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Abstract: The neurobiology of tumors has attracted considerable interest from clinicians and scientists
and has become a multidisciplinary area of research. Neural components not only interact with
tumor cells but also influence other elements within the TME, such as immune cells and vascular
components, forming a polygonal relationship to synergistically facilitate tumor growth and progres-
sion. This review comprehensively summarizes the current state of the knowledge on nerve-tumor
crosstalk in head and neck cancer and discusses the potential underlying mechanisms. Several
mechanisms facilitating nerve-tumor crosstalk are covered, such as perineural invasion, axonogene-
sis, neurogenesis, neural reprogramming, and transdifferentiation, and the reciprocal interactions
between the nervous and immune systems in the TME are also discussed in this review. Further
understanding of the nerve-tumor crosstalk in the TME of head and neck cancer may provide new
nerve-targeted treatment options and help improve clinical outcomes for patients.
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1. Introduction
1.1. Nervous System (CNS/PNS)

The nervous system, consisting of the central nervous system (CNS) and peripheral
nervous system (PNS), controls a wide range of physiological activities in life, such as
organogenesis and development, homeostasis, and regeneration, and modulates many
pathophysiological processes, including cancer [1,2]. The CNS, which consists of the
brain, brainstem, cerebellum, and spinal cord, regulates tumorigenesis and growth by
releasing neurotransmitters or hormones into the systemic circulation [1,3]. In addition,
the CNS also functions through the PNS, which acts as a bridge to establish connections
between the CNS and the local tumor tissue. The PNS, composed of motor, sensory, and
autonomic (sympathetic and parasympathetic) nerve fibers, branches throughout the body,
usually accompanied by the microvasculature, infiltrating the tumor microenvironment
to modulate vascular or cellular elements [1]. A growing body of experimental and
clinical evidence indicates that sympathetic and parasympathetic nerves modulate tumor
progression in an antagonistic manner. For instance, sympathetic nerves (adrenergic
signaling) can accelerate tumor growth, whereas parasympathetic nerves (cholinergic
signaling) have the opposite effect in pancreatic and breast cancer [4-6]. However, the effect
may be reversed depending on the type of cancer, as cholinergic signaling has been reported
to promote tumor growth in gastric cancer [7,8]. In addition, parasympathetic innervation
has been found to be critical for glandular tubulogenesis, organogenesis, and regeneration
in the salivary gland, demonstrating its pivotal role in stem cell maintenance [9,10]. The
influence of sensory nerves on various cancers has also been reported [11-13]. Reciprocally,
tumor cells can reversely remodel the nervous system via the direct contact or release of
neurotrophic growth factors or chemokines [14,15].
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1.2. Tumor Microenvironment

The tumor microenvironment (TME) is an ecosystem composed of various cell types, such
as endothelial cells, fibroblasts, immune cells, and extracellular matrix components [16,17].
The nervous system has emerged as a new pathological component of the TME and, together
with other cellular and non-cellular components, forms a neural-immune-vascular network
that plays an important role in tumor initiation, progression, and metastasis. The complex
crosstalk between tumor cells and the surrounding environment has been widely recognized
to influence therapeutic efficacy [18,19].

The diameters and densities of nerves and their distances from cancer cells are critical
features for describing the neurophenotype within the TME and have a clinically relevant
impact on the nerve-tumor crosstalk [20]. The nerve diameter is the most fundamental
element, and several studies have reported that larger nerve diameters are associated with
poor clinical outcomes in several cancer types, including pancreatic, gastric, and head and
neck cancers [21-23]. The nerve density, defined as the number of nerves in a given area
and mainly influenced by axonogenesis and neurogenesis, is another significant predictor
of an unfavorable prognosis [24-26]. The distance between nerves and cancer cells in the
TME, which varies from distant to close but without physical contact to perineural invasion
(PNI), is another critical parameter related to tumor metastasis and the death rate [23,27].

As an important component of the TME, the nervous system regulates pathological
processes by secreting neurotransmitters and growth factors to enhance tumor develop-
ment. Conversely, tumor cells remodel the nervous system and alter neurological functions
to support their growth and promote intra-tumoral innervation. Nerves interact with other
components of the TME to provide metabolic support for tumor cells. Neural signals
can regulate and coordinate vascular growth to establish a vascular network to ensure
the transport of oxygen and nutrients [28]. In prostate cancer, noradrenaline secreted by
adrenergic nerves can activate angiogenesis via endothelial 3-adrenergic receptor signaling
to facilitate tumor growth. In a mouse model, the loss of endothelial Adrb2, which encodes
the 32-adrenergic receptor, altered the endothelial cell metabolism from aerobic glycolysis
to oxidative phosphorylation, leading to the suppression of angiogenesis [29]. In pancreatic
ductal adenocarcinoma, the peripheral axons supply serine to provide metabolic support
for tumor growth in nutrient-poor environments, while serine-deprived conditions can
conversely promote tumor innervation via the translation and secretion of the nerve growth
factor (NGF) [30]. Tumor cells have also been reported to exploit nociceptive nerves to pro-
duce calcitonin gene-related peptide (CGRP), thereby inducing cytoprotective autophagy
to thrive in nutrient-poor environments [11].

