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The dynamic genetic determinants of
increased transcriptional divergence in
spermatids

Jasper Panten1,2,3, Tobias Heinen2,4,5, Christina Ernst 6, Nils Eling 7,8,

Rebecca E. Wagner3,9, Maja Satorius1, John C. Marioni 10,11,12,

Oliver Stegle 2,5 & Duncan T. Odom 1,3,10

Cis-genetic effects are key determinants of transcriptional divergence in dis-

crete tissues and cell types. However, how cis- and trans-effects act across

continuous trajectories of cellular differentiation in vivo is poorly understood.

Here, we quantify allele-specific expression during spermatogenic differ-

entiation at single-cell resolution in an F1 hybrid mouse system, allowing for

the comprehensive characterisation of cis- and trans-genetic effects, including

their dynamics across cellular differentiation. Collectively, almost half of the

genes subject to genetic regulation show evidence for dynamic cis-effects that

vary during differentiation. Our system also allows us to robustly identify

dynamic trans-effects, which are less pervasive than cis-effects. In aggregate,

genetic effects were strongest in round spermatids, which parallels their

increased transcriptional divergence we identified between species. Our

approach provides a comprehensive quantification of the variability of genetic

effects in vivo, and demonstrates a widely applicable strategy to dissect the

impact of regulatory variants on gene regulation in dynamic systems.

The comprehensive characterisation of the impact of DNA sequence

changes on molecular traits that ultimately drive phenotypic variation

remains an unresolved challenge. Expression quantitative trait locus

(eQTL)mapping inbulk tissues has revealed extensive tissue-1,2 and cell

type-specificity3 of regulatory variants. Most recently, advances in

single-cell sequencing have enabled genetic regulation to be probed at

cellular resolution, revealing extensive context-dependence of reg-

ulatory variants also between more subtle cellular subtypes4–10. Fur-

thermore, genetic analyses in in vitro differentiation systems using

human pluripotent stem cells have revealed dynamically changing cis-

effects across continuous differentiation processes4,5,7,10. These studies

highlight the complexity at which regulatory dependencies are affec-

ted by cell type transitions, which has important implications for

human physiology and disease.

However, our ability to comprehensively identify and characterise

the dynamics of regulatory variants remains limited due to short-

comings of existing models. In particular, analysis of trans-eQTL using

classical population approaches has limited power due to the
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prohibitively large sample sizes required11 and even for cis-effects, it

can be challenging to identify the dynamics of context-dependent

genetic effects in an unbiased manner. Furthermore, in vitro models

cannot perfectly recapitulate the complexity of cellular development

in vivo. We therefore sought to develop an experimental system that

allows for the comprehensive and quantitative analysis of the context-

dependency of genetic effects in vivo.

Here, we leverage a classical F1 hybrid system combined with

single-cell RNA-Sequencing12–16 to assay both dynamic cis- and trans-

genetic effects in an unbiased manner. We analyse male germ cell

development as a model of cellular differentiation, which features

continuous, unidirectional cell type transitions and, compared with

other tissues, a faster accumulationof species-specificgene expression

changes17–19. Indeed, much of this higher transcriptional divergence

appears concentrated in spermatids, and may result from reduced

constraint on gene expression levels or increased positive

selection19–21. Our single-cell based approach expands on previous

efforts to quantify cis- and trans-effects on gene expression in testes

using bulk RNA-seq profiling, which were limited to discrete cell

types22,23.

Our data reveal that at least 40% of cis-effects exhibit a dynamic

component, varying significantly across differentiation. Dynamic

trans-effects exist in spermatogenesis, but exert only a minor impact

on allele-specific expression. We finally show that among male germ

cell types, dynamic genetic effects are most common in round sper-

matids, paralleling their increased transcriptional divergence.

Results
Identifying the cell type-specificity of cis- and trans-acting
genetic effects across mouse spermatogenesis
We propose an approach to assay dynamic regulatory effects acting in

cis and trans by combining a classical F1 genetic design with single-cell

RNA-sequencing across the continuous trajectory of sperm

development2,14,24,25 (Fig. 1). First, the F1 cross allows the quantification

of the cis- and trans-driven components of strain-specific gene

expression by placing both alleles in the same nuclear environment. In

the F1mouse, any biasmeasuredbetween the alleleswill therefore only

be due to genetic cis-effects. In contrast, expression differences

between the F0 strains (for simplicity, wewill also refer to this as allele-

specific expression) are impacted by both classes of regulatory effects

(cis and trans). Therefore, trans-effects can bemeasured as differences

in allelic balance between F0 and F1 mice. Secondly, RNA-sequencing

based profiling provides information about cell type identity of single

cells and their pseudotemporal ordering, which allows for identifying

dynamic changes of cis and trans effects across the differentiation

trajectory.

We applied this experimental strategy to profile single-cell tran-

scriptomes of testes from male Mus musculus (C57BL/6-Ly5.1), Mus

Castaneus (CAST/EiJ), and their F1 offspring in six biological replicates

using 10X Genomics 3’ scRNA-seq protocols (18 experiments in total,

1202–4361 cells per experiment) (Methods). Using an integrateddataset

of 54,863 cells (after quality control, Methods, Fig. S1a–d), we captured

the complete trajectory of sperm development, identifying 4 major

germ cell and 3 somatic cell types, as expected18,26–28 (Figs. 2b, S1e). The

high density of genetic variation between C57BL/6 and CAST/EiJ

enabled allelic quantifications of RNA abundance in individual cells

from F1 mice, thus providing allelic resolution for 25.82% of reads and

54.98% (6495 / 11,812) of all expressed genes (>50 allele-specific reads

per sample, Methods). Validating our allelic quantifications, our map-

ping strategy showed the expected strong maternal allelic bias in

mitochondrial and X-linked genes in the F1 data (Fig. S1h-k, o). Quanti-

fication of allelic resolution among the haploid post-meiotic spermatids

was possible because these cells share RNA through cytoplasmic

bridges and therefore contain RNA from both alleles, similar to diploid

cells (Fig. S1l29). Overall, sperm development in all three genetic

backgrounds showed highly similar cell type proportions and tran-

scription patterns (Fig. S1d-g), allowing for direct comparison of allelic

ratios to analyse context-specific cis- and trans-contributions.

