MLN8054 or etoposide were arrested

and upregulated p21CIP1 expression (Supplementary Fig. 4d, e), a sig-

nificant increase in cells showing 53BP1 foci in their nuclei, indicative of

DNA damage was only observed in irradiated cells or cells in which

senescence was induced with etoposide (Fig. 2j and Supplementary

Fig. 4f). SA-β-Gal staining confirmed that MLN8054- and etoposide-

treated, but not cells irradiated for 36 h were senescent (Fig. 2k).

Finally, the AEM classifier identifiedmost etoposide-treated A549 cells

as senescent. It also identified a proportion (less than 30%) of the

irradiated cells as senescent, suggesting that changes induced by DNA

damage (that are central to most types of senescence) might be
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detected by our classifiers. However, the fact that the AEM classifier

identified MLN8054 cells (Fig. 2l, in which we did not observe sig-

nificant amounts of DNA damage) as senescent, shows that the clas-

sifier is not just detectingDNAdamage-associated changes but rather a

combination of nuclear features associated with senescent cells.

Predictors identify senescent cells with high accuracy and
sensitivity
To better evaluate the predictive value of our classifiers, we examined

mixtures of different ratios of non-senescent (DMSO-treated) and

senescent (etoposide-treated) A549 cells (Fig. 3a, explained in Sup-

plementary Fig. 5). We treated cells with DAPI, which stains DNA and

identifies nuclei, and with 5-dodecanoylaminofluorescein di-β-D-

galactopyranoside (C12FDG), which is cleaved by β-galactosidase to

generate a fluorescent product; this allowed us to simultaneously

evaluate nuclear morphology parameters and SA-β-Gal activity,

respectively (Fig. 3b). We established a fluorescence intensity cut-off

for the identification of SA-β-Gal positive, senescent cells (Supple-

mentary Fig. 6a, b).

The percentage of cells predicted to be senescent by both the

AEMandAERFMclassifiers significantly correlatedwith thepercentage

of SA-β-Gal positive cells (Fig. 3c and Supplementary Fig. 6c). Co-

culture experiments also showed that predictions from the AEM clas-

sifier significantly correlated with the percentage of senescent cells as

defined by considering p21CIP1 positive cells (Supplementary Fig. 6d),

p21CIP1 positive/BrdU negative cells (Fig. 3d) or p21CIP1/p53 double-

positive cells (Fig. 3e).

To generate and train those classifiers, we assumed that all

etoposide-treated cells were senescent and all the DMSO-treated cells

were normal (Fig. 1g). To understand if we could improve our algo-

rithms by training them with cells that we have identified as senescent

(or non-senescent) based on senescent markers, we generated a new

classifier (that we called BAEM). We trained this classifier with senes-

cent cells (from etoposide-treated cultures) that were SA-β-

galactosidase positive, and non-senescent cells (from DMSO-treated

cultures) that were negative for SA-β-galactosidase staining (Fig. 3f).

We took a similar approach to generate new algorithms trained with

p21CIP1/p53 double-positive cells (PPEM, Supplementary Fig. 6e, f) or

with BrdU negative/ p21CIP1 positive cells (BPEM, Supplementary

Fig. 6g, h). In all cases, the percentage of cells predicted to be senes-

cent by the BAEM, PPEM, and BPEM classifiers significantly correlated

with the percentage of SA-β-Gal positive cells inmixed cultures (Fig. 3g

and Supplementary Fig. 6f, h). To confirm that these results were not

biased by the time at which we co-cultured the normal and senescent

cells in our protocol (a day before assessing senescence), we con-

ducted experiments in which normal and senescent cells were co-

cultured 4days before the assessment of senescence, obtaining similar

results (Supplementary Fig. 7).

To directly compare the assumption-based and marker-based

classifiers, we employ them to predict senescence in the same dataset

(Fig. 3h). We assessed the precision (the ratio of predicted senescent

cells to SA-β-Gal positive cells), accuracy (the ratio of true prediction,

both for senescence and non-senescent cells), and recall (howmany of

the true senescent cells were identified by the classifier) and F1 score

for the predictions (Fig. 3i). This showed us that the marker-based

algorithms had similar levels of performance to the AEM algorithm

(where we had assumed that all the etoposide-treated cells were

senescent), suggesting that training with cell populations comprised

mostly of senescent cells is sufficient to generate efficient senescent

classifiers.

A family of machine-learning algorithms accurately predict
senescence
To examine the generality of the senescence classifiers, we established

co-cultures with different ratios of non-senescent A549 cells (DMSO-

treated) and A549 cells induced to senesce by treatment with doxor-

ubicin or the aurora kinase inhibitor barasertib (Supplementary Fig. 8).

Additionally, we established mixed co-cultures of other human cell

types treated with DMSO or etoposide, including a liver adenocarci-

noma cell line (SK-HEP-1), melanoma cell line (SK-MEL-103), breast

cancer cell line (MCF7) and colon cancer cell line (HCT116, Supple-

mentary Fig. 9) or human fibroblasts (IMR90 cells, Supplementary

Fig. 10). We stained cells with C12FDG and DAPI to evaluate senescence

and nuclear parameters respectively and used the senescence classi-

fiers to predict senescence. The predictions and experimental data

correlated significantly and very highly for the different cell types

treated with etoposide (Supplementary Figs 9, 10). For most condi-

tions, the precision, accuracy, and recall of both classifiers were

comparable to etoposide-treated, senescent A549 cells (Fig. 4 and

Supplementary Fig. 11).

Next, we generated newclassifiers trainedwith data of senescence

induced in different cell types (Fig. 4a and Supplementary Tables 2, 3).

Five of the classifiers were generated using decision tree algorithms

(GM, AEM, MEM, MERFM, HERFM), three were generated using ran-

dom forest algorithms (AERFM,MERFM,HERFM) andwe also included

a voting-based consensus algorithm (VCA), whose decisions were

based on the consensus of the other eight classifiers (Fig. 4a). Seven of

the classifiers were trained using data from individual models of

senescence, but the general model (GM) classifier was trained with

data from 12 different senescence conditions (Supplementary Table 1).

We observed a significant, high correlation between the percentage of

SA-β-Gal positive cells and the percentage of cells predicted to be

senescent in our nine co-culture datasets (Fig. 4b), although

barasertib-treated A549 cells analyzedwith GM,AEM, or IEMdisplayed

a lower but still significant correlation. The accuracy and precision of

most predictions were relatively high, particularly for the GM, AEM,

and IEM classifiers (Fig. 4c and Supplementary Fig. 11a), whereas the

random forest-based-AERFM and the voting VCA classifiers had the

best recall rates (Supplementary Fig. 11b). Overall, looking at the F1
score (Fig. 4d) and other parameters, the GM classifier and the VCA

Fig. 1 | Nuclear features can be used to identify senescent cells. a Experimental

design for the induction and characterization of senescence in A549 cells treated

with 2μM etoposide for 7 days. b Quantification of SA-β-galactosidase (SA-β-Gal)

activity after DMSO or etoposide treatment (n = 3, left) and representative images

of SA-β-Gal staining (right). Scale bar, 50μm. c, d Quantification of Brdu-/p21Cip1+

cells (c) and p21/p53 double-positive cells (d) treated with DMSO or etoposide

(n = 3). e Representative images of DAPI-stained nuclei for DMSO-treated (normal)

and etoposide-treated (senescent) A549 cells. Scale bar, 20μm. f Quantification of

nuclear features for DMSO and etoposide-treated A549 cells 7 days post-treatment

(n = 1000 cells per group). Kolmogorov–Smirnov test was performed to assess

probability distribution, with D value indicated. Data of a representative experi-

ment out of 3. g Experimental design for the development of training sets for the

AEM and AERFM senescence classifiers. h Analysis of training datasets of A549 cells

treated with DMSO or etoposide. Percentage of SA-β-Gal positive cells (left, n = 3)

and percentage of predicted senescent cells using the AEM (center) and AERFM

(right) senescence classifiers. i Analysis of test datasets of A549 cells treated with

DMSO or etoposide. Percentage of SA-β-Gal positive cells by immunofluorescent

C12FDG inDMSO (normal) and etoposide-treated A549 cells (senescent) (left,n = 3).

Percentage of predicted senescent cells in the validation datasets using the AEM

(middle) and AERFM (right) classifiers. AEM and AERFM prediction was performed

on the same cells as SAβ-Gal staining. Error bars representmean ± s.d.;n represents

number of replicates except when indicated differently. All statistical significances

unless indicated differently were calculated using unpaired, two-tailed, Student’s t-

tests. AEM, A549 etoposide model; AERFM, A549 etoposide random forest model.