1.3. Neurobiology of Head and Neck Tumors

Head and neck cancer, which mainly includes malignancies of the oral and maxillo-
facial regions and upper aerodigestive tract, is the seventh most common cancer type
worldwide, with high morbidity and mortality rates [31,32]. Tobacco use, alcohol consump-
tion, human papillomavirus (HPV) infection, and Epstein—Barr virus (EBV) infection are
widely recognized risk factors for head and neck cancer [32,33], and approximately 90%
are diagnosed as squamous cell carcinoma (HNSCC) [34]. Traditional treatment options
include surgery, chemotherapy, and radiotherapy as monotherapy or in combination, de-
pending on the tumor location and staging. In addition, risk factors such as the resection
margin, extracapsular spread, and HPV status also influence postoperative treatment strate-
gies [32,35]. Emerging, new treatment strategies, such as immunotherapy and targeted
therapy, demonstrate the increasing focus on key elements of the TME [32,36]. These ele-
ments of the TME include neural components, which are common because head and neck
cancers, especially oral cancer, exhibit perineural invasion and intra-tumoral innervation
to a greater extent than other cancers due to the highly innervated nature of the head and
neck region. Recent review articles have summarized biomarkers and neural markers
involved in perineural invasion, axonogenesis, and neural reprogramming (discussed
in the following chapters), providing compelling evidence for nerve-tumor crosstalk in
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head and neck cancer [37,38]. Several preclinical studies have shown that the surgical
or chemical ablation of nerve fibers can significantly affect the tumor growth in prostate
cancer, gastric cancer, and pancreatic cancer [8,12,28]. Due to the important functions of
nerves in the facial region, the application of ablation therapy in head and neck cancer is
relatively limited. In a mouse model of orthotopically injected p53-deficient oral squamous
cell carcinoma (OSCC) cells, which cause tumor-associated sensory nerves to transdifferen-
tiate into adrenergic nerves, treatment with carvedilol (a non-selective blocker of the 31,
2, and «1 adrenergic receptors) suppressed tumor growth and proliferation [39]. In the
low-glucose environment of OSCC, cancer cells can co-opt nociceptive nerves to thrive in
nutrient-poor environments [11]. Consequently, drugs that block this process have been
proposed to improve the efficacy of nutrient starvation therapy [11]. Further understanding
of the nerve—cancer crosstalk in the head and neck TME may provide new nerve-targeted
treatment options and help improve clinical outcomes for patients. Accordingly, this review
presents the current state of the knowledge on nerve-tumor-immune interactions and the
underlying mechanisms, and on neuroscience-driven therapeutic strategies in head and
neck cancer (Figure 1).
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Figure 1. Summary of nerve-tumor-immune interactions, research tools, and neuroscience-based
therapeutic strategies discussed in this review article.

2. Methods

A comprehensive literature search was conducted using PubMed to identify relevant
studies on the topic of nerve—tumor crosstalk in all types of cancer, especially head and
neck cancer, published up until December 2023. Combinations of the following keywords
were used: head and neck cancer; oral cancer; nerve; peripheral nervous system; tumor
neurobiology; perineural invasion; neurogenesis; axonogenesis; neural reprogramming;
neuro-immune interactions; and tumor microenvironment. The reference lists of high-
impact reviews in the field of interest were also scanned, and articles related to our topic
were selected. Priority was given to studies from the last five years, but highly relevant
older studies were also included. Data on the study characteristics and outcomes related to
mechanisms of nerve—tumor crosstalk were extracted and summarized from the selected
articles. The literature search yielded 142 relevant articles on mechanisms of nerve—tumor
interactions in head and neck cancer and other solid tumors.

3. Perineural Invasion

Perineural invasion (PNI) is a common pathological feature found in cancers of nerve-
rich regions, such as prostate cancer, pancreatic cancer, and head and neck cancers [40]. PNI
has long been a focus of research because it is considered a route of metastasis in addition
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to the vascular and lymphatic channels, and multiple studies have associated PNI with an
unfavorable prognosis [40-43]. In this chapter, the main features and mechanisms of PNI
are presented, and the limitations in diagnosis are also discussed.