We first sought to verify that we can identify genetic effects in

pseudo-bulk aggregate samples of either thewhole tissue or individual

germ cell types, using single-cell RNA-sequencing of the F0 parents

and F1 crosses, as previously shown using bulk RNA sequencing14. We

adapted existing modelling strategies of F0 and F1 data based on

negative- and beta-binomial distributions14 to estimate cis- and trans-

effects acting on individual genes (Methods). First, using whole tissue

aggregates, we assigned the regulatory classes (that is, whether it is cis-

or trans-acting) of 3230 genes (out of 6495 genes) to be either cis-

acting, trans-acting, or a combination of both (Fig. 2c). Thismagnitude

is similar to other homeostatic mammalian tissues14,30 (Fig. S2). Sec-

ond, we assigned regulatory classes separately for major cell types,

including spermatocytes (2031 genes), round spermatids (3025

genes), and elongating spermatids (2158 genes) (Fig. 2d). This cell-type

specific analysis allowed us to assign a regulatory class to a total of

3349 genes, improving on the 3189 genes obtained from the analysis of

all cells at once (Fig. S1m,n).

To assess the magnitude of the expression changes, we also

quantified the fold change effect for genes in these categories, finding

that 22% − 35% had absolute log allelic fold changes > 1 with cis effects

generally being larger than trans-effects (13%-28% across populations)

(Fig. S3a,b). Furthermore, our ability to detect genetic effects is not

primarily driven by expression level (Fig. S3d) and we observed similar

sets of genes when comparing our model-based approach to conven-

tional differential expression analysis between the founder strains

(Fig. S3c).

Next, we tested for significant differences in cis-acting regulation

between cell types, by assessing differential allelic effects in the F1

populations for individual genes (generalised linear model; Methods).
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Fig. 1 | Overview of the experimental strategy. Comparison of allele-specific

expression in single cells between parental strains and their F1 crosses can reveal

context-dependent cis- and trans-effects. The mouse and testis icons were created

with Biorender.com.
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This identified 411 genes with differential cis effects between sperma-

tocytes and round spermatids (adjusted p-value < 0.1, absolute dif-

ference in log2 aFC between the two cell types > 0.5), and 411 genes

with differential effects between spermatocytes and elongating sper-

matids (adjusted p-value < 0.1, absolute difference in log2 aFC > 0.5)

(Fig. 2e, f). Furthermore, dimensionality reduction of cells based on

their allelic imbalances recreated the continuous trajectory of sperm

differentiation (Fig. S1p, Methods), initially generated using gene

expression (Fig. 2b).

In summary, single-cell mapping of sperm development in F1

mice readily assigns cis- and trans-effects in major cell types of

spermatogenesis, revealing substantial cell-type specificity in genetic

regulation.

Dynamic changes in cis-acting genetic effects on transcription
across sperm differentiation
Next, we used an analysis approach that does not rely on the definition

of discrete cell types, but instead leverages the continuous nature of

sperm development assayed using scRNA-seq tomodel the underlying

regulatory mechanisms. To this end, we first defined spermatogenic

differentiation across F0 and F1 germ cells as a joint pseudotemporal

ordering (Methods, Fig. S4a,b). We then applied a recently developed

Elongating 

Spermatids
Round 

Spermatids

0 1

−3

0

3

−3 0 3

Spermatocytes

0 1

−3

0

3

−3 0 3
log2( F1B6 / F1CAST )

lo
g
2
( 

F
0

B
6

 /
 F

0
C

A
S

T
 )

All celltypes

a b

B6

Cast

F1

s
c
R

N
A

-S
e

q

UMAP1 - Gene expressionU
M

A
P

2
 - G

e
n

e
 e

x
p

re
s
s
io

n

Spermatogonia

Somatic Cells

d

e

c

f

1865 47  119 2654 84 287 1849 82 2272882  51  297

higher
 in SC 
 (216)

higher
 in ES 
 (195)

−5

0

5

−5 0 5

E
lo

n
g

a
ti
n

g
 S

p
e

rm
a

ti
d

s
 

higher
 in SC 
 (225)

higher
 in RS 
 (186)

−5

0

5

−5 0 5
Spermatocytes 

R
o

u
n

d
 S

p
e

rm
a

ti
d

s
 

cis + trans

c
is

tr
a

n
s

−3

0

3

−3 0 3
−3

0

3

−3 0 3

0 1 0 1

log2( F1B6 / F1CAST )

lo
g

2
( 

F
1
B

6
 /
 F

1
C

A
S

T
 )

Spermatocytes 

log2( F1B6 / F1CAST )

lo
g

2
( 

F
1
B

6
 /
 F

1
C

A
S

T
 )

Fig. 2 | Quantification of cell type specificity of cis- and trans-acting genetic

effects on gene expression across mouse spermatogenesis using single-cell

RNA sequencing. a Testes from eight-twelve week old mice were subjected to 10x

Genomics scRNA-Seq profiling in 6 replicates for the F1 offspring from a C57BL/6-

Ly5.1 (female) x CAST/EiJ (male) cross, and for their parental strains. Themouse and

testis icons were created with Biorender.com. b UMAP representation of 7895

F1 cells from two replicates with colour denotingmajor cell type annotation. c Top:

Scatter plot comparing log fold changes in gene expression from B6 and CAST

alleles in F1 mice (x-axis) and gene expression between B6 and CAST alleles in

parental mice (y-axis), quantified in aggregate across all cells. Colours denote the

classification of regulatory mechanisms for each gene (conserved, cis, trans, cis +

trans; Methods). Triangles indicate genes with absolute values larger than 3. Bot-

tom: Barplot denoting the proportion of genes in each category. d As (c), however,

consider aggregate expression estimates in the three major cell types. e, f Scatter

plots between log2 allelic fold changes log2 (B6 / CAST) in spermatocytes versus (e)

round spermatids and (f) elongating spermatids. Genes marked in colour have

differential allelic imbalances between cell types (adjusted p-value < 0.1; general-

ised linear model; Methods). Triangles indicate genes with absolute values larger

than 5. Analyses in (c)–(f) are based on genes with at least 50 allelic reads per

sample (6495 genes).
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analysis framework based on Gaussian process regression (scDALI31,

Fig. 3a) to identify patterns of allelic imbalance across the differ-

entiation time course. We specifically used scDALI to assess the evi-

dence for two alternative cis-acting modes shaping allelic balance: (1)

persistent, where the ratio of expression between the two alleles is

unchanged acrossdifferentiation, and/or (2) dynamic,where the allelic

ratio changes as a function of the cell state (Fig. 3b, Methods)5,31.

scDALI applied to4039genes inwhich allelic expression couldbe

robustly quantified (>1000 allelic reads; adjusted p-value < 0.01,

Fig. 3b left panel), identified 2275 genes with persistent allelic

imbalance in their transcription (adjusted p-value < 0.01, Fig. 3b).