Source Data are provided in the Source Data File.
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classifier both performed well and consistently across datasets. Thus,

most of the classifiers tested are suitable for predicting different types

of senescence.

Predictors can assist in the characterization and discovery of
senotherapies
Drugs such as the BCL-2 family inhibitors ABT-263 and ABT-737

selectively kill senescent cells and have the potential to treat a wide

range of diseases in which senescent cells accumulate25–27. To

understand if our senescence classifiers could assist in the assess-

ment of senolytic drugs, we setup a co-culture assay using A549 GFP

senescent cells (that have been treated with etoposide) and control

A549mCherry cells (treated with DMSO). In this way, we could assess

the relative numbers of senescent and non-senescent cells by iden-

tifying the cells as GFP or Cherry positive (Fig. 5a and Supplementary

Fig. 12). We treated the co-cultures with DMSO (as a control) or

with two senolytic drugs (1μM ABT-263 or 5 μM ABT-737) and ana-

lyzed the effects after 72 h. While non-senescent cells (A549

Cherry) increased in numbers during this period (Fig. 5b, c), senes-

cent cells were selectively reduced upon treatment with both seno-

lytic drugs, as assessed by counting A549 GFP positive cells (Fig. 5d)

or using the AEM senescence classifier (Fig. 5e). This experiment

Fig. 2 | Senescence classifiers distinguish senescent cells from those under-

going quiescence or DNA damage. a Experimental design for the comparison of

growing, quiescent and senescent A549 cells. b Representative images of growing

(10% FBS), quiescent (0.5% FBS), and senescent (10% FBS, etoposide-treated) A549

cells stained with antibodies recognizing BrdU (top). SA-β-galactosidase (SA-β-Gal)

staining from the same experiment is shown at the bottom. Scale bars, 100μM.

c,d Percentage of cells incorporating BrdU (c) and staining positive for SA-β-Gal (d)

(n = 3). e Percentage of cells predicted to be senescent by the AEM senescence

classifier (n = 3). f Experimental design for assessing the impact of cell density in

senescent prediction. g Percentage of SA-β-Gal positive A549 cells treated with

either DMSO or etoposide and seeded at low (L), medium (M), and high (H) density

(n = 3 per condition). h Senescence prediction using the AEM classifier of cultures

of A549 cells treatedwith eitherDMSOor etoposide and seeded at low (L),medium

(M), and high (H) density (n = 9 for all cases except etoposide-treated cells seeded

at medium density, n = 7). i Experimental design for assessing the impact of DNA

damage in senescence prediction. j 53BP1 positive cells in cultures of growing (G),

irradiated (DD), and senescent (MLN8054 M; etoposide E) cells (n = 3).

k, l Percentage of SA-β-Gal positive (k) and AEM positive (l) cells for the different

conditions (n = 3). Error bars represent mean± s.d.; n represents independent

experiments. Statistical significance was calculated using multiple comparisons

one-way ANOVA. Source Data are provided in the Source Data File.
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shows how we could use senescent classifiers to characterize seno-

lytic drugs.

Chemotherapies must induce senescence in the tumor to achieve

a therapeutic outcome28. However,many side effects of chemotherapy

arise from off-target induction of senescence in healthy, uninvolved

tissues29. Some efforts to identify drugs inducing senescence of cancer

cells have been successful30, but screening for such drugs relies on

having trustworthy readouts for senescence in cancer cells that are

amenable to high-throughput screening.We reasoned that senescence

classifiers could serve as the basis of such a screen.

As a proof of principle, we screened a collection of 676 drugs

(selected from the Selleck Target Selective and Protein Kinase Inhi-

bitor Library II libraries) for their ability to induce senescence in A549

cancer cells but not in IMR90 normal human fibroblasts (Fig. 5f). As
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controls of the screen, we included doxorubicin, which induced

senescence in both A549 and IMR90 cells. We excluded from

the analysis drugs that were toxic (killing more than 60% of cells

when compared with the controls). Using the GM classifier, we

identified 56 drugs that were predicted to induce senescence in

either A549 and/or IMR90 cells (Fig. 5g). Amongst those drugs 27

(exemplified by the aurora kinase inhibitors MLN8054) induced

senescence only in A549 cells, 11 (e.g., the PARP1 inhibitor AG-14361)

induced senescence only in IMR90 cells and 18 drugs induced

senescence in both cells (Fig. 5h–j). Overall, the above experiments

show how our senescence classifiers can assist in identifying differ-

ent senotherapies.

Characterization of drugs that induce senescence specifically in
cancer cells
To further characterize if the drugs identified in our screen selectively

induced senescent in A549 cells, we selected a few candidates,

including the aurora kinase inhibitors MLN8054, and ZM447439, the

Eg5 inhibitor ARQ621 and the gp130 inhibitor SC144. In addition, we

treat cells with AG-14361 as an example of a drug inducing senescence

selectively in IMR90 cells and doxorubicin and niraparib, drugs indu-

cing senescence in both cell types. SA-β-Gal staining confirmed that

our 4 candidates (MLN8054, ZM447439, ARQ621, and SC144) induced

senescence in a higher percentage of A549 cells than IMR90 cells,

whereas AG-14361 had the opposite effect (Fig. 6a, b).

Fig. 3 | Classifiers identify senescence at the single-cell level. a Design of the

experiments analysing co-cultures of DMSO-treated (normal) or etoposide-treated

(senescent) A549 cells. b Representative pictures out of three independent

experiments of cells stained for SA-β-Galactosidase (SA-β-Gal) activity using

C12FDG. Scale bars, 100μM. c–e Correlation between percentage of SA-β-Gal

positive (c) (r =0.8745; p <0.0001), p21CIP1 + /BrdU- (d) (r =0.9478; p <0.0001) and

p21CIP1 + /p53+ (e) (r =0.8681; p <0.0001) cells and percentage of cells predicted to

be senescent using AEM. Pearson correlation coefficient (two-tailed, 95% CI). r

represents two-tailed nonparametric correlation probability. n = 70–96wells.Wells

are co-cultures of senescence and non-senescent cells at different ratios as

explained in methods. f Experimental design for the selection of cells to train the

BAEM classifier. g Correlation between percentage of SA-β-Gal positive cells and

cells predicted to be senescent using BAEM (r =0.9969; p <0.0001); Pearson cor-

relation coefficient (two-tailed, 95% CI). h Experimental design to compare and

validate assumption-based and marker-based classifiers by control (DMSO) and

senescent (etoposide) cell co-culture and corresponding SA-β-Gal staining.

i Heatmap of precision (Pr.), accuracy (Ac.), recall (Re.), and F1 score (F1) median

values (left to right) of BAEM, BPEM, PPEM, and AEM classifiers (top to bottom).

Measures representmedian values, calculated from n = 70–96 wells each. Wells are

co-cultures of senescence andnon-senescent cells at different ratios as explained in

methods. BAEM SA-β-Gal+ A549 etoposide model, BPEM Brdu-/p21CIP1+ etoposide

model, PPEM p53 + /p21CIP1+ etoposide model. Source Data are provided in the

Source Data File.

Fig. 4 | Comparison of the performance of different senescence classifiers.

a Experimental design for fitness assessment of different senescence classifiers in

datasets derived from co-cultures of senescent cells with non-senescent counter-

parts.b–dCorrelation (b), precision (c), and F1 score (d) of senescence classifiers (x-

axis) in the different datasets (derived from co-cultures of different types of

senescent cells with non-senescent counterparts) represented in heatmaps.