3.1. Definition, Diagnostics, and Clinical Relevance

PNI is the extension of malignant tumor cells around, into, or through the nerves and
was first reported in head and neck cancer as the tendency to spread along the nerves when
migrating into the intracranial fossa [40,44]. The predominant pathological definition of
PNI is that the tumor is close to a nerve and involves at least 33% of its circumference,
or that tumor cells are found in any of the three layers (the epineurium, perineurium,
and endoneurium) of the nerve sheaths [40]. The presence of PNI is often a harbinger
of tumor-associated pain and has been correlated with a poor prognosis in several can-
cers, such as colorectal cancer, prostate cancer, and pancreatic adenocarcinoma [45-47].
In HNSCC, particularly OSCC, pretreatment pain is also an important variable that is
uniquely associated with PNI [48,49]. In HNSCC, the incidence of PNI varies from 25%
to 80% [50-52], and several studies have positively related PNI to aggressiveness and
decreased survival [23,27,53]. However, a spatial and transcriptomic analysis in OSCC
patients not only identified PNI as an independent predictor of a poor prognosis but also
suggested that the nerve—tumor distance is an indicator of an unfavorable clinical outcome
independent of PNI [23].

Adenoid cystic carcinoma (ACC), which accounts for 1% of head and neck cancers
and 7.5-10% of salivary malignancies [54], is characterized by PNI, which provides a
low-resistance pathway for metastasis and high invasiveness and leads to pain or nerve
paralysis at an early stage [55,56]. However, the effect of PNI on ACC remains controversial,
with some studies identifying it as a key prognostic factor or independent predictor of local
recurrence and metastasis [57-60], while other studies show no statistical significance for
survival [61-63].

3.2. Mode of Mutual Interaction—Schwann Cells

Schwann cells (S5Cs) are the major supporting glial cells of the PNS that sheathe the pe-
ripheral nerve axons and perform several important functions, including rapid signal trans-
duction, nerve trophic support, extracellular matrix production, neurogenesis, and nerve
regeneration [64,65]. SCs can partially dedifferentiate into demyelinated repair SCs when
nerves are injured or are invaded by tumor cells [66]. Repair SCs produce neurotrophic
molecules and secrete pro-inflammatory factors to remodel the local microenvironment
and recruit macrophages to synergistically aid axonogenesis and post-injury repair [66,67].
SCs play a key role in promoting PNI. Deborde et al. demonstrated that SCs enhance cancer
invasion through direct interaction with tumor cells [68]. SCs express neural cell adhesion
molecule 1 (NCAM1), which separates tumor cell clusters into individual cells to induce
their migration towards SCs and spread along nerves. In pancreatic and colorectal cancers,
SCs migrate to tumor cells, but not to benign cells, via the NGF-neurotrophic receptor tyro-
sine kinase 1 (NTRK1/TrkA)-nerve growth factor receptor (NGFR/p75NTR) axis before
tumor cells initiate migration towards the peripheral nerves, likely providing a pathway for
tumor cell invasion [67,69]. In addition, non-myelinating SCs activated by cancer cells can
form tumor-activated Schwann cell tracks (TASTs), which serve as a channel for cancer cell
movement and increase cell mobility, similar to the reprogramming of SCs during the nerve
repair process [70]. In salivary ACC, SCs have been shown to promote PNI by inducing
the epithelial-to-mesenchymal transition (EMT) and the Schwann-like differentiation of
tumor cells through the brain-derived neurotrophic factor (BDNF)-neurotrophic receptor
tyrosine kinase 2 (NTRK2/TrkB) pathway [71]. SCs are also capable of recruiting immune
cells, such as macrophages and cytotoxic T cells, to the PNI site to facilitate tumor neural
invasion by generating cytokines [65,67,69]. Taken together, these results show that tumor
cells use the normal repair program of SCs to promote PNI.
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3.3. Limitations and Challenges of PNI Diagnostics

Despite the fact that PNI has a critical impact on tumor prognosis, the accurate
diagnosis of PNI is still limited, partly due to the lack of standard diagnostic criteria and
the intra- and inter-observer variability. In addition, the limited availability of tumor tissue
samples from patients undergoing nonsurgical treatment hinders adequate pathological
examination. Therefore, studies have focused on deep learning techniques combined
with artificial intelligence and bioinformatic analysis to facilitate PNI diagnosis. Lee et al.
developed a deep learning-based human-assisted tool named the Domain-KEY algorithm
to help identify PNI in digital slides, which not only promotes diagnostic accuracy but also
reduces the diagnostic time [72]. Schmitd et al. performed a spatial transcriptomic analysis
of nerves at different distances from the tumor and identified PNI as an independent
predictor of a poor prognosis [23]. Furthermore, the study found that the proximity of
the nerve to the tumor was also associated with poor outcomes even when the tumor was
PNI-negative. These findings suggest that the current diagnostic criteria for PNI should
be updated based on the nerve-tumor distance [23]. Weusthof et al. established a PNI-
related 44-gene signature based on RNA sequencing data and trained a random forest
model to predict occult perineural invasion [73]. However, further efforts are needed to
unify the diagnostic criteria for PNI, improve the diagnostic accuracy, and consider the
clinical practicality.