Additionally, the scDALI test for dynamic cis-effects identified 1152

genes with evidence for variation in allelic ratios as a function of the

cell state (adjusted p-value < 0.01). Notably, 818 genes had evidence

for both a dynamic and a static regulatory model, and 334 were

exclusively identified as dynamically acting (Figs. 3b, S4c). We also

compared our continuous modelling approach to applying scDALI to

discrete cell type classes, dividing spermatogenesis into 4 cell types,

which revealed markedly fewer genes with evidence for cell-type

specific allelic imbalance (Fig. S4d–f).

Next, we used hierarchical clustering to identify groups of genes

with shared patterns of allelic dynamics across sperm development

(Methods, Fig. 3c). This identified seven clusters, which are char-

acterised by punctuated changes in the transcriptional balance

between alleles, often coinciding with developmental transition

points. Changes in dynamic allelic imbalanceare not driven by changes

in total transcription levels5 (Fig. S4g–h). The two largest clusters

(clusters 1 and 2; collectively covering 45.61% of all genes) showed

mirror-image changes in allelic imbalance, specifically at the histone-

protamine transition. The histone-to-protamine transition silences the

spermatid genome, and is one of the most extreme alterations in DNA

structure and compaction found in eukaryotes32,33. The remaining five

clusters showed additional major changes in allelic balances, for

example at the transition out of meiosis, a similarly extensive remo-

delling of the genomic regulatory landscape.

We considered whether dynamic cis-effects could result mainly

from RNA degradation. If so, then we reasoned that allelic imbalance

should be strongest during gene down-regulation. To this end, we

identified 726 genes that are both up- and down-regulated during

differentiation. We then asked for each of these genes when the allelic

imbalance was strongest: in the beginning, middle or end of the dif-

ferentiation trajectory. We found that genes peaked in allelic imbal-

ance across all stages of up- and down-regulation, and 20% showed

strongest allelic bias during gene up-regulation. Together, this
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Fig. 3 | Widespread dynamic changes in cis-acting genetic effects on tran-

scription across sperm differentiation in F1 mice. a Top: Relative gene expres-

sionofDdt, across spermdifferentiation (x-axis), eitherquantified for theB6 (black)

or the CAST (orange) allele. Dots correspond to allelic expression quantifications in

individual cells; solid lines correspond to interpolated trajectories (LOESS fit).

Middle: Allelic imbalance ratios B6 / (B6 +CAST) across individual cells as in the top

panel. Solid lines correspond to the estimated latent trajectory (scDALI fit) with

shaded areas denoting plus or minus two standard deviations (of the latent tra-

jectory). Bottom: Pseudotime ordering used in the top and middle panel with

associated cell type assignments across spermatogenic differentiation. b Left:

Illustration of the scDALI model for allelic imbalance, which decomposes allelic

effects into a persistent (blockhorizontal line; agnostic to differentiation stage) and

a dynamic (red line; scDALI interpolation, variable across differentiation) compo-

nent of allelic imbalance. Both types of allelic imbalance can be analysed. Right:

Venn diagram showing the number of genes with evidence for persistent and/or

dynamic allelic imbalance (adjusted p-value < 0.01; scDALI test; Methods).

c Heatmap of z-transformed scDALI-interpolated allelic trajectories across sperm

differentiation for 709 genes with evidence for dynamic allelic imbalance. The

x-axis represents 100 evenly spaced sampling points. Genes are grouped into 7

clusters using hierarchical clustering of their allelic imbalance trajectories. Vertical

bars indicate the meiosis and histone-to-protamine transitions as derived from cell

type annotations. Top panel shows smoothed total and protamine expression

(average expression of Tnp1, Tnp2, Prm1 and Prm2).
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indicates that allele-specific RNA stability is not the sole factor driving

allelic imbalance (Fig. S5a–d).

We also tested whether in spermatids, allelic imbalance in gene

expression might be caused by their haploid genomic state. Contrary

to the expectation of a haploid cell, we observed biallelic expression at

chromosomescale, similar to spermatocytes and spermatogonial stem

cells, consistent with cytoplasmic sharing ofmost transcripts (Fig. S1l).

The subset of genes reported to resist cytoplasmic sharing during

spermiogenesis29 were not enriched with persistent or dynamic cis-

effects, indicating that genetic effects, not incomplete sharing of RNA,

drive allelic imbalance (Fig. S6).

We next asked whether allele-specific expression could be

explained by corresponding differences in chromatin accessibility. To

this end, we isolated tetraploid spermatocytes using fluorescence-

activated cell sorting, performed (ATAC-Seq) and measured allele-

specific chromatin accessibility (asCA) at 6844 sites across 3096 genes

for which we measured allele-specific expression (Fig. S7a–c). We

observed that geneswith allelic effects in expressionwere enriched for

genes with asCA across a range of allelic effect sizes (Fig. S7d, e).

Furthermore, we observed that allele-specific expression close to

genes with asCA (in spermatocytes) was strongest in spermatocytes,

suggesting that dynamic cis-effects can be driven by cell type-specific

changes in chromatin accessibility (Fig. S7f, g).

In summary, our analyses reveal that almost half of genes with

allelic bias exhibit dynamic changes in allelic balance across sperm

differentiation. The remodelling of the genome during meiosis and

protamine deployment is associated with large-scale and cis-directed

changes in the allelic contributions to gene expression. Finally, our

results suggest that allelic imbalance during spermatogenesis can

result from both allele-specificity in transcriptional regulation or

transcript stability.