Measures representmedian values, calculated from n = 70–96 wells each. Wells are

co-cultures of senescence andnon-senescent cells at different ratios as explained in

methods. Each heatmap contains 9 algorithms (GM, AEM, AERFM, MEM, MERFM,

HEM, HERFM, and IEM) and the last column corresponds to a voting-based con-

sensus algorithm (VCA), obtained by equal weight voting system of the previous 8

algorithms. Source Data are provided in the Source Data File.
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Fig. 5 | Senescence classifiers can assist in characterizing and identifying

senotherapies. a Experimental design and timeline for assessing senolytic drugs.

b Representative images of co-cultures of senescent (GFP) and non-senescent

(mCherry) A549 cells 72 h after treatment with DMSO (top), ABT-263 (middle), and

ABT-737 (bottom). Scale bar, 200μM. c–e Quantification of mCherry positive cells

(c), GFP positive cells (d) and cells predicted to be senescent by AEM (e), before and

after treatment with the different drugs (n = 3). f Experimental design, and timeline

for the screen for drugs inducing senescence. Drugs were used at 10μM.

g Summary of the screen results. h, iDistribution of B-score results in A549 (h) and

IMR90 (i). The blue dashed line indicates the threshold (B-score> 15). Examples of

an A549-specific hit MLN8054 (blue) and an IMR90-specific AG-14361 (yellow) are

highlighted. j Venn Diagram for senescence-inducing drugs with selectivity for

IMR90 (yellow), A549 (blue) or both (green). Data represent mean ± s.d. n repre-

sents independent experiments. Source Data are provided in the Source Data File.
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Fig. 6 | Characterization of MLN8054 and ARQ621 as drugs preferentially

inducing senescence in A549 over IMR90 cells. a Images of SA-β-galactosidase

(SA-β-Gal) staining on A549 (top) and IMR90 (bottom) cells treated with the indi-

cated drugs. Representative images of one out of 3 experiments. Scale bar, 100μM.

b Percentage of SA-β-Gal positive cells after 7-day treatment with the indicated

drugs in A549 cells (left) and IMR90 (right) cells (n = 3). c, dQuantification of BrdU

(c) and p21CIP1 (d) positive cells by immunofluorescence in A549 (left) and IMR90

(right) cells after treatment with selected drugs (n = 3). e Experimental design and

timeline of the senolytic experiment quantified in (f). f Senolytic activity after

treatment with 1μM ABT-263 for 72 h in either A549 (left) or IMR90 (right) cells

treated for 7 days with the indicated drugs (n = 3). Drug concentrations used in

(c, d), f doxorubicin, 0.5μM; MLN8054, 3μM; ARQ 621, 0.1μM. Significance was

calculated with a one-way ANOVA (Tukey’s multiple comparisons test). Data

represent mean± s.d. n represents independent experiments. Source Data are

provided in the Source Data File.
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We decided to characterize in more detail the effects of ARQ621,

an Eg5 inhibitor that has not been previously linked with senescence,

andMLN8054, an auroraA kinase inhibitor previously shown to induce

senescent in tumor cells24. Treatment with doxorubicin caused cell

cycle arrest (Fig. 6c) and induced p53 and p21CIP1 in both IMR90 and

A549 cells (Fig. 6d and Supplementary Fig. 13a, b). While CDKN2A

(encoding for p16INK4a) is mutated in A549 cells31, we also observed an

upregulation of CDKN2A transcripts in IMR90 cells upon treatment

with doxorubicin (Supplementary Fig. 13c). In contrast, treatment with

MLN8054 or ARQ621 caused a significant cell cycle arrest, induction of

p53 and p21CIP1, and upregulation of SASP components in A549 but not

in IMR90 cells (Fig. 6c, d and Supplementary Fig. 13), consistent with

their differential effects on senescence induction.

Senolytic drugs such as ABT-263 can be used in combination with

senescence-inducing drugs to target cancer cells, inwhat is termed the

‘one-twopunch’ approach32. Todetermine if the identified compounds

can be combined with senolytics to selectively kill cancer cells, we pre-

treated A549 and IMR90 cells with these drugs for 7 days followed by

treatment with ABT-263 for 3 days (Fig. 6e). Pre-treatment with dox-

orubicin, which induced senescence in both cell lines, also sensitized

both IMR90 and A549 cells to ABT-263 (Fig. 6f). In contrast, pre-

treatment with MLN8054 or ARQ621 sensitized over 75% of A549 cells

to ABT-263 treatment, whereas less than half of the IMR90 cells

became sensitive to ABT-263 (Fig. 6f). Overall, we conclude that our

senescence classifiers can be used to discover drugs with selectivity to

induce senescence in cancer over non-oncogenic cells.

Predictors inform a tissue senescence score to detect senes-
cence during cancer initiation in vivo
Next, we aimed to adapt our strategy to detect senescence in tissue

sections.We took advantage of amodel of liver pre-neoplasia and tumor

initiation (Fig. 7a). Briefly, transposon-mediated transfer of oncogenic

NRas (NRasG12V) in hepatocytes is known to induce senescence, as

inferred from elevated levels of p16Ink4a and p21Cip1, elevated SA-β-

galactosidase activity and a senescence-associated secretory

phenotype33–35. We confirmed a significant increase in different senes-

cent markers, including p21Cip1, the SASP components uPAR36, and the

open reading frame 1 (ORF1) product of the LINE1 transposon37, speci-

fically in NRAS-positive cells of mice transduced with a transposon

expressing oncogenic NRasG12V but not on those expressing an NRasG12V,

D38A inactive mutant (Fig. 7b, c and Supplementary Fig. 14a, b).

Taking advantage of this system, we detected senescent cells in

NRasG12V-induced preneoplastic liver sections by performing immu-

nohistochemistry for p21Cip1 (Supplementary Fig. 14c, d). We then used

the slide image analysis software QuPath to measure different nuclear

features in p21-positive and p21-negative populations. p21-positive

cells displayed generally enlarged nuclei, with bigger areas, more

extreme caliper values (also known as Feret diameter), and reduced

circularity (Supplementary Fig. 14e) as observedwith senescent cells in

culture. Using a training dataset, we averaged the p21-negative popu-

lation to obtain ideal normal parameters and ranked p21-positive cells

basedon the intensity of staining, selecting the top 100 to define ‘ideal’

nuclear senescent features (Supplementary Fig. 14f). We used that

information to generate a score based on a combination of nuclear

features, able to evaluate senescence in individual cells (‘cell senes-

cence score’, CSS, Supplementary Fig. 14g): if a nucleus has features

like themodel senescent population, the score assigned would be 1; if,

on the contrary, the nuclear morphology is akin to a normal cell, the

score assigned would be 0. Cells with more extreme senescence-like

features would be assigned values > 1.

We tested this classifier using a test set of p21Cip1- stained liver

sections (Supplementary Fig. 14h). The CSS performed well in pre-

dicting senescent cells in some fields but had low consistency and

could not be used to predict senescence accurately at the cell level. To

determine if the CSS could predict senescence at the tissue level, we

analyzed the distribution of CSS scores in tissues with a relatively high

(3.394%) or low (0.552%) percentage of p21Cip1-positive cells. We ana-

lyzed the distribution of cells with high CSS values at different ranges

(summarized in Supplementary Table 4). From that analysis, we con-

clude that calculating the percentage of cells with CSS between 1 and 5

correlated well with the percentage of senescent cells (as defined by

p21-staining). This was exemplified by a higher fraction of cells with

CSS 1–5 for a tissue with a higher percentage of senescent cells (Sup-

plementary Fig. 14i–k). We subsequently adopted the percentage of

cells in a tissue with a CSS 1–5 as a ‘tissue senescence score’ (TSS, as

summarized in Fig. 7d).

To evaluate the tissue senescence score, we transduced con-

structs co-expressing GFP with oncogenic NRas (NRasG12V, referred to

as G12V) or an effector loopmutant (NRasG12V,D38A, referred to as D38A)

incapable of signaling downstream and induce senescence35 (Fig. 7a).

We performed immunohistochemistry (IHC) to detect GFP or p21Cip1 in

serial slides and stained another set of slides with hematoxylin (Sup-

plementary Fig. 15a). Both cohorts had a similar frequency of GFP

positive hepatocytes (Fig. 7e), but the frequency of p21CIP1-positive

senescent cells was higher in mice transduced with NRasG12V versus

NRasG12V,D38A (Fig. 7f). Similar results were obtainedwhenweused uPAR

(Fig. 7g) or ORF-1 (Fig. 7h) as senescent markers.

We imaged hematoxylin-stained slides and calculated their CSS.

Most cells had a higher CSS in NRasG12V liver sections compared to

NRasG12V, D38A liver sections (Fig. 7i), corresponding to a higher TSS

(Fig. 7j). We also calculated TSS scores from p21CIP1-stained slides,

which correlated with the frequency of p21CIP1-positive cells (Supple-

mentary Fig. 15b) and observed a significant correlation with the TSS

calculated in hematoxylin-stained slides, suggesting that the classifier

is consistent and antibody staining did not interfere with calculating

senescence scores (Fig. 7k).

We further validate the approach using a different cohort of mice

transduced with NRasG12V expressing constructs. We prepared serial

liver sections, staining one with hematoxylin and co-staining the other

with uPAR and p21CIP1 to define senescent cells (Supplementary

Fig. 15c). We confirmed a significant correlation between the TSS

predictor and the percentage of senescent (uPAR-positive/p21CIP1-

positive) cells (Supplementary Fig. 15d).