4. Intra-Tumoral Neural Infiltration

Intra-tumoral nerve infiltration is widely observed in many types of cancer, especially
those of highly innervated organs, such as pancreatic cancer, prostate cancer, and head and
neck cancer, and it can cause pain, paresthesia, numbness, and paralysis. There is increas-
ing evidence that the intra-tumoral nerve density is associated with tumor progression,
metastasis, and prognosis [1,15]. The mechanisms by which tumors regulate intra-tumoral
neural infiltration are summarized as axonogenesis, neurogenesis, neural reprogramming,
and the transdifferentiation of other cells into neurons (Figure 2).
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Figure 2. Mechanisms of intra-tumoral neural infiltration. Tumors regulate intra-tumoral neural
infiltration through axonogenesis, neurogenesis, neural reprogramming, and the transdifferentiation
of other cells into neurons.

4.1. Axonogenesis

Axonogenesis describes neurite sprouting and outgrowth to provide peripheral nerves
to the malignant tumor [15]. Ayala et al. demonstrated axonogenesis in human tumors
using two- and three-dimensional reconstructions of whole prostates. The study also found
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that cancer cells induce neurite outgrowth and axon hyperplasia by secreting the axon guid-
ance molecule semaphorin 4F (SEMA4F), and that silencing SEMA4F inhibits experimental
neurogenesis [74]. The study provides new evidence that PNI is not the only interaction
between tumor cells and nerves. Subsequent studies identified other neurotrophins and
axon guidance molecules secreted by cancer cells, such as brain-derived neurotrophic factor
(BDNE), nerve growth factor (NGF), and granulocyte-colony stimulating factor (G-CSF),
to promote neurite outgrowth and increase the neuronal density in the TME [5,75,76].
Consistently, BDNF is also overexpressed in OSCC and leads to cancer pain via binding
to TrkB [77]. NGF, which is highly expressed by OSCC cells, can activate its two receptors
TrkA and NGFR, contributing to PNI, cancer pain, and metastasis [78].

4.2. Neurogenesis

In addition to axonogenesis, Ayala et al. were the first to demonstrate cancer-associated
neurogenesis in prostate cancer. While axonogenesis refers to neuron enlargement and
axon extension, neurogenesis emphasizes the increase in neuron body cells. The study
showed an increase in dorsal root ganglion neurons in prostate cancer patients, suggesting
neurogenesis [74]. This phenomenon may also be present in other types of cancers, particu-
larly neurotropic cancers that readily invade in, around, and through peripheral nerves,
such as pancreatic and head and neck cancers [79]. More recently, Mauffrey et al. reported a
mechanism of cancer-related de novo neurogenesis and demonstrated the migration of dou-
blecortin (DCX)-expressing neural progenitor cells from the subventricular zone (SVZ) of
the brain to the tumor site and metastatic niches. At the tumor site, DCX-expressing neural
progenitor cells differentiate into adrenergic neurons to promote tumorigenesis [80]. DCX is
a microtubule-associated protein that stabilizes microtubules and is involved in neuroblast
migration [81]. In a mouse model of prostate cancer, the orthotopic transplantation of
DCX+ neural progenitor cells promoted the initiation of both tumor growth and metastasis,
whereas the selective depletion of DCX+ progenitor cells suppressed both processes [80].
The study reveals a novel mechanism whereby the SVZ of the CNS is hijacked to provide
progenitors for de novo neurogenesis and to facilitate tumor development. However, the
underlying mechanism that triggers the recruitment of progenitor cells from the CNS and
the molecular signaling pathways involved requires further investigation. The study sheds
light on a phenomenon that is easily ignored because of the confusion between the concepts
of axonogenesis and neurogenesis, and there is an urgent need to further explore de novo
neurogenesis in other cancers.

In addition to being a marker of neural progenitor cells, DCX is expressed in a variety of
cancers, including glioblastomas, gangliogliomas, prostate cancer, and liver cancer [81-83].
Doublecortin-like kinase 1 (DCLK1), DCLK2, and DCLK3, as members of the DCX super-
family, share common features of appearance and function. DCLK1 has been identified
as a cancer stem cell marker in gastrointestinal, pancreatic, and colorectal cancers, and its
overexpression has been associated with tumor progression and poor clinical outcomes
in several cancer types [84]. DCLK2 and DCLKS3 are also associated with tumor invasion
and metastasis in breast cancer and gastric cancer, respectively [85,86]. Several studies
show DCLK1 overexpression in head and neck cancer, suggesting DCX superfamily-related
neurogenesis as a potential mechanism of intra-tumoral neural infiltration [87-89].