Identification of context-dependent trans-effects across cellular
differentiation in vivo
Similarly, our F1 hybrid system can identify persistent and dynamic

trans-effects, which manifest as differences in allelic imbalance

between parental and F1mice13,14. In contrast, comprehensivemapping

of dynamic trans-effects in population-based eQTL studies would

demand sample sizes that are currently inaccessible to single-cell

approaches11. We first incorporated the single-cell data from the par-

ental strains (F0) into our analysis by first establishing a common

coordinate system across all strains, again leveraging the pseudo-

temporal ordering (Methods, Fig. S4a,b). We sorted the cells into 100

temporally ordered bins in which we estimated total expression ratios

in the F0parental strains aswell the corresponding allelic imbalance in

their F1 offspring. The change in the differences between these ratios

allows for quantification of dynamic changes in the trans-component

of gene regulation (Fig. 4a).

We then extended the scDALI framework to jointly model the

allelic expression trajectories in the parental strains and their F1 off-

spring to systematically discover genes with dynamic trans-effects.

This integrated approach enables the evidence for both persistent

(constant non-zero difference between F0 and F1) and dynamic trans-

components (non-trivial covariance between F0 and F1) to be assessed

using Bayes Factors (Fig. 4b, Methods).We calibrated the Bayes Factor

threshold to compare cis- and trans-effects by setting it to match the

number of genes with dynamic cis-effects identified using scDALI

(adjusted p-value < 0.0001 corresponding to log BF > 10; Fig. S10a,b,

Methods). Applied to 3657 genes, this model identified genes with

evidence for persistent and dynamic trans-effects, contributing to the

transcriptional differences between CAST and B6 alleles of 352 (9.6%)

and 117 (3.2%) of genes, respectively (log BF > 10) (Fig. 4c). To our

knowledge, the trans-acting components during mammalian differ-

entiation have never been comprehensively analysed within individual

cell types in vivo (see also2).

To provide additional confidence that persistent and dynamic

trans-effects identified by our model are genuine, we carried out a

number of additional analyses, including evaluationof trans-effect size

estimates, the positional distribution of trans-effects across differ-

entiation, and the relationship between expression level and trans-

regulation (Fig. S10d–f).

Similar to the genes exhibiting cis-effects (Fig. S8), genes with

evidence for trans-components appeared to be under reduced selec-

tive pressure (Fig. 4d). Notably, a similar fraction of trans-effects was

dynamic (27.2%) compared to cis-effects (30.7%, Fig. 4e), which indi-

cates that trans-effects are not more likely to be influenced by the

specific cellular differentiation state than cis-effects. Finally, cis- and

trans-effects appear to be largely independent, based on our assess-

ment of the evidence for their co-occurrence for either persistent

(Fig. 4f) or dynamic (Fig. 4g) regulation of the same genes.

In summary, we provide a framework to identify cell type-specific

trans-effects from F1 and parental data and show that both static and

dynamic trans-effects exist, but are rare.

Within-species allelic imbalance corresponds to between-
species transcriptional divergence
In whole steady-state tissues, cis-effects are the main driver of tran-

scriptional divergence14,30,34. However on a single-cell basis, how the

dynamics of how cis- and trans-linked variation contributes to gene

expression divergence during differentiation is not known.

We first identified genes with evidence for dynamic transcrip-

tional divergence between the parental strains (total: 924 genes,

Fig. 5a, Methods). Strikingly, these genes were enriched for dynamic

cis-effects (63.6% cis vs 12.0% of trans, Fig. 5d). Next, we asked whether

regulatory variation in cis and gene expression changes follow the

same trajectories over differentiation. Across sperm differentiation,

we employed a joint hierarchical clustering approach to identify

groups of genes with a common pattern of dynamic cis- and trans-

effects, as well as transcriptional divergence (Fig. 5a–c). Most genes

were in clusters that peak in round spermatids. For instance, clusters 1,

3, 5 and 6 peak in round spermatids, and together correspond to 61.9%

of dynamic cis-effects and 64.9% of dynamic divergent genes. More-

over, at the level of individual genes, transcriptional divergence and

cis-effects on allelic imbalance follow highly similar trajectories, sug-

gesting that expression divergence is largely driven by cis-

effects (Fig. 5e).

We eliminated the possibility that the variation in total expression

levels of individual genes could explain the dynamics of allelic varia-

tion (Fig. S11a,b). Although dynamic trans-effects were comparatively

few in number (117 high confidence effects, Fig. 4e), they similarly

accumulated late in differentiation (Fig. 5c). The predominance of

allelic effects and expression divergence in round spermatids was also

apparent in transcriptome-wide aggregated effects (Fig. 5b, c, bottom

AES insets).

In sum, during murine spermatogenesis, dynamic genetic effects

are mainly driven by cis-acting variants, which contribute to the

increased transcriptional divergence in round spermatids compared

to other cell types.

The concentration of expression divergence in round sperma-
tids is shared between species
We identified dynamic cis-acting regulatory variants as a driver of

transcriptional divergence between Mus domesticus and Mus casta-

neus, with a striking concentration in round spermatids (Fig. 5a–e).

We asked to what extent this mechanism generalises to other

mouse species, as has been suggested for primates and other

vertebrates17,19,20.

We therefore generated an additional and independent dataset of

matched single-cell RNA-seqmaps using testes from 2 novel replicates

of B6 and CAST, as well as fromMus caroli as a third, highly divergent
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mouse species (CAROLI/EiJ) in order to quantify the transcriptional

divergence across spermatogenesis (Fig. 6a,b; Fig. S12a–g). The evo-

lutionary proximity of these three species allowed us to accurately

project individual cells onto the previously-defined pseudotime

coordinates (Fig. S12h,i; Methods). The resulting integrated dataset

featured transitions in cell type proportions and marker gene expres-

sion across differentiation consistent with our prior F1 dataset

(Fig. S12f,g).We validated that differential gene expressionbetweenB6

and CAST was highly correlated between these two independently

collected datasets (Fig. S13).

Next, we compared the data from CAST and CAROLI, versus

C57BL/6 as a reference, and clustered divergent genes by their tem-

poral similarity across spermatogenesis. Although on the level of

individual genes, there were substantial differences between species

(Fig. S12j,k), the overall dynamics of expression divergence, again,

concentrated late in sperm differentiation (Fig. 6d, e).
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Fig. 4 | Differential allelic dynamics between parents and F1 offspring reveal

context-dependent trans-effects in spermatogenesis. a Interpolated trajectories

of allelic imbalance in F0 parental mice (black) and F1 (grey) offspring for Dnajc2.

