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Regression-based Deep-Learning predicts
molecular biomarkers from pathology slides
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Deep Learning (DL) can predict biomarkers from cancer histopathology.

Several clinically approved applications use this technology.Most approaches,

however, predict categorical labels, whereas biomarkers are often continuous

measurements. We hypothesize that regression-based DL outperforms

classification-based DL. Therefore, we develop and evaluate a self-supervised

attention-based weakly supervised regression method that predicts con-

tinuous biomarkers directly from 11,671 images of patients across nine cancer

types. We test our method for multiple clinically and biologically relevant

biomarkers: homologous recombination deficiency score, a clinically used

pan-cancer biomarker, as well as markers of key biological processes in the

tumor microenvironment. Using regression significantly enhances the accu-

racy of biomarker prediction, while also improving the predictions’ corre-

spondence to regions of known clinical relevance over classification. In a large

cohort of colorectal cancer patients, regression-based prediction scores pro-

vide a higher prognostic value than classification-based scores. Our open-

source regression approach offers a promising alternative for continuous

biomarker analysis in computational pathology.

The collection and pathological examination of tissue specimens is

used for accurate diagnosis of patients with malignant tumors, pro-

viding information related tohistology grade, subtype, stage andother

tumor biomarkers. Digital pathology describes the computational

analysis of tissue specimen samples in the form of whole slide images

(WSI). Numerous studies have shown that alterations in individual

genes1–3, microsatellite instability4–6, and the expression of individual

genes7 or expression patterns of groups of genes8,9 can be predicted

directly fromWSI. This research area has also enabled genetic changes

to be correlated with morphological patterns (i.e. genotypic-

phenotypic correlations)10, which facilitates the prediction of patient

outcome11. Consistent with their clinical application, several of these

methods have been approved for clinical use by regulatory agencies12,

to the extent that the prediction of biomarkers from pathological

diagnostic workflows based on deep learning (DL) is becoming

increasingly relevant, not only in the research setting, but also as a de

facto clinical application2,12,13.

The prediction of genotypic-phenotypic correlations, which

involves predicting genetic biomarkers from WSIs, is a weakly super-

vised problem in DL. To accomplish this task, a DL model correlates

phenotypic features from WSIs with a single ground truth obtained

frommolecular genetic sequencing of tumor tissue at the patient level.

Nevertheless, as these WSI are of gigapixel resolution, neural network

processing requires breaking them into smaller regions referred to as

tiles or patches. These regions may, however, contain less relevant

tissues such as connective tissue or fat, whichmight not contribute to

biomarker predictability14. To address this issue, attention-based

multiple instance learning (attMIL) is the predominant technical
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approach that is currently used15–18. To implement this strategy, feature

vectors are first extracted from pre-processed tiles. These vectors are

then aggregated by a multi-layer perceptron with an attention com-

ponent, allowing for a patient-level prediction of the WSI.

Despite the current attMIL approach yielding a high accuracy for

biomarker prediction fromWSIs15,19,20, almost all published approaches

are limited to classification problems with categorical values (e.g.

presence or absence of a genetic alteration)1–3,8,11,21,22. Nonetheless, the

ground truth of many biomarkers is available as continuous values,

which are then binarized prior to being utilized as ground-truth for DL.

This is true for whole-genome duplications, copy number alterations,

homologous recombination deficiency (HRD), gene expression values,

protein abundance, and many other measurements. Studies that pur-

sue regression analysis of continuous values often opt for dichot-

omization or custom thresholds for categorization. For example, prior

tomodeling, Fu et al. utilized a LASSOapproach for the classificationof

continuous chromosome data into three classes10. Schmauch et al.

trained a regression model to predict continuous biomarkers and

subsequently used percentile thresholds for the evaluation of the

models through a categorical representation7. Chen et al. performed

feature extraction using Cox regression with L1 regularization, after

which the risk scores were dichotomized into binary categories to

predict disease free survival23.