4.3. Neural Reprogramming

To explore the origin of newly formed adrenergic nerves in the TME of head and neck
cancer, Amit et al. compared the transcriptome of tumor-associated trigeminal sensory
neurons with that of endogenous neurons and revealed a phenotypic switch from sen-
sory nerves to adrenergic neo-neurons induced by cancer-derived extracellular vesicles
(EVs) [39]. This phenomenon has been linked to TP53, one of the most frequently mutated
tumor suppressor genes in head and neck cancer, and its fluctuating expression is also
closely associated with nerve regeneration [90,91]. In TP53-deficient tumors, a miRNA
array analysis revealed a decrease in miR-34a and miR-141 in EVs, which caused an increase
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in the number of neurofilaments and promoted the axonogenesis of trigeminal ganglion
neurons. The reduction in miR-34a also induced the transdifferentiation of sensory nerves
towards adrenergic nerves [39]. By performing surgical sensory denervation and chemi-
cal sympathectomy prior to tumor cell inoculation in a mouse model, they showed that
exosome-induced neural reprogramming, rather than the outgrowth of existing adrenergic
nerves, promoted tumor proliferation and progression [39]. In conclusion, the study identi-
fied a novel mechanism of nerve—cancer interaction in head and neck cancer and proposed
a potential strategy for anti-cancer therapy.

4.4. CSC Differentiation into Neurons

Cancer stem cells (CSCs) are a group of undifferentiated tumor cells that possess
self-renewal, multipotency, and differentiation capabilities. CSCs play a critical role in
driving tumorigenesis, metastasis, and recurrence [92,93]. One study demonstrates that the
neurotransmitter 5-hydroxytryptamine (5-HT) produced by enteric serotonergic neurons is
able to modulate the self-renewal and tumor-initiation capacities of colorectal CSCs [94].
Lu et al. observed that neural cells with human cell-specific markers were detectable in
xenografts after the transplantation of CSCs from gastric and colorectal cancer patients into
nude mice. In an in vitro differentiation assay, they provided experimental evidence that
a fraction of CSCs has the capacity to generate neuronal cells. These CSC-derived neural
cells express tyrosine hydroxylase (TH) and vesicular acetylcholine transporter (VaChT),
the neuronal markers of sympathetic and parasympathetic neurons, respectively [95]. The
notion that CSCs serve as a source of tumor neurogenesis was further supported via
RNA sequencing analyses of aldehyde dehydrogenase (ALDH)-positive CSCs from colon
cancer patient-derived organoids (PDOs) and xenografts (PDXs). The study confirmed an
enrichment of neural developmental gene expression in CSCs. Moreover, the functional
analyses demonstrated a key role for the neural crest stem cell (NCSC) regulator early
growth response 2 (EGR2) in tumor growth, suggesting that targeting EGR2 may provide a
therapeutic differentiation strategy to eliminate CSCs and block nervous system-driven
disease progression [96]. In ACC, a study revealed a previously uncharacterized CSC
population with neural stem cell (NSC) properties expressing SRY-box transcription factor
10 (SOX10), a marker of the gliogenesis and maintenance of adult NSCs and other neural
differentiation factors, such as notch receptor 1 (NOTCH1) and fatty acid binding protein
7 (FABP7) [97]. A subsequent study also found that SOX10-expressing and NSC-like
CSCs in basal-like breast carcinoma shared characteristics and provided new targets for
treatment [98].

4.5. Macrophage Transdifferentiation into Neurons

In addition to neuronal cells, cancer pain is also associated with numerous non-
neuronal cells mainly through the secretion of pro-inflammatory mediators or algogenic
mediators to sensitize nociceptors in the TME [99]. Monocytes and macrophages can pro-
duce tumor necrosis factor (TNF) and interleukin 1 beta (IL-13) to enhance pain transduc-
tion and conduction, and the depletion of these cells conversely impairs the development
of mechanical and thermal hypersensitivity [100,101]. Taken together, these results sug-
gest that tumor-associated macrophages (TAMs), as an important component of the TME,
have the potential to modulate intra-tumoral neural infiltration. Based on this hypothe-
sis, Tang et al. used the single-cell RNA sequencing of lung adenocarcinoma to uncover
a macrophage-to-neuron-like cell transition (MNT), describing a phenomenon in which
TAMs directly transdifferentiate into neuron-like cells to facilitate de novo neurogene-
sis [102]. In vitro, bone marrow-derived MNT cells exhibited neuronal phenotypes and
activities, and NOD/SCID mice showed increased tumor-related nociceptive behavior
following MNT transfer [102]. SMAD family member 3 (SMAD3), a modulator of the
neural lineage differentiation of pluripotent NSCs, served as a key regulator for the genetic
promotion of the MNT, and its blockage reduced tumor innervation and tumor-related
nociceptive behaviors in vivo [102,103]. Overall, the study provides a novel mechanism of
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neurogenesis that may represent a precision therapeutic target for cancer pain and tumor
progression.