The tissue senescence score predicts senolytic drug efficacy
in vivo
We previously showed that treatment with senolytic drugs such as

ouabain reduced the percentage of senescent hepatocytes inmice that

had undergone transposon-mediated transfer of NRASG12V 38. To

investigate whether the TSS could reveal the effectiveness of senolytic

compounds in vivo, we treated mice transduced with NRASG12V with

vehicle (DMSO) or a senolytic drug (Fig. 8a), sectioned the liver and

performed IHC for p21CIP1 and hematoxylin staining (Fig. 8b). As

expected, the frequency of p21CIP1-positive cells was lower in mice

treated with the senolytic drug than in those treated with DMSO

(Fig. 8c). We derived CSS from the hematoxylin-stained slides and

observed lower scores for the liver sections from mice treated with

senolytic drug than with DMSO (Supplementary Fig. 16a). The TSS was

significantly lower in the senolytic-treated cohort, consistent with the

reduced frequency of senescent cells (Fig. 8d). Again, we observed a

significant correlation between the percentage of p21CIP1-positive cells

and TSS scores across the experiment (Supplementary Fig. 16b). Thus,

the TSS correlates with other senescence markers and can be used to

detect the efficacy of senolytic drugs in vivo.

The tissue classifier predicts senescence-associated with liver
fibrosis and aging in mice
Induction of senescence limits liver fibrosis39 but lingering senescent

cells accumulating in fibrotic sites can contribute to disease

progression40. To determine if our senescence classifier could identify
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senescence-associated with fibrosis, we induced liver fibrosis in a

cohort of mice by treating them with CCl4 (Fig. 8e). As expected, IHC

staining identified a significantly higher percentage of p21Cip1-positive

cells in the CCl4-treated cohort when compared with oil-treated con-

trol mice (Fig. 8f, g). Importantly, the CSS distribution and TSS were

also higher in the CCl4-treated compared to oil-treated controls

(Fig. 8h and Supplementary Fig. 16c).

To understand if our classifier could also distinguish age-related

senescence, we took advantage of cohorts of young (~90 days old)

and old (~600 days old) mice and performed p21Cip1 immunostaining

and hematoxylin staining of liver sections (Fig. 8i, j). We detected

significantly higher percentages of p21Cip1-positive cells in sections

from old mice, consistent with an accumulation of senescent cells

during aging (Fig. 8k). The CSS distribution and the TSS were also
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higher in the old versus young mice (Fig. 8l and Supplementary

Fig. 16d). Altogether, these results indicate that our classifier can

accurately predict senescence in different pathophysiological

settings.

The tissue classifier predicts levels of senescence in humanswith
non-alcoholic fatty liver disease
Senescence has been associated with fatty liver disease39–41. To inves-

tigate the applicability of our predictionmodels to patient samples, we

analyzed liver sections resected from patients with mild non-alcoholic

fatty liver disease (NAFLD, Fig. 9a). For each patient, we stained serial

sectionswith either hematoxylin and eosin (H&E) or antibodies against

p16INK4a, as a surrogate of senescence (Fig. 9b).We calculated theCSS in

H&E-stained samples and included for analysis those in which we were

able to extract data from at least 10,000 cells (n = 34 patients). A

comparison of the distribution of CSS from two samples with a rela-

tively high and a relatively low percentage of p16INK4a-positive cells

showed a similar shift in the high- p16INK4a sample as shown in the other

models (Fig. 9c). Importantly, TSS showed a significant correlation

with the percentage of p16INK4-positive senescent cells in those tissues

(Fig. 9d). Overall, our results show that the TSS can be applied to

predict senescence in human samples.

Discussion
Senescent cells accumulate with age, are associated with multiple

diseases, and arepresent in cancerous and fibrotic lesions10. Moreover,

senescence is a novel therapeutic target with wide implications.

Senolytic drugs have the potential to eliminate senescent cells

involved in aging, cancer, and age-related diseases. However, a key

factor limiting the quantification of senescent cells, and thus the

identification and assessment of senolytics that induce their pre-

ferential killing, is the lack of universal and robust markers of senes-

cence. We devised a family of machine-learning algorithms that take

advantage of nuclear changes associated with senescence. These

classifiers, rather than using images to feed neural networks, are based

on a small number of interpretable nuclear parameters (that can be

extracted with image analysis software), which standardizes and sim-

plifies downstream analysis making it more amenable to be used by

others.

Senescence is a heterogeneous response, and its characteristics

might differ depending on the cell type and the stressor. Therefore, we

developed classifiers trained with different cell types and stressors.

Overall, our classifiers identified many types of senescent cells with

good accuracy, even those types not included in their respective

training sets. However, given the heterogeneity of senescence, our

classifiers performed worse in identifying some types of senescence

(e.g. in IMR90 cells or in response to barasertib treatment). In some

instances, such as senescence induced by expression of constitutively

activatedMEK42, themorphology of the nuclei is largely unchanged, so

it is unlikely that our classifiers would work on those conditions, but

our study defines a framework that could be adapted to identify most

types of senescent cells as needed.We compared several classifiers for

their ability to identify a variety of senescent cells. Specific classifiers

performed better in identifying certain types of senescence, but most

of our classifierswere sufficient topredict senescence. Several of them,

such as the GM senescence classifier, are consistent across the nine

different datasets tested.

While ideally, one would want a ‘perfect’ predictor that can

identify all senescent cells without false positives, such a toolbox

might not exist due to the complexity in which senescence can

develop. For a start, senescence is a heterogeneous and dynamic

state, and the markers that are chosen to define senescence (in our

case SA-β-galactosidase) will affect the comparisons. Importantly,

imperfect predictions can be useful: we show that senescence-

inducing drugs can be identified from predictions with not perfect

accuracy but a high recall rate. As potential use cases for our algo-

rithms, we show how they can characterize senolytic drugs (both in

vivo and in vitro) and senescence inducers. To identify drugs that

selectively induce senescence in tumors, we screened a collection of

676 drugs for their ability to induce senescence in a lung cancer cell

line (A549) versus a normal lung fibroblast cell line (IMR90). We

found a subset of drugs, including Eg5 inhibitors and multiple aurora

kinase inhibitors, that preferentially induced senescence in A549 but

not in IMR90 cells. Indeed, aurora kinase inhibitors were previously

shown to induce senescence in cancer cells32. It will be of interest to

use additional cell types in the future to elucidate the mechanisms

underlying drug selectivity.

Another key use for senescence classifiers will be to predict

senescence in tissue sections from preclinical mouse models and

patient samples. We devised a tissue senescence score (TSS) that can

identify cells undergoing oncogene-induced senescence during liver

cancer initiation, and senescence in response to fibrosis and

aging. Our TSS can also be used to assess the efficacy of senolytic

drugs in vivo. Moreover, the TSS identified senescence in liver tissue

sections of patients with mild fatty liver disease to an extent com-

parable to p16INK4a staining. While the TSS could be further

improved and might need adaptation to identify senescence in other

tissues, our results prove the utility of such classifiers to

uncover pathophysiological senescence and assess potential

senotherapies.

Neural networks were recently used to identify senescence from

cell microscopy18,19. Given that the identification of senescent cells is a

bottleneck in the field43, our work described here joins those as a

complementary and much-needed approach. Our approach starts

from the pre-existing knowledge that senescent cells undergo chro-

matin rearrangement and changes in nuclearmorphology4,8,9 to devise

machine-learning classifiers based on nuclear features. While starting

from a different point, the reasoning behind our predictors converged

with the observations of Heckenback et al.19. Moreover, open-source

software such as CellProfiler21 and Qupath44 can be used to extract the

Fig. 7 | Tissue senescence scorepredicts senescence inducedduring liver cancer

initiation. a Experimental design for analysis of senescence in the liver cancer

initiation model. b Representative images of liver sections obtained of mice

transduced with NrasG12V or NrasG12V, D38A. Liver sections were co-stained with anti-

bodies recognizing NRAS and p21Cip1 (left), uPAR (middle), and ORF1 (right). Scale

bar, 200μm in the main picture and 20μm in the insets. Yellow arrows mark

double-positive cells. c Quantification of cells positive for p21Cip1 as assessed by

immunofluorescence in mice transduced with NrasG12V-ires-GFP (n = 4) or NrasG12V,

D38A-ires-GFP (n = 5). GFP indicates NRAS-positive cells. Significance was calculated

with a one-way ANOVA (Tukey’s multiple comparisons test). Data represent

mean ± s.d. d Experimental design for the development of a nuclear feature-based

senescence scoring system in vivo. e, f Percentage of GFP (e) and p21Cip1 (f) positive

cells in the liver section of mice transduced with the NrasG12V, D38A (D38A, n = 9) or

NrasG12V (G12V, n = 6) expressing transposons. Significance was calculated using an

unpaired two-tailed t-test.g,hPercentage of uPAR (g) andORF-1 (h) positive cells in

NrasG12V/NrasG12V, D38A mice. Significance for uPAR (NrasG12V n = 4; NrasG12V,D38A n = 8)

and ORF-1 (NrasG12V n = 6; NrasG12V,D38A n = 10) was calculated using unpaired two-

tailed t-test. iDistributionof cell senescence score in two sections corresponding to

p21Cip1 high (red) and low (blue) samples of the liver cancer initiation experiment.

j Tissue senescence score calculated in hematoxylin-stained liver sections of mice

transduced with the NrasG12V, D38A (D38A, n = 9) or NrasG12V (G12V, n = 6) expressing

transposons. Statistical significance was calculated using unpaired t-test. k Pearson

correlation coefficient (two-tailed, 95% CI) between tissue senescence score cal-

culated in hematoxylin-stained and p21Cip1-stained liver sections (n = 15). p repre-

sents two-tailed nonparametric correlation probability. Data represent mean ± s.d;

n represents number of mice. Source Data are provided in the Source Data File.
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parameters needed for our classifiers, further facilitating its use by

other labs.