However, binarization or dichotomization of these values results

in information loss24, which presumably limits the performance of DL

systems predicting these biomarkers from pathology slides. Alter-

natively, amore suitable approach to classification in histopathological

WSI analysis would be regression. Regression is a modeling approach

used to investigate the relationship between variables25, such as mor-

phological features from aWSI, and continuous numerical values, such

as genetic biomarkers. To date, there is a paucity of data exploring this

approach. Several studies have explored different approaches for

predicting gene expression levels and spatial gene expressions from

WSIs. Huang et al. utilized contrastive learning combined with a linear

regression model to predict differential gene expression levels26.

Similarly, Dawood et al. employed ordinary least squares regression to

predict spatial gene expressions fromWSIs27. Moreover, Mondol et al.

andHoang et al. employed convolutional neural network regression to

predict mRNA expression levels of various genes from pathology

slides28,29. Schirris et al. utilized multiple instance learning regression

to predict stromal tumor infiltrating lymphocytes directly from his-

topathology slides30. However, the study acknowledged the absence of

an attention mechanism as a potential limitation, which could have

contributed to improved accuracy in the predictions. The application

of attentionmechanisms in regression was investigated by Weitz et al.

for predicting gene expressions from WSI, where a decrease in gen-

eralizability was observed in models with an attention component31.

However, their analysis was limited by a small sample size in only a

single cancer type. A recent study by Graziani et al. presented an

approach to predict continuous values frompathological images using

a form of attMIL32, yet their regression network was not systematically

compared and required more extensive validation with respect to the

more-explored classification approach.

In this study, we systematically compared classification- and

regression-based approaches for prediction of continuous biomarkers

across multiple cancer types. We hypothesized that regression out-

performs classification in weakly supervised analyses of pathology

hematoxylin-and-eosin (H&E)-stained WSIs for biomarker predict-

ability, the correspondence to regions of known clinical relevance and

prognostic capability. In addition to various tumor entities, our work

also explores several clinically relevant biomarkers represented as

continuous numerical values. As a result, we developed a contrastively-

clustered attention-based multiple instance learning (CAMIL) regres-

sion approach, which combines self-supervised learning (SSL) with

attMIL, and systematically compared it to two state-of-the-art

approaches: the CAMIL classification approach, and the regression

method proposed by Graziani et al.32. The comprehensive evaluation

and application of regression versus classification methods across

multiple datasets, organs, and biomarkers bridges a notable gap in the

computational pathology literature.

Results
Regression predicts HRD from histology
We developed a regression-based DL approach which combines a fea-

ture extractor trainedbySSL33 andanattMIL14model (Fig. 1A, B), referred

to as contrastively-clustered attention-based multiple instance learning

(CAMIL) regression. We tested the abilities of this approach for predic-

tion ofHRDdirectly frompathology images.We choseHRDbecause it is

a pan-cancer biomarker that is measured as a continuous score, but can

be binarized at a clinically validated cutoff. We used the The Cancer

Genome Atlas (TCGA) cohorts for breast cancer (BRCA), colorectal

cancer (CRC), glioblastoma (GBM), lung adenocarcinoma (LUAD), lung

squamous cell carcinoma (LUSC), pancreatic adenocarcinoma (PAAD),

and endometrial cancer (UCEC) to train a regression DL model for each

cancer type andevaluated their performancebycross-validation (Fig. 1C,

D). Tomitigate batch effects, which are problematic in the TCGA cohort,

we used site-aware cross-validation splits34. We found that our CAMIL

regression models were able to predict HRD status with AUROCs above

0.70 in 5 out of 7 tested cancer types. The area under the receiver

operating characteristic (AUROC)with 95% confidence interval (CI) were

0.78 [0.75–0.81] in BRCA, 0.76 [0.65–0.87] in CRC, 0.64 [0.37–0.79] in

GBM, 0.72 [0.62–0.81] in PAAD, 0.72 [0.67–0.77] in LUAD, 0.57

[0.52–0.63] in LUSC, and 0.82 [0.78–0.86] in UCEC (Fig. 2A, Supple-

mentary Table 1). We validated the models on CPTAC, a set of external

validation cohorts, in which images and HRD status were available for

LUSC, LUAD, PAAD,UCEC (Fig. 2B). In these cohorts, themodel achieved

even higher AUROCs, reaching 0.68 [0.56–0.79] in PAAD, 0.81

[0.77–0.85] in LUAD, and 0.96 [0.93–0.98] in UCEC. The lowest AUROC

was 0.62 [0.56–0.67] in LUSC (Supplementary Table 1). Together, these

data show that regression-based DL can predict HRD status from

pathology images alone.