5. Neuro-Immune Interactions

Mutual interactions between the nervous and immune systems play a critical role
in maintaining homeostasis. In the context of cancer, neurons and immune and tumor
cells interact via soluble signaling molecules and neurotransmitters to form a triangular
relationship that modulates tumor growth and progression. However, sensory nerves,
autonomic nerves, and other neural components have diverse effects on the regulation of
the immune phenotype and the anti-tumor immune response [1,104] (Figure 3).
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Figure 3. Neuron-immune interactions. Sensory nerves (A) and autonomic peripheral nerves (B)
interact with immune components of the TME and promote tumor growth synergistically.

5.1. Sensory Nerves

Nociceptors are the most widely studied sensory nerve fibers in the context of the
immune surveillance and immune escape of cancers. Nociceptors can influence immune
components by releasing neuropeptides, such as CGRP, and, in melanoma, CGRP released
by nociceptors directly promotes CD8+ T cell exhaustion [104,105]. Indeed, the pharma-
cological nociceptor inhibition or blocking of the receptor activity modifying protein 1
(RAMP1), the receptor for CGRP, reduced T cell exhaustion and inhibited tumor growth
in a mouse model. CD8+ T cell exhaustion was restored in a mouse model in which
most mechano- and thermosensitive nociceptors were ablated via treatment with recombi-
nant CGRP. Analysis of single-cell RNA sequencing data from human melanoma samples
showed that CD8+ T cells expressing RAMP1 are more likely to be exhausted than RAMP1-
negative cells and are associated with a poor prognosis [106]. CGRP also suppresses the
murine macrophage antigen presentation to T cells by modulating the cytokine expression
and regulating macrophage polarization to the pro-tumorigenic M2 subtype [107].

In the head and neck region, tissues are innervated by sensory nerves, primarily origi-
nating from the trigeminal ganglia [39,108]. CGRP, as the most abundant neurotransmitter
in trigeminal ganglion neurons [108], has been shown to regulate the immune response
through the RAMP1 signaling pathway in OSCC [109]. This study demonstrated a higher
expression of RAMP1 for tumor-infiltrating immune cells (CD4+ T cells, cytotoxic CD8+ T
cells, and NK cells) in OSCC patients compared to immune cells from the normal tissue
of healthy individuals [109]. High expression of RAMP1 was also confirmed in cultured
oral cancer cells and orthotopic xenografts, contributing to oral cancer pain [110]. In Cgrp
knock-out mice, tumor growth was significantly inhibited compared to wildtype controls,
accompanied by an increase in tumor-infiltrating immune cells [109].

Another study identified and functionally tested a sensory neuro-immune circuit that
responds to lymph-borne inflammatory signals. Transcriptomic profiling revealed that
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multiple sensory neuron subsets, predominantly peptidergic nociceptors, innervate lymph
nodes (LNs). The optogenetic stimulation of LN-innervating sensory fibers induced rapid
transcriptional changes in several cell types, and particularly in endothelia, stromal cells,
and innate leukocytes [111].

5.2. Autonomic Peripheral Nerves

Stress can promote tumor initiation and progression in several cancer types, including
oral, prostate, and skin cancers [112,113]. This is explained, in part, by the fact that the
stress-induced adrenergic signaling produced by local sympathetic nerves has multiple
effects on different immune components of the TME. Accordingly, stress has been linked
with increased metastasis in breast cancer, in part by affecting the recruitment of tumor-
associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and other
immune cells [114].

Stress-induced -adrenergic receptor (3-AR) signaling causes DNA damage, leading
to tumorigenic effects in human oral keratinocytes [115]. In ovarian cancer cells, exposure to
norepinephrine (NE) causes DNA double-strand breaks, and pretreatment with propranolol
(a non-selective 3-blocker) can counteract the norepinephrine-induced DNA damage [116].
Similarly, NE significantly impairs the DNA damage repair capacity of UV-exposed murine
NIH/3T3 fibroblasts via the regulation of the DNA damage sensors checkpoint kinase 1
(Chek1/Chkl) and Chk?2, and the proto-oncogene cell division cycle 25A (Cdc25A), which
is involved in cell cycle delay [117].