Dots denote average allelic ratios from cells distributed in 100 evenly spaced bins

across the differentiation trajectory. b Graphical (top) and mathematical (bottom)

representation of the analysis strategy to identify different types of trans-effects.

Latent allelic trajectories are modelled by two non-linear functions derived from

Gaussian process regression (Methods). Persistent trans-effects manifest as a per-

sistent difference between F0 and F1 allelic ratios (red), dynamic trans-effects as a

dynamic difference (orange). Evidence for either type of effect is evaluated using

Bayes Factors (BF). c Scatterplot of Bayes Factors that correspond to persistent

versus dynamic trans-effects. Horizontal and vertical lines correspond to a logBFs >

10 threshold; the number of genes with evidence for persistent and/or dynamic

effects are highlighted. d Box plots of exonic PhastCons scores for genes with no

(n = 3227 genes), persistent (n = 313) and dynamic (n = 117) trans-effects (Two-sided

Wilcoxon’s rank sum test, ****=6.6e-09, **=0.0014). The boxplots show median,

25%- and 75%-quantiles, the whiskers 1.5 inter-quartile ranges. e Comparison

of the fraction of dynamic versus persistent cis- and trans-effects (log Bayes

Factor cutoff = 10, set to match the number of dynamic cis effects identified using

scDALI; Methods). p =0.025 using a two-sided Chi-square test. f Scatterplot

between log Bayes Factors for persistent and cis- versus persistent trans-effects.

Odds ratio of co-occurrence of both effects for the same genes based on

logBF threshold 10.g Scatter plot as in (f), however for dynamic cis- versus dynamic

trans-effects.
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To confirm these results, we also used a global correlation-based

measure of transcriptional divergence, similar to approaches com-

monly employed for molecular evolution analyses17,19,35. Within each

cell type, we computed cell-cell correlation coefficients within B6 as a

reference, and then between species (Methods). We define transcrip-

tional divergence as the median difference between these correlation

coefficients (Fig. 6f). This analysis again indicates round spermatids as

having the strongest divergence.

Taken together, our results show that the concentration of cis-

and trans-effects in round spermatids identified within species is mir-

rored by relatively higher transcriptional divergence observed in

round spermatids between species.

Discussion
To understand how cis- and trans-acting genetic effects dynamically

impact gene expression and transcriptional divergence in vivo, we

analysed spermatogenesis as a model differentiation process. Using

single-cell transcriptomics in F1 mice, we revealed that developmental

transitions are associated with context-dependent regulatory varia-

tion. Our experimental strategy further enabled us to connect within-

species genetic effects to between-species gene expression differ-

ences, demonstrating how cis- and trans-effects jointly contribute to

the increased transcriptional divergence found in round spermatids.

Our study is the first demonstration of context-dependent cis- and

trans-acting genetic regulation across a continuous path of mamma-

lian differentiation in vivo at single-cell resolution. We discovered that

cell type-dependent cis-regulatory variation is surprisingly pervasive,

representing at least 44% of cis-effects, and that these genes are under

reduced evolutionary constraint. Indeed, this balance between per-

sistent anddynamic cis-effects closelymirrors those active in c. elegans

embryos2. While our study does not identify specific interactions

between individual variants and target genes these could be fine-

mapped using a larger number of F2 crosses36,37 to fully elucidate the

genetic mechanisms shaping species-specific expression. Compared

to cis-effects, trans-effects occur less prevalently but exhibit dynamic

regulatory effects at a similar rate than cis-effects.

Our study affords twomajor insights into the genetic component

of transcriptional evolution. First, while prior studies have implicated

cis-effects with transcriptional divergence in single tissues14,25,30, we

here provide evidence that genetic changes between species can arise

from context- and cell-type specific cis-acting regulatory effects. Sec-

ond, these dynamic genetic effects are strongest in round spermatids,

leading to their increased transcriptional divergence. In addition to

pervasive transcription of genes under low constraint as suggested

previously19–21, transcription in round spermatids shows increased

sensitivity to regulatory variation. Both insightswere uniquelypossible
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because of the high conservation of the murine genomes and cell

types,which allows direct alignment of different species on the level of

genes and across differentiation stages. The insights into regulatory

architecture we gained are likely pervasive in mammalian differentia-

tion and development, as all cell state changes feature substantial

remodelling of gene regulatory networks, including local, cis-acting TF

binding as well as up- and down-regulation of trans-acting master

regulators. As such, our study in a genetically well defined system

complements related work that profiles highly divergent species19,20,38.

Single-cell resolution can capture the temporal resolution

required to study dynamic genetic effects, which are impossible to

resolve from analyses based purely on individually isolated cell types.

Our results demonstrate that, given sufficient genetic variation, cur-

rent droplet-based single-cell approaches provide sufficient sensitivity

for identifying dynamic genetic effects, even for subtle trans-effects.

However, the detection sensitivity of current technologies is lower

than bulk RNA-seq and is focused on the 3’ end of genes, thus limiting

our analyses to more robustly expressed genes containing allelically

resolvable genetic variants. Nevertheless, our study demonstrates a

powerful and easily applied strategy to disentangle context-specific

genetic contributions to transcriptional divergence in embryonic

development and homeostatic adult tissues. Finally, our results

demonstrate that in cellular differentiation in vivo, allelic imbalance in

gene expression is associated with allelic imbalance in chromatin

accessibility, as shown in other contexts39,40, suggesting that gene

regulatory mechanisms are likely at least partially responsible for dif-

ferential allelic usage. Novel single-cell approaches that map chroma-

tin states, but also to directly assessmRNA synthesis and stability offer

exciting opportunities to further dissect these dependencies and how

they relate to cell state41.

Collectively, our results provide a comprehensive quantification

of cell type-specific genetic effects during spermatogenic differentia-

tion, andwe elucidate how the accumulation of dynamic cis-effects is a

major mechanism underlying cell type-specific transcriptional

divergence.