Regression outperforms the state-of-the-art classification-based
approach
Wecompared the performanceof ourDL approach, CAMIL regression,

against two state-of-the-art approaches: the Graziani et al. regression

method32 and the CAMIL classification method. In order to compare

classification with regression, we chose the AUROC as an evaluation

metric. In the site-aware-split test set of the TCGA cohort, CAMIL

regression outperformed both of the previous approaches in HRD

prediction for 5 out of the 7 tested cancer types, with GBM and LUSC

exhibiting similar AUROCs (Fig. 2A, Supplementary Table 1). Sig-

nificant performance differences were observed between CAMIL

classification and Graziani et al. regression (p ≤0.0167) in the TCGA-

BRCA cohort. A paired two-tailed DeLong’s test revealed additional

significant differences, in this case between CAMIL regression and

Graziani et al. regression (p ≤0.01) in the TCGA-CRC cohort (Supple-

mentary Table 2). In the external validation cohorts, no statistically

significant differences are noted in AUROCs across the models (Sup-

plementary Table 2). Of note, CAMIL regression exhibited lower var-

iance in model performance across the 5-folds for most cancer types,

as evidenced in both the internal (Fig. 2A) and external (Fig. 2B)

cohorts. These findings suggest that CAMIL regression learns more

robust features compared to CAMIL classification across different

patient subsets. These data provide evidence that regression outper-

forms classification, even though the classification model was trained

on curated binary categories using clinically-relevant cut-off points,

and evaluated using the classification-specific AUROC metric.

Consequently, we investigated additional aspects of model per-

formancewhich the AUROC does not capture35. For this, we compared
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Fig. 1 | End-to-end experimentalworkflowoverviewwith imagepre-processing,

modeling, performance metrics and used cohorts. A Image pre-processing

pipeline and tile-level feature extraction by running inference on a ResNet50 with

pre-trained ImageNet weights and retrieval contrastive clustering (RetCCL) model

for a feature matrix for each patient. B Depiction of the modeling architecture

utilizing attention-based multiple instance learning (attMIL) applied to the self-

supervised extracted features. It incorporates three separately trained heads: one

for CAMIL classification, one for regression following the method proposed by

Graziani et al. and a third for theCAMIL regressionmethod introduced in this study.

C Performance metrics and their respective confidence intervals (CIs) used to

assess the three separately trainedheads of themodel. Evaluationmeasures include

Pearson’s correlation coefficient (Pearson’s r) for the regression models, and the

Area Under the Receiver Operating Characteristic curve (AUROC) for all models. A

paired two-tailed DeLong’s test was conducted for the homologous recombination

deficiency (HRD) and biological process biomarkers. Expert reviews of attention

heatmaps were undertaken alongside univariable (UV) and multivariable (MV) Cox

proportional-hazards (PH) models for the biological process models. D Chart

representation of the cohorts used in this study, where the inner and outer circles

denote which were utilized for training and external validation, respectively.

Training cohorts are sourced from The Cancer Genome Atlas (TCGA) program for

all clinical targets. External validation cohorts are derived from the Clinical Pro-

teomic Tumor Analysis Consortium (CPTAC) effort and the Darmkrebs: Chancen

der Verhütung durch Screening (DACHS) study, specifically for the HRD target and

the biological process biomarkers, respectively. The biological process biomarkers

considered include tumor infiltrating lymphocytes regional fraction (TIL RF), pro-

liferation (Prolif.), leukocyte fraction (LF), lymphocytes infiltrating signature score