Other studies have reported that the immunomodulatory cytokines IL-6 and IL-
8, which are important in inflammation and tumor development, are induced via f(3-
AR signaling to enhance the growth and prevent the apoptosis of tumor cells via the
SRC proto-oncogene, non-receptor tyrosine kinase (SRC), or cAMP /PKA signaling path-
ways [118-120]. In addition, Guillermo et al. demonstrated a significant increase in C-C
motif chemokine ligand 2 (CCL2/MCP1) via cAMP and PKA after the stimulation of
-AR signaling, resulting in macrophage recruitment and infiltration to tumor sites [121].
Erica et al. showed a 30-fold increase in breast cancer metastasis via 3-AR signaling via
the promotion of the infiltration of macrophages and their differentiation into the M2
subtype [114].

Immune checkpoint molecules, such as programmed death-1 (PD-1) and programmed
cell death ligand-1 (PD-L1), are critical for immune surveillance and anti-tumor immune
responses. It is worth noting that norepinephrine activity via 3, AR signaling can upregulate
PD-1 on T cells [122]. A study in prostate cancer showed a high expression of PD-L1 in
regions with abundant intra-tumoral nerves, and that the density of PD-L1-positive tumor-
associated nerves is negatively correlated with the quantity of CD8+ T cells [123]. In breast
cancer, sympathetic nerve stimulation accelerates tumor growth while parasympathetic
nerve stimulation has the opposite effect. Tumor-specific sympathetic denervation in a
mouse xenograft model and in a rat model with chemically induced tumors showed a
marked decrease in the PD-1 and PD-L1 expressions on CD8+ and CD4+ T lymphocytes [6].

5.3. Other Neural Components

Schwann cells (SCs) are another notable member of the peripheral nervous system
that can produce chemokines to enhance the chemotactic capacity of immune cells [124].
SCs modulate the immune microenvironment through the CCL2/ C-C motif chemokine
receptor 2 (CCR2) axis. CCL2 released by SCs enhances the proliferation, migration, and
invasion capabilities and EMTs of tumor cells, as well as induces TAMs to polarize into
the M2 subtype, resulting in immunosuppression [125,126]. Toll-like receptors (TLRs),
the activation of which modulates the maturation of antigen-presenting cells and T cell
activation, are also expressed on SCs [104,127,128].

However, neural signaling molecules can sometimes exert functions directly on im-
mune cells without involving neural structures. The neurotransmitter gamma-aminobutyric
acid type A (GABA), produced and secreted by B lymphocytes, can promote the differen-
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tiation of monocytes into anti-inflammatory macrophages that release IL-10. Binding to
the corresponding receptor on CD8+ T cells inhibits the anti-tumor response and promotes
tumor growth [129]. In orthotopic xenograft mouse models of gastric and pancreatic cancer,
platelet-derived serotonin upregulated the PD-L1 expression in tumor cells via histone
serotonylation mediated by transglutaminase 2, impaired the function of intra-tumoral
CD8+ T cells, and accelerated tumor growth [130].

6. Imaging and Treatment Strategy

The study of nerve—cancer interactions relies on the development of imaging tech-
niques and the establishment of in vitro and in vivo models. The rapid development
of multi-omics analyses is also providing novel approaches to investigate the potential
mechanisms at the molecular level. These research tools not only help to elucidate the
nature of tumor neurobiology but also facilitate the clinical translation of nerve-specific
treatment strategies.

6.1. Imaging Technologies for Cancer—Neuron Interactions

To better understand the interactions between the PNS and tumor, multidisciplinary
techniques and methods are required to provide clear insights from the morphological
to the molecular level. At the structural and functional level, electron microscopy (EM)
is widely used to reveal the synaptic structures between neurons and tumor cells [131].
Dynamic contrast-enhanced magnetic resonance (MR) and MR spectroscopy are utilized
for the neuroimaging of in vivo models or clinical diagnosis [132,133]. In CNS tumors,
multiphoton laser-scanning microscopy (MPLSM), which provides high-resolution in vivo
imaging, has been used to monitor the coordinated activity of tumor cells in neuronal signal-
ing when combined with calcium imaging in a spatial and functional manner [131,134,135].
Imaging techniques for non-CNS tumors are less developed because of the limitations
of tracking the entire peripheral nerve system. To improve this situation, tissue-clearing
techniques and light-sheet microscopy have been developed to achieve the visualization of
relevant structures at the subcellular level through intact, transparent organs, facilitating the
assessment of physical and functional cancer-neuron interactions [14,136,137]. However,
more emerging neuroimaging techniques should be leveraged to map nerve involvement
and interactions longitudinally in vivo. At the molecular level, multi-omics analyses, such
as single-cell RNA sequencing, spatial transcriptomics, and proteomic approaches, have
been developed to investigate the molecular characteristics of neurons, tumor cells, and
other cellular components in the TME [1,23,73]. Other techniques to explore the mecha-
nism underlying the cancer-neuron crosstalk include the generation of enhancer-based
lentiviruses, single-molecule imaging tools, and in vivo genetic perturbation [1]. In addi-
tion, in vitro co-culture models and in vivo xenograft mouse models are often used to better
understand the dynamic interactions between the neurons, tumor cells, and components of
the TME [1].