In summary, we generated a family of algorithms that can predict

senescence in multiple cell types and tissue sections by taking

advantage of nuclear features. We provide proofs-of-concept demon-

strating how these senescence classifiers can be used to identify and

validate distinct senotherapies. Moreover, a tissue senescence score

serves to evaluate senescence induction in tissue sections from pre-

clinical mouse models and human patients.

Methods
Ethics
This research complied with all relevant ethical regulations and was

approved and overseen by the following ethics review boards. Fully

anonymized liver biopsies from patients with non-alcoholic fatty liver

disease were obtained from the Imperial Hepatology and Gastro-

enterology Biobank which is fully REC-approved by the Oxford C

Research Ethics Committee under REC reference 16/SC/0021.

Informed written consent was provided by the donors. Mouse liver

Fig. 8 | Tissue senescence score predicts the effect of senolytic drugs and

identifies senescence in liver fibrosis and aging. a Experimental design for ana-

lyzing senescence in the senolysis experiment. b Representative images of p21Cip1

andhematoxylin staining in liver sections. Scale bars are 100μmin themain picture

and 20 μm for the insets. The insets correspond to images from the same

slides. c Percentage of p21Cip1 positive cells in the liver section of mice transduced

with a NrasG12V expressing transposon and treated with either vehicle (n = 8) or a

senolytic drug (n = 9). d Tissue senescence score calculated in p21Cip1-stained liver

sections ofmice transduced with a NrasG12V expressing transposon and treated with

either vehicle (n = 8) or a senolytic drug (n = 9). e Experimental design for assessing

senescence in the liver fibrosis model. f Representative images of p21Cip1 IHC

staining in liver sections. Red arrows mark p21Cip1-positive cells. Scale bars are

100μm in themainpicture and 20μmfor the insets.g Percentage of p21Cip1positive

cells in the liver section ofmice treatedwith corn oil (oil) as a control (n = 6) or CCl4

(n = 7) to induce liver fibrosis. h Tissue senescence score calculated in p21Cip1-

stained liver sections ofmice treatedwith corn oil as a control (n = 6) or CCl4 (n = 7)

to induce liver fibrosis. i Experimental design for assessing senescence in liver

sections during aging. j Representative images of p21Cip1 stained in liver sections for

young (n = 13) and old (n = 7)mice. Red arrowsmarkp21Cip1- positive cells. Scale bar,

30μm. k Percentage of p21Cip1 positive cells in liver sections for young (n = 13) and

old (n = 7)mice. lTissue senescence score calculated inp21Cip1-stained liver sections

for young (n = 13) and old (n = 7) mice. Statistical significance for all comparisons

was calculated using an unpaired two-tailed t-test. Data represent mean ± s.d; n

represents the number of mice. Source Data are provided in the Source Data File.
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fibrosis experiments were performed according to German law and

with the approval of the Regierungspräsidium Karlsruhe (G139/19). All

other mouse procedures were performed under license, according to

the UK Home Office Animals (Scientific Procedures) Act 1986, ARRIVE

2.0, and approved by the Imperial College’s animal welfare and ethical

review body (aging experiments, PPL 70/8700; liver cancer initiation

and senolysis experiments, PPL 70/09080).

Cell lines
Both female (IMR90, MCF7, HEK-293T) and male (A549, SK-HEP-1,

HCT116, MRC-5) cell lines were used in this study. A549 (CCL-185),

HCT116 (CCL-247), HEK-293T (CRL-11268), SK-HEP-1 (HTB-52), SK-MEL-

103 (HTB-70),MRC-5 (CCL-171) andMCF7 (HTB-22) cells were obtained

from the American Type Culture Collection (ATCC). Early passage

IMR90 cells (ATCC CCL-186) were obtained from Coriell Institute.

IMR90 ER:RAS cells were generated by retroviral infection of IMR90

cells and have been described elsewhere45. A549, HCT116, HEK-293T,

IMR90, SK-HEP-1, SK-MEL-103, and MCF7 cells were cultured in Dul-

becco’s modified Eagle’s medium (DMEM, Gibco), supplemented with

10% fetal bovine serum (FBS, Sigma F7524) and 1% antibiotic-

antimycotic solution (Gibco). MRC-5 cells were cultured in Eagle’s

Minimum Essential Medium (EMEM), supplemented with 10% FBS and

1% antibiotic-antimycotic solution (Gibco). For inducing quiescence,

the media was replaced with 0.5% FBS in DMEM.

Senescence induction
The following drugs were used to induce senescence in different cell

lines after culturing cells in 96-well (Nunc, Thermo Fisher) or 100mm

dishes (Corning, 430167): A549, 2μM etoposide (Eto, Sigma–Aldrich,

E1383), 0.2μM doxorubicin (Doxo, Selleck chemicals, E2516), 2μM

alisertib (Ali, Selleck chemicals, S1133), 1μM barasertib (Bara, Selleck

chemicals, S1147); SK-MEL-103, 0.25μM Eto, 0.1μMDoxo, 0.25μMAli,

0.5μM Bara; SK-HEP-1, 0.25μM Eto, 0.1μM Doxo, 0.1μM Ali, 0.5μM

Bara; MCF7, 1.5μM Eto, 0.1μMDoxo. HCT116, 2μM Eto, 0.5μMDoxo.

IMR90, 50μM Eto, 2μMDoxo (washed and media replaced 24 h post-

treatment). Cell culture media with or without drugs was changed

every 72 h. Senescence was assessed after 7 days of drug treatment

unless otherwise stated.

Screen for drugs inducing senescence
676 drugs from the Target selective library (Selleck Chemicals) and

Protein Kinase Inhibitor Library II (EMDCalbiochem®, Cat. No. 539745)

were used to screen for drugs inducing senescence selectively in

cancer cells. Drugs (at 10μM) were added 24 h after seeding cells. Cell

media was changed 72 h after and cells were fixed 5 days after cells

were seeded. Cellswere then fixed in4% PFA, DAPI-stained, and images

acquired (seeHighThroughputMicroscopy).We screened thedrugs in

A549 lung adenocarcinoma and IMR90 fibroblasts in parallel, with

biological triplicates per cell line. The percentage of senescent cells

was calculated using the GM algorithm. A toxicity threshold was

established against the viability of the positive controls. Sampleswith a

lower cell count than 40% of that of the positive control were con-

sidered toxic and were excluded from analysis. This filtering excluded

69 drugs and data from cells treatedwith the remaining 607 drugswas

taken forward for normalization. B-score normalization of the pre-

dictions of senescence induction was carried out (see B-score

Fig. 9 | Tissue senescence scores identify senescence in patients with non-

alcoholic fatty liverdisease (NAFLD). a Schematic for the analysis of liver sections

from patients with mild fatty liver disease. b Representative images of p16INK4a and

H&E-stained liver sections in normal and fatty liver (out of 34) patients. Scale bar,

50μm in the main image, 20μm for the zoomed section. c Distribution of cell

senescence score in two sections corresponding to samples with a high

(p16 = 9.0876%) and low (p16 =0.2233%) percentage of p16INK4a positive cells.

d Correlation between tissue senescence scores and percentage of p16INK4a positive

cells (n = 34 patients). Pearson correlation coefficient (two-tailed, 95% CI) was used

(r =0.3862; p =0.024). p represents two-tailed nonparametric correlation prob-

ability. (n = 34 liver sections from different patients). Source Data are provided in

the Source Data File.
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normalization analysis). For a drug to be considered a hit, at least 2 of

the 3 replicates would need to have a B-score >15. Drug candidates

were then classified based on the predicted capacity to induce senes-

cence in the cell lines tested based on the established threshold.

Senescent B scores for all screened drugs have been included in the

source data.