(LISS), and stromal fraction (SF). The cancer types considered in this study are

breast cancer (BRCA), colorectal cancer (CRC), glioblastoma (GBM), lung adeno-

carcinoma (LUAD), lung squamous cell cancer (LUSC), pancreas adenocarcinoma

(PAAD), endometrial cancer (UCEC), liver hepatocellular carcinoma (LIHC), and

stomach cancer (STAD). Source data are provided as a Source Data file. Slide icon

adapted from “Icon Pack - Glass Slides”, by BioRender.com (2023). Retrieved from

https://app.biorender.com/biorender-templates.
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the three approaches by quantifying the absolute distance between

the medians of the normalized scores for the positive and negative

samples (Fig. 2C–H). For example, for detection of HRD status in

endometrial cancer, the AUROC on the CPTAC test cohort was 0.98

[0.96–0.99] for CAMIL classification, 0.89 [0.79–0.98] for regression

from Graziani et al. and 0.96 [0.93–0.98] for CAMIL regression. These

differences were not statistically significant (Fig. 2B, Supplementary

Table 2). When visualizing the distribution of HRD predictions from

the models, both the CAMIL classification (Fig. 2C, D) and Graziani

et al. regression (Fig. 2E, F) approaches exhibit a lack of clear distinc-

tion between predicted scores for HRD+ and HRD- patients. Notably,

the CAMIL regression model displays a more pronounced separation

between the scoredistributions ofHRD+ andHRD- patients inboth the

internal and external validation cohorts (Fig. 2G, H), compared to the

other approaches. We further quantified this in all tumor entities and

found that in all 7 of the selected TCGA cohorts, this distance was

larger in CAMIL regression than in CAMIL classification, resulting in a

greater class separability. In CPTAC, as compared to the CAMIL clas-

sification approach, class separability was improved in 2 out of 4

cohorts when using the CAMIL regression approach. Overall, our

CAMIL regression approach improves the mean absolute separation

distance of the groups’ medians by 9.9% for the test set of the TCGA

training cohort, and4.9% for the externalCPTAC test cohort compared

to CAMIL classification (Supplementary Table 3). Compared to the
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regression approach from Graziani et al. CAMIL regression improves

themean absolute separation distance of the groups’medians by 6.6%

for the test set of the TCGA training cohort, and 9.5% for the external

CPTAC test cohort (Supplementary Table 3).

Next, we compared CAMIL regression to Graziani et al.32 regres-

sion by assessing the Pearson correlation coefficient (Pearson’s r) of

the predicted scores compared to the clinically-derived ground-truth

scores. InTCGA, theCAMIL regressionmodel reachedhigher Pearson’s

r scores than the Graziani et al.32 model in all of the 7 selected cohorts

(Supplementary Table 4). In the CPTAC validation cohort, the CAMIL

regression model reached higher Pearson’s r scores than the Graziani

et al.32 model in 2 out of 4 of the selected cohorts, LUSC and UCEC,

while performing similarly poorly in PAAD (Supplementary Table 4).

To determine the reason for our superior performance over Graziani

et al.32 regression (Supplementary Fig. 1), we conducted an ablation

study of the CAMIL regression approach (Supplementary Table 5).

These results revealed that the inferior performance in Graziani et al.32

approach for predicting clinical biomarkers is mainly due to the

standard stochastic gradient descent optimizer, compared to the

stochastic gradient descent with adaptive moments optimizer in our

CAMIL regression approach (Supplementary Table 6). Taken together,

thesedata indicate that theCAMIL regressionmethodoutperforms the

CAMIL classification and the Graziani et al.32 regression approaches in

learning more nuanced morphological patterns, as shown by the

increased distance between prediction groups and consistently higher

correlation coefficients, respectively.

Lastly, we proceeded to investigate the impact of somatic and

germlinemutations in BRCA1/2 onHRD predictions derived fromTCGA-

BRCA. We detected a statistically significant disparity in HRD prediction

groups for caseswithBRCA1germlinemutations (p≤0.0001) andBRCA2

somatic mutations (p≤0.05) in all three modeling approaches. Con-

versely, no such significancewas observed inHRDprediction groups for

cases with BRCA1 somatic and BRCA2 germline mutations (Supplemen-

tary Fig. 2A–C). Additionally, we examined the concordance between

HRD predictions from TCGA-CRC and the status of microsatellite

instability (MSI) and tumor mutational burden (TMB). In the CAMIL

regression approach, we observed a statistically significant difference in

HRDprediction groups in relation to bothMSI status (p≤0.01) andTMB

status (p≤0.05). Therefore, a higher HRD prediction score from CAMIL

regression is associated with microsatellite stable (MSS) and low TMB

tumorswithinTCGA-CRCsamples. Interestingly, such anassociationwas

not evident when using either the CAMIL classification or the Graziani

et al. regression approaches (Supplementary Fig. 2D–F).