6.2. Neuroscience-Instructed Therapeutic Approaches

The emerging clinical relevance of the reciprocal cancer-neuron interactions within
the TMEs of many human tumors has attracted great interest in the development of in-
novative therapeutic strategies, either based on the identification of new drug targets or
the repurposing of already well-established drugs for anti-tumor treatment. For example,
[-blockers are widely used as drugs to regulate blood pressure, heart rate, and airway
reactivity [138], but they also show anti-tumor effects due to their antagonistic actions on
the adrenergic nervous system [39,139,140]. In breast cancer, a phase Il clinical trial demon-
strated that propranolol decreased the expressions of biomarkers, which are associated
with EMT-related signaling and metastasis in treated patients [141]. Other clinical trials
showed tumor suppression in melanoma, prostate cancer, and hepatocellular carcinoma,
via the targeting of adrenergic receptors [14]. These findings suggest that 3-blockers may
work synergistically with other well-established anti-tumor drugs to improve the clini-
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cal outcomes of cancer patients [138]. Although several neural signaling inhibitors have
shown promising anti-tumor efficacy in vitro and in vivo, challenges remain in the clinical
application not only because these drugs are not TME-specific, but also because they affect
the normal physiological processes and function of the PNS.

Local denervation via surgical or pharmacological intervention is another potential
strategy to treat cancer patients, especially those with neurotropic carcinomas. Microsur-
gical denervation, which minimizes the extent of surgical intervention, is considered an
alternative for cancer patients with a high risk of undergoing direct tumor resection [14]. In
prostate cancer, a phase I/1I clinical trial performing denervation via unilateral botulinum
toxin type A injection prior to prostatectomy showed increased tumor cell apoptosis com-
pared to contralateral tumor tissue [142]. However, the strategy still faces the challenge
that denervation has potential side effects on the organ system.

In head and neck cancer, the translation of PNS-targeted therapy from preclinical
models to clinical practice is limited, in part because the abundant and complex nerve
distribution in this anatomic region restricts the adequate inhibition of neurons. The
development of new targeted therapies based on neuron-specific strategies requires a better
understanding of the underlying principles of the complex cancer-neuron crosstalk.

7. Conclusions and Outlook

In summary, recent studies have demonstrated that the nervous system can directly
or indirectly regulate tumor progression and metastasis, while tumors actively recruit
neural components to remodel the TME. The study of the nerve-tumor interactions in
several cancer types, including head and neck cancer, has elucidated several potential
mechanisms that facilitate the development of nerve-targeted treatment strategies. In
head and neck cancer, nerve—tumor crosstalk plays a critical role in tumor growth and
contributes to unfavorable clinical outcomes. The establishment of deep learning techniques
and bioinformatic approaches has not only improved the early diagnosis of PNI but also
paved the way for innovative and comprehensive treatment options. The understanding of
intra-tumoral neural infiltration in head and neck cancer also provides potential strategies
targeting denervation.

In terms of treatment, the current nerve-targeted strategies lack specificity for neural
components of the TME and therefore have limited use in clinical practice due to side effects
on normal nerve function. It is anticipated that a more detailed characterization of nerve
and tumor cell signaling and biomarkers at the molecular level will help identify potential
druggable targets, leading to the development of neuroscience-based TME-targeted treat-
ment options. Advances in drug delivery systems to locally target nerve—tumor signaling
pathways may also facilitate overcoming these challenges.

While this review synthesizes the existing evidence on nerve-tumor interactions, the
studies conducted to date have some limitations, such as unclear clinical relevance and
modes of action for different head and neck cancer subtypes, small sample sizes, or a lack
of experimental validation in clinical samples. The future direction of this field should
focus on elucidating specific signaling pathways involved in processes such as perineural
invasion and neural reprogramming in the head and neck cancer subtypes. In vivo models
that can better simulate the complex nerve-tumor microenvironment are also urgently
needed to elucidate the mutual interactions between tumors and the nervous system,
which is critical for the future translation into clinical practice. Integrating basic knowledge
of neuro-immune signaling will also help to establish combination therapies in order to
disrupt lethal nerve—tumor communication.
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