For follow-up studies (described in Fig. 6 and Supplementary

Fig. 13), we used the following drug concentrations: doxorubicin,

0.5μM; MLN8054 (Selleck Chemicals, S1100), 3μM; ZM447439 (Sell-

eck chemicals, S1103), 2μM; SC144 (Selleck chemicals, S7124), 1μM;

ARQ 621 (Selleck chemicals, S7355); 0.1μM; Niraparib tosylate (MK-

4827, Selleck chemicals, S7625), 10μM; AG-14361 (Selleck chemicals,

S2178), 10μM. Drug stocks (10mM) were prepared in dimethylsulf-

oxide (DMSO) and stored at −20 °C.

B-score normalization analysis
To analyze the drug screen, senescence prediction was normalized by

B-score using the R package CellHTS2 (https://doi.org/10.18129/B9.

bioc.cellHTS2)46. Value normalization was performed using the plate-

averaging method and on separate batches for A549 and IMR90 cells.

Antibodies
The following antibodies were used for the immunofluorescent and

immunohistochemistry experiments: mouse monoclonal anti-

bromodeoxyuridine (BrdU) (3D4; BD Biosciences, 555627) 1:2000;

rabbit polyclonal anti-53BP1 antibody (Novus Biologicals, NB100-304)

1:1000; goat polyclonal anti-uPAR (Novus Biologicals, AF534), 1:200;

mouse monoclonal anti-Nras (Santa Cruz, sc-31), 1:500; rabbit mono-

clonal anti-LINE-1 ORF1p (Abcam, ab216324) 1:500; mousemonoclonal

anti-phospho-Histone H2A.X (Ser139) (Sigma–Aldrich, 05-636) 1:250;

rabbit polyclonal anti-p21 (2947 S; Cell Signaling) 1:2000; mouse

monoclonal anti-p53 (DO-1, Santa Cruz, sc-126) 1:100; rabbit mono-

clonal anti-p21 (EPR18021, Abcam) 1:700; rabbit recombinant mono-

clonal anti-GFP antibody [EPR14104] (ab183734) 1:500; Alexa Fluor

488/594 conjugated, (Thermo Fisher Scientific, A11029/A11032) goat

anti-mouse IgG (H + L), 1:2000; Alexa Fluor 488/594 conjugated,

(Thermo Fisher Scientific, A11034A11037) goat anti-rabbit IgG (H + L),

1:2000; Alexa Fluor 488/594 conjugated, (Thermo Fisher Scientific,

A11055/A11058) donkey anti-goat IgG (H+ L), 1:2000.

Vectors
LentiGuide-Puro (Addgene, #52963) was used to express GFP, and

pBabe puro IRES-mCherry (Addgene, #128038) for mCherry expres-

sion. Cells were FACS sorted and expanded. Cells expressing the

construct were selected in 2μg/mL of puromycin and kept under

selection in 0.5μg/mL of puromycin.

Immunofluorescent staining of cells
Cells were grown in 96-well plates (NuncTM MicroWellTM, 167008,

Thermo Fisher Scientific), fixed with 4% PFA (w/v) for 20min, and then

permeabilized in Triton X-100 0.2% diluted in PBS for 10min. Cells

were then blocked with 1% bovine serum albumin (BSA) (w/v) for

25min. Cells were incubated with the primary antibody diluted in a

blocking solution for 1 h and washed thrice in PBS. Cells were incu-

bated with the secondary antibody (Invitrogen, Alexa FluorTM) diluted

in blocking solution for 30min and after washing thrice on PBS,

1μgml−1 of DAPI was added for 12min and washed with PBS thrice.

Cytochemical SA-β-galactosidase assay
Cells were grown on 6-well (NuncTM, 140675) or 96-well plates and

fixed with 0.5% glutaraldehyde (w/v) (Sigma–Aldrich) for 15min, then

washed with 1mM MgCl2/PBS at pH 6.0 and incubated in X-Gal solu-

tion (5mM K3(Fe(CN)6), 5mM K4(Fe(CN)6) and 1mgml−1 of X-Gal by

Thermo Scientific) for 6 h and 8 h in cancer cells and fibroblasts

respectively, at 37 °C. Brightfield images were acquired using DP20

digital camera attached to an Olympus CKX41 inverted light micro-

scope, at 4x and 10x magnification.

Senolytic assay
Drugs were diluted to the required concentration in DMSO and stored

at −20 °C. Cells were induced to senesce for 7 days and then cultured

with 1μMABT-263 (SelleckChemicals; S1001) or 5μMABT-737 (Selleck

Chemicals; S1002) for 72 h. Cells were then fixed in 4%PFA (w/v) for

20min and stained with DAPI for 12min. Cells were then washed

thrice in PBS.

Irradiation-induced DNA damage
To induce DNA damage cells cultured in 96-well or 6-well plates were

exposed to ionizing radiation (15 Gy). Media was changed 24 h later,

andDNAdamagewasassessedby immunofluorescenceat the required

time point.

Fluorescent SA-β-galactosidase assay
Cells grown in 96-well plates were washed in phosphate-buffered sal-

ine (PBS) and incubatedwith 33μMC12FDG (Abcam, ab273642) diluted

in DMSO for 1 h. Cells were then fixedwith 4% paraformaldehyde (PFA)

for 15min, washed thrice in PBS, and stained with 1μgml−1 of DAPI.

Images were taken using a high-throughput fluorescentmicroscope IN

Cell Analyzer 2500HS (Cytiva) with a 10× objective for quantification.

The percentage of SA-β-galactosidase positive cells was calculated

using IN CartaTM Image Analysis Software (version 1.14) based on cel-

lular fluorescence intensity using an arbitrary threshold to define

positive cells.

Gene expression analysis
Total RNA was extracted using RNeasy® Minikit (Qiagen). cDNA was

produced using Superscript II reverse transcriptase (Invitrogen) and

RandomHexamers (Invitrogen). Quantitative real-time PCR (RT-qPCR)

was performed using SYBRTM Green PCR master mix (Applied Biosys-

tems) in a CFX96 RT-PCR system C1000 Touch (Bio-Rad). For data

normalization, GAPDHexpressionwasused. Theprimer pairs used are:

GAPDH: GAAGGTGAAGGTCGGAGTC; TTGAGGTCAATGAAGGGG

CDKN1A: CGTGTCACTGTCTTGTACCCT; GCGTTTGGAGTGGTAG

AAATCT

CDKN2A: CGGTCGGAGGCCGATCCAG; GCGCCGTGGAGCAGCAG

CAGCT

IL1A: AGTGCTGCTGAAGGAGATGCCTGA; CCCCTGCCAAGCACAC

CCAGTA

IL1B: TGCACGCTCCGGGACTCACA; CATGGAGAACACCACTTGTT

GCTCC

High-throughput microscopy
Cells were cultured in 96-Well Flat-Bottom plates (Thermo Fisher) and

CellCarrier-96 Ultra Microplates (Perkin Elmer) were used. Plates were

analyzed using IN Cell Analyzer 2500HS high content analysis (HCA)

imaging at a magnification of 20× or 40×, with a binning of 1 × 1. TIF

files obtained in HCA were analyzed using IN CartaTM Image Analysis

Software (Cytiva, version 1.14). The acquired images had the following

characteristics: width and length of 663.005 μm (2040 pixels), at a

3.0769 pixels per μm resolution (20×); width and length of 331.5μm

(1020 pixels), at a 0.3250024 pixels per μm resolution (40x). The fol-

lowingnuclear featureswere extracted using the InCarta software (See

“Software” section): Area (in μm2), form factor (object roundness),

elongation (object short axis/object long axis), compactness (average

radius of the object), chord ratio (object min. chord ratio/object max.

chord length), gyration radius (average radius of the shape), dis-

placement (distance between the nucleus center of gravity and the cell

center of gravity, normalized by the gyration radius of the nucleus).

Whereprotein expression signalwas analyzed intensitymeasures were

also acquired.
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To capture nuclear morphology parameter measurements, ima-

ges were thresholded based on DAPI, primary objects identified, and

measurements performed (see “Software” section). For quality control

and to exclude artifacts, the cell segmentation pipeline performed a

noise removal step, excluding shapes when image contrast was low. A

sensitivity threshold was also established to accurately detect true

nuclei events and a typical diameter of a nucleus was also established,

to further exclude non-conforming structures. Overexposed targets

were eliminated establishing a minimum DAPI intensity threshold and

objects touching edges were excluded from the analysis to avoid

partially acquired nuclei.

Libraries of nuclear parameters of senescent and normal cells in
culture
To develop the algorithm training sets (summarized in Supplementary

Table 1), the indicated cells were seeded in 96-well plates and cultured

and treated with the indicated drugs or DMSO as a control. Seven days

after treatment, cells were fixed, and stained with DAPI for imaging.