Methods
Mouse materials
All mice were bred in-house (the C57BL/6-Ly5.1, CAST/EiJ and CAROLI/

EiJ colonies were established from founders obtained from the Jackson

Laboratories, Strains #002014 and #000928, #000926) in the animal

facilities of the DKFZ under specific pathogen-free conditions or in the

Biological Resources Unit (BRU) in the Cancer Research UK – Cam-

bridge Institute under Home Office Licence PPL 70/7535. Mice were

kept in individually ventilated cages at 24°, a humidity of 80% with

fixed day/night cycles of 12 h. Mice were euthanized by cervical dis-

location and all animal procedures were performed according to

protocols approved by the Regierungspräsidium Karlsruhe. This

investigation was approved by the Animal Welfare and Ethics Review

Board and followed the Cambridge Institute guidelines for the use of

animals in experimental studies under Home Office licences PPL 70/

7535 until February 2018 and PPL P9855D13B from March 2018. All

animal experimentation was carried out in accordance with the Ani-

mals (Scientific Procedures) Act 1986 (United Kingdom) and con-

formed to the Animal Research: Reporting of In Vivo Experiments

(ARRIVE) guidelines developed by the National Centre for the Repla-

cement, Refinement and Reduction of Animals in research (NC3Rs). F1

hybrid mice were generated by crossing C57BL/6-Ly5.1 with CAST/EiJ

mice. All mice were sacrificed after 8 weeks of age, when spermato-

genesis is fully established.

10x Genomics scRNA-Seq
scRNA-Seq ofmurine testicular tissue using the 10xGenomics platform

was performed similarly to Ernst et al., 201918. For the cross-species

dataset, single-cell suspensionswere generated by enzymatic digestion

using 25mg/mlCollagenaseA (Sigma, 10103578001), 25mg/mlDispase

II (Sigma, D4693) and 2.5mg/ml DNAse I (Sigma, 10104159001) I for

30min at 37C. For each sample, 10,000 cells were loaded into one

channel of the Chromium™ Single Cell A Chip (10X Genomics ®,

1000009) and scRNA-Seq libraries were generated using the Chro-

mium™ Single Cell 3’ Library & Gel Bead Kit v2 (10X Genomics ®,

120237) according to the manufacturer’s instructions. Illumina short-

read paired-end sequencing was performed using a HiSeq2500 with

read lengths 26bp on read 1 and 98 bp on read 2. Note that the two B6

libraries in this dataset are identical to samples published in Ernst2019.

For the F1 dataset, digestion was performed using 5mg/ml Col-

lagenase A, 5mg/ml Dispase II and 2.5mg/ml DNAse I, libraries were

generated using the Chromium™ Single Cell B Chip (10X Genomics ®

1000073) and Single Cell 3’ Library & Gel Bead Kit v3 (10X Genomics ®,

1000075) and libraries were sequenced on a NovaSeq 6k with 28 bp

read 1 and 94 bp read 2. The six replicates were generated in three

experimental batches, each comprising two individuals from both

parental strains and two F1s. Further information about the sequenced

individuals can be found in Supplementary Data 1.

ATAC-Seq of F1 spermatocytes
We isolated spermatocytes based on nuclear DNA content using

fluorescence-activated cell sorting as described previously with

modifications18. After preparation of single cell suspensions from

testes, cells were stained with 5mug/mul Hoechst 33342 (R37165,

ThermoFisher) for 45min at 37 °C. Cells were resuspended in phos-

phate buffered saline (PBS, Sigma) with 1% Foetal Calf Serum (FCS,

Gibco, 16140071) with propidium iodide (P4170) at a final concentra-

tion of 1μg/ml, and 50.000 cells were sorted on a BD FACSAria Fusion

machine (Hoechst: Excitation 405 nm, 450/50 filter, PI: Excitation

488 nM, filter 616/23).We then performed bulkATAC-Seq as described

with modifications42. Cells were washed with 500μl ice-cold PBS and

incubated for 3min in 50 μl cell lysis buffer (10mM Tris-HCl pH 7.5

(AM9850G, LIFE Technologies), 10mM NaCl (AM9760G, Thermo-

Fisher), 3mM MgCl (AM9530G, ThermoFisher), 0.1% NP-40 (85124,

LIFE Technologies), 0.1% Tween-20 (P1379, Sigma), 0.01% Digitonin

(BN2006, LIFE Technologies)) on ice. 1ml wash buffer (10mMTris-HCl

pH 7.5, 10mMNaCl, 3mMMgCl, 0.1% Tween-20)was added, cells were

centrifuged for 10min at 500 g and 4 °C. Transposition of nuclei was

performed by adding 50mul transposition mix (25mul 2x TD buffer

(Illumina, 20034197), 16.5mul PBS, 0.5mul 10% Tween-20, 0.5mul 1%

Digitonin, 2.5mul tagment DNA enzyme (Illumina, 20034197)) to the

pellet and incubation at 37 °C for 30min. After incubation, DNA was

isolated using MinElute PCR Purification Kit (28006, Qiagen) and

libraries were PCR-amplified using NEBNext® High-Fidelity 2X PCR

Master Mix (M0541S, NEB) with appropriate primers. Libraries were

sequenced on an Illumina NextSeq2000 machine.

Expression quantification of 10x scRNA-Seq data for different
species
Genomic references for C57BL/6 (GRCm38), CAST/EiJ and CAROLI/EiJ

were generated usingCellRangermkref (v3.1) using sequence and gene

annotations from ensembl (release 94). Filtered count matrices were

generated using CellRanger count (v3.1) using default settings. For the

F1 dataset, a joint reference was constructed based on the GRCm38

reference where SNP positions between mm10 and CAST/EiJ were

N-masked. These SNPswere derived from (Keane2011, ftp://ftp-mouse.

sanger.ac.uk/current_snps/mgp.v5.merged.snps_all.dbSNP142.vcf.gz).

Total expression quantification using CellRanger count (v3.1) was

then performed against this reference for C57BL/6, CAST/EiJ and

hybrid mice.

Low-level analysis of scRNA-Seq data and cell type annotation
Low-level analysis of scRNA-Seq data was performed similarly to Ernst

et al., 2019 and largely using functions from the scran (v1.20.1) and
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scater (v1.20.1) R packages43,44. First, cells with less than 500 UMIs and

500 detected genes were removed. Next, counts were normalised

using the computeSumFactors function and log-transformed. For cell

type annotation, we used mutual nearest neighbour-based batch cor-

rectionusing the functionMNNcorrectwith the library as batch variable

to exclude species-specific and technical variation across samples45.