Regression predicts key biological process biomarkers from
histology
Having shown that our CAMIL regression method can predict HRD

from histology WSIs, we expanded our experiments to additional

biomarkers. We investigated biomarkers related to the three key

components of solid tumors: tumor cells, stroma, and immune cells.

For tumor cells, we aimed to predict proliferation, as measured by an

RNA expression signature36. For stroma, we aimed to predict stromal

fraction (SF), as assessed via DNA methylation analysis36. For immune

cells, we investigated the tumor infiltrating lymphocytes regional

fraction (TIL RF), the leukocyte fraction (LF), and the lymphocyte

infiltration signature score (LISS)36. We found that our CAMIL regres-

sion method was able to predict all of these five biomarkers with high

AUROCs across cancer types in the TCGA cohort (Supplementary

Table 7). For example, in breast cancer, the AUROCs for these five

biomarkers were 0.88 [0.86–0.91 in TIL RF, 0.84 [0.81–0.86] in pro-

liferation, 0.80 [0.77–0.83] in leukocyte fraction, 0.80 in LISS, and0.81

[0.78–0.83] in stromal fraction. In colorectal cancer, these AUROCs

were 0.79 [0.75–0.84], 0.59 [0.51–0.66], 0.76 [0.72–0.81], 0.70

[0.66–0.74], 0.68 [0.63–0.73], respectively. Across all cancer types,

AUROCs of above 0.70 were reached in 28 out of 34 models (Supple-

mentary Table 7). These findings show that the regression-based DL

model can be trained to predict tumor cell proliferation, stromal

fraction and immune-cell-related biomarkers from H&E

histopathology.

To further assess these results, we compared them to the state-of-

the-art CAMIL classification approach using the AUROC as the eva-

luation metric, with 95% CI. Using site-aware splits, our proposed

CAMIL regression reached higher AUROCs than the CAMIL classifica-

tion in 29 out of 34 instances. Statistically, CAMIL regression out-

performed CAMIL classification in 4 out of 34 instances, while the

remaining cases showed no statistically significant difference in per-

formance between the CAMIL classification and CAMIL regression

approaches (Fig. 3B, Supplementary Tables 8 and 9). CAMIL regression

outperformed CAMIL classification in TCGA-BRCA in two targets, LISS

(0.80 [0.78–0.83], p ≤0.0167) and TIL RF (0.88 [0.86–0.91],

p ≤0.0167). Moreover, CAMIL regression outperformed CAMIL clas-

sification in proliferation for TCGA-CRC (0.59 [0.51–0.66], p ≤0.01)

and TCGA-LIHC (0.87 [0.82–0.91], p ≤0.0167).

Next, we measured the performance of CAMIL regression versus

Graziani et al. regression. Our proposed CAMIL regression reached

higherAUROCs thanGraziani et al. regression in 33out of 34 instances

(Supplementary Tables 7 and 8), and higher Pearson’s r in all 34

instances (Supplementary Figs. 3 and 4). CAMIL regression out-

performedGraziani et al. regression in 14 out of 34 instances, whereas

CAMIL classification outperformed Graziani et al. regression in only 5

out of 34 instances in a statistically significant manner (Supplemen-

tary Table 9). These findings collectively demonstrate that utilizing

the CAMIL regression approach leads to an average 4% increase in

the AUROCs compared to employing the CAMIL classification

approach, and an average 12% increase as compared to employing the

Graziani et al. regression approach for the same task of predicting key

biological process biomarkers from histology (Supplementary

Table 8).

Fig. 2 | Performance overview of classification versus regression approaches

predicting the homologous recombination deficiency (HRD) score.