Each plate contained 30 wells with cells treated with the senescence

inducer and 30 wells treated with DMSO (as a control). Datasets for

each cell line and senescence induction containeddata derived fromat

least three plates, resulting in a total of between 0.1 × 106 and 0.9 × 106

cells per condition (see Supplementary Table 1 for details). Training

datasets (as indicated in Supplementary Table 1) were then generated

by randomly selecting 10,000normal cells and 10,000 treated cells for

each training set. For the General Model, randomized samples from all

training datasets (3 cell lines, A549, SK-MEL-103, SK-HEP-1; 4 condi-

tions: Etoposide, Doxorubicin, Alisertib, Barasertib) were taken to

develop the classifier, as noted in Supplementary Table 1. Independent

training sets (with different randomizations of the same libraries) were

constructed for the classification tree and random forest algorithms.

Software
The following packages were utilized for classification trees, random

forest building, and related analysis. For Classification tree (CT) and

random forest (RF) algorithms python version 3.7.7 was used. The

following packages were also utilized: scikit-learn and derived

packages;47, pandas, numpy, matplotlib. pyplot, seaborn, and csv.

Area, Form Factor, Elongation, Compactness, Chord Ratio, Gyration,

and Displacement were used as nuclear features. Analysis of public

software CellProfiler (version 4.2.4)21 was performed using a nucleus

detectionworkflow. ForHighContentAnalysis (HCA), InCarta software

(Molecular Devices, version 1.14) was used. For B-score analysis R

(version 4.3.1) and packages BiocManager (version 1.30.22) and

cellHTS2 (version 2.64) were used.

Generation of classifiers to identify senescence in cell culture
For classification tree (CT)-based classifiers, preliminary classifica-

tion trees were built using sklearn, providing 30% of the training set

as test size. After assessing initial accuracy, AUC, and ROC curves,

cost complexity pruning was performed to avoid overfitting. The

optimal value of alpha was calculated and applied to develop the

classification trees. Obtained classification tree branches were

eliminated where redundancy occurred. For random forest (RF)--

based classifiers, the test size was set at 0.5. For CT classifiers the

classes were established in a binary manner, where 0 equalled

growing, normal cells and 1 represented senescent (treated) cells. For

RF classifiers senescence probability was estimated and values > 0.5

were considered as senescent. Classifiers were ultimately tested on

new experiments (test data) and the accuracy of prediction was

assessed. For the Voting-Based Clustering Algorithm (VCA), the input

from all algorithms described in Supplementary Table 2 (except the

CellProfiler-based classifiers) was considered. Relabeling of parti-

tions was avoided and opted for a democratic vote systemwith equal

weight per classifier algorithm.

Algorithm performance metrics
Algorithm accuracy on the test data was measured by area under the

curve (AUC) and receiver operating characteristic (ROC) curve (True

Positive Rate vs False Positive Rate) assessment and posterior testing

onnewdata notbelonging to the trainingdatasets. Algorithmaccuracy

was also measured using the following metrics in a dataset of co-

cultures of senescence and normal cells:

Accuracy =
TN+TP

TN+TP+FP+FN
ð1Þ

Precision=
TP

TP+FP
ð2Þ

Recall =
TP

TP+FN
ð3Þ

F1 Score =
Precision x 2Recall

Precision+Recall
ð4Þ

TP true positive; TN true negative; FP false positive; FN false

negative.

Co-cultures of senescent and non-senescent cells
The setup of these experiments is described indetail in Supplementary

Fig. 5. Briefly, 105 cells (for DMSO) and 106 cells (for treatment) were

seeded in 100mm dishes. 24 h after plate seeding media was washed

once with PBS (GibcoTM, Thermo Fisher, 10010023), and DMSO or

senescence-inducing drug was added to the media (DMEM, 10% FBS,

1% antibiotic-antimycotic). Media (with drug or DMSO) was replaced

every 72 h. 6 days post-treatment, senescent and control cells were

trypsinized and counted using a Guava Muse Cell Analyzer. DMSO-

treated and drug-treated cells were seeded in separate master plates

(96-well Round (U) Bottom Plate, Thermo Fisher, 163320) as indicated

in Supplementary Fig. 5c. Those master plates were used to generate

the co-cultureplate. After 24morehours, cells were cultured inC12FDG

(33μM, diluted in DMSO) for 30min, fixed in 4% PFA for 15min, and

stained with DAPI.

Senescence classifiers based on CellProfiler data
To develop algorithms utilizing CellProfiler (version 4.2.4)21, we pro-

duced a new training set consisting of 4 plates of DMSO-treated and

etoposide-treated A549 cells. 7 days after treatment cells were fixed,

stained with DAPI, and imaged using an INCell Analyzer 2500HS. The

acquired TIF files were then analyzed utilizing a bespoke nuclear

workflow CellProfiler protocol (Dapi_CellProfiler.cpproj, see “Code

Availability” section). The following features were considered for CT

and RF algorithm development: Area, Bounding Box Area, Compact-

ness, Convex Area, Eccentricity, Equivalent Diameter, Extent, Form

Factor, Major Axis Length, Maximum Feret Diameter, Maximum

Radius, Mean Radius, Median Radius, Minimum Feret Diameter, Minor

Axis Length, Perimeter, and Solidity. To capture nuclear morphology

parameter measurements, images were thresholded based on DAPI,

primary objects identified, and measurements performed. From the

resulting parameter files, cells were grouped by treatment, and ran-

domized, and 10,000 cells were extracted per condition, following the

same procedure to develop CT- (AECP) and RF-based (AERFCP)

classifiers.

Mouse experiments
Mice were kept on a 12-h light/dark cycle and between 21–23 °C tem-

perature and 45–65% humidity levels under specific pathogen-free

barrier conditions within individually ventilated cages with ad libitum

access to standard chow food (SDS RM1/3 [E] LBS Serving Bio-

technology) and water. C57BL/6 J littermate mice were used unless
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otherwise specified. As sex is not a factor in the scope of the study

design, liver sections of both male and female mice were used (as

detailed below) for different experiments. Animal welfare was mon-

itored and euthanasia practices were performed according to the

requirements of the aforementioned practice licenses and regulatory

frameworks.

Liver fibrosis
Eight-week-old male C57BL6/J mice were treated twice a week with

either corn oil (n = 6) or carbon tetrachloride CCl4 (0.5mL/kg) (n = 7)

by intraperitoneal injection for 6 weeks to induce liver fibrosis as

described before48. Mice were sacrificed at the indicated time points

and analyzed for senescence.

Aging experiment
Male C57BL/6 J littermates were used. Mice that were 90 days old

(n = 13) were used for the young cohort and 600 days old mice (n = 7)

for the old cohort. Mice were sacrificed at the indicated time points

and analyzed for senescence.

Liver cancer initiation and senolysis experiments
Hydrodynamic tail vein injection (HDTVI) was carried out in female

C57BL/6 J (Charles River UK) mice aged 5–6 weeks using 25μg of a

transposon expressing NrasG12V or NrasG12V, D38A along with 5μg of SB13

transposase-expressing plasmid. All plasmids were prepared with

GenElute HP Endotoxin-Free Maxiprep kit (Sigma). For HDTVI, vectors

were diluted in normal saline to a final volume of 10% body weight.

HDTVI was performed within 7–8 s.

For liver cancer initiation experiments, mice transduced with

transposon vectors co-expressing GFP and either NrasG12V (n = 6) or

NrasG12V, D38A (n = 9) were used.

For the experiment described in Supplementary Fig 15c, d an

additional cohort of mice transduced with transposon vectors co-

expressing GFP and NrasG12V (n = 12) was used, Mice were culled 9 days

(after HDTVI) and livers were collected for paraffin embedding.

For senolysis experiments, a transposon vector co-expressing

NrasG12V and Gaussia luciferase (Gluc) was used. On day 5 after HDTVI

mice were given either a senolytic drug (n = 9) or vehicle (n = 8)

intraperitoneally (i.p.) daily for 4 days. 24 h after the last drug injection

mice were culled and livers collected for paraffin embedding.