The resulting corrected matrix was used for dimensionality reduction

by principal component analysis (prcomp, stats, v4.4.0), tSNE (Rtsne,

Rtsne, v0.15) and UMAP (umap, umap, v0.2.7.0). To identify cell type

clusters, we used graph-based community detection using the Louvain

algorithm implemented by the functions buildSNNGraph and clus-

ter_louvain of the package igraph (v1.2.10). Cell type labels were

defined as in Ernst2019: For the evolutionary dataset, cell type labels

were available fromErnst2019 for the B6 libraries, which could be used

to annotate cluster identities. For the F1 dataset, equivalent clusters

were defined using marker genes for somatic cells (Sertoli, Leydig and

Immune / other structural cells, whichwere discarded formost further

analysis) and the established order of cell types during spermatogenic

differentiation (Figs. S1a–g, S12). A continuous pseudo-temporal

ordering through germ cells was derived using principal curve fitting

using the package princurve (v2.1.6), based on the first two principal

components fitted across all cells. For the cross-species dataset, a

pseudotime ordering across cells was derived by computing the

median pseudotime for the 50 nearest neighbours in F1 dataset

(Fig. S12).

Allele-specific quantification
To quantify allele-specific expression, we first annotated the output

bam file from cellranger (possorted.bam) with the B6/CAST46 SNPs

using a modified script from the WASP-pipeline (find_intersec-

ting_snps_10x.py). We then counted individual reads if they contained

one or more alleles from the maternal or paternal haplotype, while

discarding UMI duplicates and reads overlapping indels.We discarded

reads with conflicting SNP identities (<0.1% of all reads) as likely

sequencing errors. To compare allelic data between F1 mice and F0

parents, we quantified all libraries against the N-masked reference and

only considered reads that overlapped segregating SNPs. This

approach also validated that >98% of segregating reads from F0 ani-

mals were assignable to the correct reference allele (Fig. S1k). To

obtain similar sequencing depth per allele for the F0 and F1 mice, we

downsampled the F0 libraries to 50% of reads, as at equal sequencing

depth per library, the coverage of each allele in the F1 samples will be

half of the F0 samples (Fig. S1k).We further discarded71mitochondrial

and X-chromosomal genes which only showed reads mapping to the

reference (maternal) allele and 7 genes with a strong paternal bias in

the F1 but no bias in the F0 as likely mapping errors. We found that

around 25.82% of reads were assignable to either the maternal or the

paternal haplotype across samples. Depending on the application, we

quantify allele-specific expression either as an allelic ratio B6 / (B6 +

CAST) or as a (log2) allelic fold-change, log2 (B6 / CAST).

Categorization into regulatory categories for discrete cell types
Genes were categorised by regulatory mechanisms as in Goncalves

et al., 201214, considering genes with > 100 allele-specific reads per

sample. We defined statistical models based on negative binomial (for

the parental strains) and beta-binomial distributions (for allelic data

from F1) for each gene (Supplementary Methods). The overdispersion

parameters for the negative binomial distributions were computed

using the function estimateDisp from the DESeq2 package. The reg-

ulatory categories (conserved, cis, trans, cis + trans) were defined by

constraining parameters in each model and fitted using maximum

likelihood estimation in the function mle (stats4 v4.2.2). We then used

the Bayesian information criterion (BIC) to assign the most likely reg-

ulatory category and to quantify the strength of evidence for the data

under eachmodel against the conservedmodel (Fig S1m,n). As a more

stringent classification of genetic effects, we only considered genes

with a difference in BIC of at least 4 when compared to the conserved

model. As a comparison, we also computed differentially expressed

genes between the F0 strains using the DESeq function in the DESeq2

(v1.32.0) package.

Detection of differential allelic imbalance between cell types
using gLMs
To detect differential allelic imbalances between cell types, we

employed generalised linear models with a binomial likelihood as

implemented in thepackageVGAM (v1.1.5).Wefit a fullmodel using the

formula intercept + cell type + library, and compared it to a reduced

model without the cell type component. Significance was evaluated

using likelihood-ratio tests and resulting p-values were adjusted for

multiple testing using the Holm-Bonferroni correction.

Dimensionality reduction based on allelic imbalance
We sought to disentangle allele-specificity from levels of gene

expression, in order to perform dimensionality reduction to capture

cell type-specific structure of allelic imbalance. To this end, we defined

a score that quantifies the confidence of the presence of allelic

imbalanceper gene andper cell as the log-likelihood-ratio of observing

a given pair of alternative and reference counts given the observed

ratio and the underlying probability 0.5. For a given gene and cell,

scoreswere defined as0 if no readswere observed. The resulting score

matrix was subjected to principal component analysis and UMAP

(umap, v0.2.7.0).

Detection of dynamic allelic imbalance (cis-effects) using scDALI
We detected allelic imbalance using the scDALI-framework31. To test

for allelic imbalance independent of cell type, p-values were derived

using a likelihood ratio test against a null model with a fixed allelic

imbalance of 0.5 (function BetaBinomLRT). Dynamic allelic imbalance

was determined using the heterogeneous scDALI score test with a cell

state kernel defined by a degree 3 polynomial on the pseudotime.

P-values were adjusted for multiple testing using the Holm-Bonferroni

procedure and considered significant with an adjusted p-value < 0.01.

We then defined genes with persistent allelic imbalance as those that

did not show dynamic effects but were significant in the likelihood

ratio test.

Clustering of allelic trajectories
Using scDALI, we derived latent allelic trajectories for each gene using

gaussian process regression with an RBF-kernel for all genes with sig-

nificant dynamic components. We next scaled these trajectories by

subtracting the mean and dividing by the standard deviation (z-scor-

ing). We then performed hierarchical clustering (hclust from the R

package stats) on the scaled trajectories and identified 7 clusters based

on a sumof squareddistancemetric.We alsoderived the samenumber

of clusters for total log-transformed and z-scored gene expression

measurements, considering both reads with and without allelic

assignment (Fig S4).