Immunohistochemical staining of tissue sections
Mouse liver tissue sections were deparaffinized in HistoclearTM (Sci-

entific laboratory supplies) for 5min, and washed in decreasing con-

centrations of ethanol, until a final 5min wash in dH2O Heat-induced

epitope retrieval (HIER) was then performed in a pressure cooker for

20min in citrate-based at pH 6.0 (VectorLab, H-3300-250) or tris-

based at pH 9.0 (VectorLab, H-3301-250), following the antibody

manufacturer’s instructions. For intracellular expression stains and

sections were washed in Triton X-100 0.2% in PBS for 10min and

washed in PBS for 5min. Slides were then incubated in BLOXALL

blocking solution (VectorLab, SP-6000), washed in PBS, and exposed

to Animal-Serum Free serum (Cell Signaling, 15019 L) diluted in dH2O

for 30min. Slides were then incubated with primary antibody over-

night in a humidified chamber at 4 °C. Slides werewashed twice in PBS

for 5min and incubated with secondary antibody SignalStain® Boost

IHCdetection reagentMouse/Rabbit, HRP (Cell Signalling Technology,

8125) for 30min. After, slides were washed in PBS and incubated in

SignalStain DAB (CST, 8059) for 5min or until the HRP signal was

visible and the reaction stopped in dH2O. Cells were then stained for

Hematoxylin (DAKO, Mayer’s Hematoxylin, S3309) for 30 s and

washed in dH2O.When necessary, slideswere further stained in EosinY

(Sigma–Aldrich, HT110132-1L). Slides were, dehydrated in 75% ethanol

for 1min and 100% ethanol for 5min, washed in Histoclear for 5min,

and mounted in DPX (Sigma–Aldrich).

Immunofluorescence staining of tissue sections
For Immunofluorescence staining, deparaffinization, and antigen

retrieval were performed as described previously (see “Immunohis-

tochemical staining of tissue” sections). Mouse liver samples were

incubated overnight in the primary antibody previously diluted in

antibody diluent (Dako). Samples were washed in PBS three times for

5min. Samples were then incubated in secondary antibody Signal-

Stain® Boost detection reagent (Cell Signalling Technology, 8125) for

45min. The signal was then amplified using Thermo Fisher

AlexaFluorTM 488/647 Tyramide SuperBoostTM Kit (B40958) following

the manufacturer’s instructions. To perform double staining, samples

were incubated in HCl 0.02N for 20min after the first antibody signal

amplification step. Samples were then washed in PBS for 5min and

peroxidase blocking was reapplied for 20min. Samples were then

incubated in Animal-Serum Free blocking solution (Cell Signaling,

15019 L) diluted in H20 for 1 h and the second primary antibody incu-

bation was performed overnight. The signal was then amplified using a

different wavelength-reactive SuperBoostTM Kit, using antibodies

raised in different hosts to avoid cross-reactivity. Samples were then

washed three times in PBS for 5min and incubatedwith DAPI (1μgml−1

in PBS) for 5min. Samples were washed thrice in PBS for 5min and

mounted in 50% glycerol in PBS.

Slide image acquisition and analysis
Slides containing preclinical and clinical liver samples were acquired

using 40x brightfield objective on a Zeiss AxioScan Z.1 or Leica Aperio

AT2 slide scanner and analysis was performed using QuPath version

0.3.0, adjusting the built-in cell acquisition parameters to immuno-

fluorescent and immunohistochemical samples to maximize the

accuracy of cell and nuclear detection for feature extraction and signal

quantification. A pixel sizeof 0.5μmwas established, and to accurately

detect nuclei and avoid artifacts a background andmedian filter radius

was established, together with a Gaussian filter to reduce noise and a

minimum nuclear area. To further ensure accurate detection, an

intensity threshold and amaximumbackground intensity were set. For

immunofluorescence nuclear detection, DAPI was used as a detection

channel and the same artifact filters were incorporated into the pipe-

line. The following features were extracted: centroids X and Y (coor-

dinates in μm, for single cell positioning in the slide), nucleus area,

nucleus perimeter, nucleus circularity, nucleus max caliper, nucleus

min caliper, and nucleus eccentricity. Where immunohistochemical

staining was performed, DAB optical density (OD)mean and total DAB

were also acquired (nuclear of cellular, corresponding to protein

expression localization). The indicated data were then extracted and

analyzed. For human patient samples, a circularity threshold (nuclei

superior to 0.7) was established to ensure that captured nuclei

belonged predominantly to hepatocytes and not to fibroblasts or

immune cells. The number of cells per sample (as evaluated by

acquired nuclei) varied between 7 × 104 and 1 × 105. Samples with less

than 10,000 cells were excluded from the analysis.

Senescence scoring system in tissue sections
Toassess senescence in liver tissue sections,we took advantageof liver

sections ofmice transducedwith NrasG12V using hydrodynamic tail vein

injection (HDTVI), stained with anti-p21Cip1 antibodies, and counter-

stained with Hematoxylin. 4 slides were scanned and analyzed using

QuPath. Cells were classified as p21Cip1-positive or -negative based on

DAB nuclear mean intensity (>0.2 for p21Cip1-positive cells and <0.2 for

p21Cip1-negative cells). Nuclear features (area, perimeter, maximum

caliper, minimum caliper, eccentricity, and circularity) were extracted

for p21Cip1-positive and p21Cip1-negative cells (see “Slide image acquisi-

tion and analysis” section). Data from 4.32 × 105 p21Cip1-negative cells

was used to obtain average measurements, which defined the ideal

normal (non-senescent) cell. p21Cip1-positive cells were ranked based

on the p21CIP1 staining intensity. The average parameters of the top one
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hundred p21Cip1-positive cells were selected to define the ideal senes-

cent cell. Therefore, for each nuclear feature, an ideal parameter value

for normal cells (PN) and an ideal value for senescent cells (PS) were

defined (shown in Supplementary Table 5).

For each cell, we performed the following operation:

P

n

i =0

p�PN

ðPS�PN Þ
�

PN
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�

�

�

�

�

�
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� 1
n

0
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1
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n

ð5Þ

Where:

n = number or features

p = acquired parameter value

PN = ideal parameter value for normal cells

PS = ideal parameter value for senescent cells

T = summation of absolute values of differences from acquired

parameters

Consequently, individual features from single nuclei obtained a

feature score, which was then corrected by the weighted effect of

each feature in the summation of the absolute values of the differ-

ences (ΣT), which allows to proportionalise the effect of the features.

Individual feature scores were then aggregated to provide a single

value (that we termed the cell senescence score, CSS) for each cell.

To calculate the tissue senescence score (TSS), for each tissue sec-

tion, we plotted curves showing the distribution of individual cell

senescence scores for all the cells present in that section. Thus, the

TSS from a given tissue sample relies upon the distribution of its

individual CSS values. To obtain the TSS value, that describes

senescence presence in the sample, we scored the sections based on

the percentage of CSS values between 1 and 5 (CSS values associated

with nuclear senescent features), thus obtaining a unique metric for

the tissue section.We evaluated other ranges of CSS values (as shown

in Supplementary Table 4) and chose 1–5 as the one better corre-

lating with the percentage of senescent cells present in the tissues.

Importantly, the same operation and metrics to calculate CSS/TSS

values (without adjusting or changing any of the parameters for

subsequent experiments) were applied to all preclinical and clinical

liver models used in this study.

Senescence assessment in samples from patients withmild fatty
liver disease
Human liver biopsies were fully anonymized and acquired from the

Imperial Hepatology and Gastroenterology Biobank, therefore no

regard for sex and gender was considered. Sections were depar-

affinized, and hydrated, and then heat-mediated antigen retrieval was

performed in citrate-based pH 6.0 solution. The endogenous perox-

idase was quenched with 3% hydrogen peroxide. The sections were

incubated with mouse monoclonal to p16INK4a (CINtec, 9511, clone

E6H4), followed by rabbit anti-mouse IgG. The sections were subse-

quently incubated with anti-rabbit IgG conjugated with polymeric

horseradish peroxidase linker (Leica Bond Polymer Refine Detection,

DS9800). DAB was used as the chromogen and the sections were then

counterstained with hematoxylin and mounted with DPX. IHC was

performed on Leica BOND III. Serial sections were stained with H&E

and used to calculate tissue senescence scores. Slides were scanned

with NanoZoomer 2.0HT (Hamamatsu, Japan). NDP.scan 3.2.12 soft-

ware was used for digital image acquisition and NDP.view2 software

was used for image viewing. 36 samples were processed and imaged,

but 2 samples with less than 10,000 cells were excluded from the

analysis.

Statistical analysis
We used GraphPad Prism (Version 9.4.0) for statistical analysis. Two-

tailed, unpaired Student’s t-tests were used to estimate statistically

significant differences between groups, as well as one-way ANOVA

when required. Pearson correlation analysis was performed utilizing a

two-tailed option, with a 95% confidence interval. Simple linear

regressionwas also performed to display the corresponding fit line. To

study the cumulative distributions between treated and control

nuclear featuresweperformed theKolmogorov-Smirnov (K-S) test and

detailed the maximum absolute difference (D) and the associated

P value.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper.

Code availability
Custom code and training sets can be found at: https://github.com/

Sen-Lab-LMS/Senescence_nuclear_features 49, which is archived in

Zenodowith the identifier [https://doi.org/10.5281/zenodo.10499895].
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