Analysis of allele-specific ATAC-Seq data
ATAC-Seq reads were trimmed using trimmomatic (v0.38)47 and

mapped to the mm10 genome build using bowtie2 (v2.3.5.1)48. Peaks

were called using macs2 (v2.1.2.1) with the --nomodel --extsize 200

--shift --100 --call-summits parameters. We finally used the find_inter-

secting_snps.py script from the WASP package46 (v0.3.4) to annotate

reads with SNVs between the B6 and CAST genomes and used a

modified version of the count_allelic.py script from scDALI (https://

github.com/tohein/scai_utils) to count allele-specific reads within each

peakwhich were used for further analysis. We found a consensus peak

set between our two replicates using the mergeByOverlaps function

(GenomicRanges, v1.44.0, with the argument minoverlap = 0.9) and
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quantified its genomic distribution using the annotatePeak from the

ChIPseeker package49 (v1.28.3). We annotated each peak with its clo-

sest gene, excluding peaks forwhich the closest genewas >20kb away,

only retained peaks with at least an average of 50 allele-specific reads

and quantified allelic imbalance (AI) in chromatin accessibility as the

average read count ratio B6 / (B6 + CAST) across both replicates. We

then performed an over-representation analysis of open chromatin

sites with allelic imbalance at genes with allelic imbalance in gene

expression. To this end, wequantified the effect size of AI for a gene or

peak as d = |AI - 0.5| and computed the fraction of genes with asso-

ciated ATAC-Seq peak with d >0.1. We obtained a randomdistribution

by shuffling the observed AI estimates randomly across peaks. Finally,

to investigate the association between dynamic AI and chromatin

accessibility, we considered the set of genes with dynamic AI, ranked it

by the differential in AI between spermatocytes and spermatids and

quantified the strength of AI in associated ATAC-Seq peaks.

Analysis of allelic imbalance across up- and down-regulation in
gene expression trajectories
To compare allelic imbalance during the dynamics of gene up- and

down-regulation, we first identified genes that showed both up- and

down-regulation during spermatogenesis based on total read counts.

To this end, we fitted loess-regression curves between pseudotime and

log total read counts of each gene using the loess function (stats)

across the interval in which a gene was expressed, identified the point

ofmaximum expression and retained all genes that did not peak in the

first or last interval of pseudotime (100 evenly spaced intervals). We

then split the genes expressed trajectory into 5 quantiles and compute

allelic imbalance across all cells within each quantile, which is then

visualised.

Detection of dynamic trans-effects
To detect dynamic trans-effects, we first require a joint coordinate

system in which expression values between F0 and F1 strains can be

compared. To this end, we used a joint coordinate system for all

samples (see Low-level analysis of scRNA-Seq data) to derive a

pseudo-temporal ordering for all cells from all samples and verified

that the resulting trajectory was covered similarly in all samples

(Fig S4). We next split cells into 100 pseudotime intervals and com-

puted allelic ratios for all genes between the B6 and CAST alleles

(between F0 B6 and CASTmice and between alleles within F1mice). As

the F0 allelic quantifications are derived from different mice and not

necessarily sequenced to the same depth, we normalise bin-wise

expression estimates per allele across all genes before computing

allelic ratios. Next, we modelled allelic trajectories using a general-

isation of the Gaussian process model underlying scDALI. The two

trajectories are modelled as a realisation from a co-regionalised

Gaussian process with a kernel B ⊗ K, where K is a kernel matrix and

the off-diagonal elements in B represent the covariance between F0

and F1 trajectories. Furthermore, constant shifts between F0 and F1

can be encoded by varying mean functions. Based on this, we define

trajectories with no or only cis-effects by fixing mean functions and B.

Persistent trans-effects allow for varying means and dynamic trans-

effects allow for a full-rankB. We are using aMatern kernel for K and all

hyperparameters are fit using variational approximations in theGPflow

(v2.1.4) python package50. We then use the evidence lower bound

(ELBO) of each model as an approximation to the marginal likelihood

of the data under the respective model and derive Bayes Factors for

each gene which quantify the model evidence for persistent and

dynamic effects. To compare cis- and trans-effects, we also define a

model with a constant kernel against which dynamic cis-effects can be

detected. We consider model evidence sufficient when the log Bayes

Factor to a given null model exceeds 10. For further details of the

modelling approach, refer to the Supplementary Methods.

Detection of dynamic differential expression
Analogously to the detection of dynamic cis-effects using GP regres-

sion, we nominate genes with dynamic differential expression, con-

sidering all genes with at at least 1000 reads across samples. To this

end,weuse gaussian process regression on the bin-wise allelic ratios of

F0 mice and derive Bayes Factors comparing a model with a dynamic

to a constant kernel.

Joint clustering of dynamic cis, trans and differential expression
effects
To derive joint patterns of total expression, genetic effects and differ-

ential expression trajectories, we first computed bin-wise estimates of

cis-effects (|AI - 0.5| in F1), differential expression (abs(allelic ratio - 0.5))

and trans-effects (|AI_F1 - AI_F0 | ). This was done for all genes with

detected dynamic effects (log BF > 10). We then smoothed these tra-

jectories by taking the average across 5 bins and computed the average

across all genes to compute the total dynamic effect estimate. We then

scaled each individual genes to the 0 - 1 range and subjected them

jointly to hierarchical clustering (potentially including cis, trans or de

effects for the same gene). We then computed average cluster trajec-

tories per effects group (cis, trans, de) and cluster.

Correlation analysis
For the cross-species dataset, we quantified transcriptional divergence

between species for individual cell types. For a given cell type, we

computed Spearman correlations of log-transformed expression

values across genes for each pair of B6 cells. We then computed the

same distribution of correlation coefficicents between pairs of B6 and

CAST /CAROLI cells.We thendefined transcriptional divergence as the

median difference between the B6 correlations and the B6-CAST / B6-

CAROLI correlations.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
All newly generated sequencing data has been deposited in ArrayEx-

press under the accession number E-MTAB-11602. The B6 samples of

the cross-species comparison are deposited in ArrayExpress under the

accession number E-MTAB-6934. The spermatocyte ATAC-Seqhas been

deposited under the accession number E-MTAB-12685. All other rele-

vant data supporting the key findings of this study are available within

the article and its Supplementary Information files or from the corre-

sponding author upon request. A reporting summary for this Article is

available as a Supplementary Information file. Genomic files and

annotations are available from ensembl http://www.ensembl.org/Mus_

musculus/Info/Index. Variants between B6 and CASTmouse strains are

available at https://ftp.ebi.ac.uk/pub/databases/mousegenomes/REL-

1505-SNPs_Indels/mgp.v5.merged.snps_all.dbSNP142.vcf.gz.

Code availability
All code to reproduce the results presented in this paper can be found

under https:/github.com/PMBio/ase_spermatogenesis/.
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