A, B Boxplots representing the Area Under the Receiver Operating Characteristic

(AUROC) values for HRD predictions. Predictions are made via three methods: I)

CAMIL classification, II) Graziani et al. regression, and III) CAMIL regression.Models

were tested using the internal datasets from The Cancer Genome Atlas (TCGA) and

the external datasets from the Clinical Proteomic Tumor Analysis Consortium

(CPTAC) effort. Cancer types included in these analysis are glioblastoma (GBM),

pancreas adenocarcinoma (PAAD), endometrial cancer (UCEC), colorectal cancer

(CRC), breast cancer (BRCA), lung adenocarcinoma (LUAD), and lung squamous

cell cancer (LUSC). Non-significant AUROC values are represented as transparent

violin plots. A two-sided DeLong’s test was applied across all three architectures,

with Bonferroni correction for multiple hypothesis testing (ɑ =0.0167). Source

data, including the exact p-values, are provided as a SourceDatafile.C–HDepiction

of the proportional distribution of normalized prediction scores. Normalization is

performed to ensure a consistent scale for comparison across the different meth-

ods’ prediction scores. The predicted scores are min-max normalized with 95% of

thedata falling in between the2.5th and97.5thpercentile, removing extremevalues

that potentially distort the scaling. Plotted scores are from the internal test set of

TCGA-UCEC and the external test set CPTAC-UCEC. The compared models are

CAMIL classification, Graziani et al. regression, and CAMIL regression. Ground-

truth classes are illustrated as a darker shade (HRD+) and a lighter shade (HRD−) of

the color designated for the three tested model architectures, respectively. The

sample size to plot the distributions is n = 282 and n = 99 independent patient

samples for TCGA-UCEC and CPTAC-UCEC, respectively. The box plot represents

the interquartile range (IQR),with the lower,middle andupper edgebeing the 25th,

50th, and 75thpercentile. Thewhiskers of the boxplots aredefined as theminimum

andmaximum values 1.5 times the IQR away from the lower and upper quartiles of

the data, respectively. Source data for the distributions and boxplots are provided

as a Source Data file.
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Regression enhances correspondence to clinical knowledge in
biomarker predictions from histology
Next, we investigated the capabilities of the correspondence to

regions of known clinical relevance of the CAMIL classification model

compared to the CAMIL regression model. For this, we evaluated the

biological plausibility of spatial prediction heatmaps obtained by

deploying both the LISS regression and the LISS classification models

trained on tumors in the site-aware split test set of the TCGA cohort.

Even though the LISS is only available as a weak label with one score

perWSI, a robust model should still be capable of highlighting regions

associated with the LISS, and these regions should predominantly

contain lymphocytes. Indeed, we saw that both the classification

model and the regressionmodel placed their attention on lymphocyte-

rich regions (Fig. 3C-0). Nevertheless, in the evaluated WSIs, the LISS

regression model yielded a sharper delineation of lymphocyte-rich

regions and placed less attention on areas where histologic features

are less relevant. Contrastingly, the LISS classification model demon-

strated relatively less confidence in areas with a dense lymphocyte

population compared to the regressionmodel, as indicated by a lower

attention score (Fig. 3C-1). The classificationmodel assigns importance

to regions without any presumed clinical relevance, as evidenced by

the fact that the model highlighted the tissue edge which lacks high

density lymphocytes regions (Fig. 3C-2). Similar observations were

made for the heatmaps produced by the Graziani et al. regression

model (Supplementary Fig. 5), which emphasizes areas without pre-

sumed clinical relevance while overlooking lymphocyte-rich regions.

We quantified these findings by a blinded review of 42 attention

heatmaps from the CAMIL classification and CAMIL regressionmodels

by KJH, a pathology resident. Based on the expert review, the CAMIL

regression approach produced attention heatmaps with better

Fig. 3 | CAMIL classification versus CAMIL regression for the prediction of

continuous biological process biomarkers of the tumor microenvironment.

A Simplified depiction of the tumormicroenvironment (TME) as the primary focus

of our analysis, which includes tumor cells, stroma, and immune cells. B Heatmap

indicates the deltas of Area Under the Receiver Operating Curve (AUROC) between

CAMIL regression and CAMIL classification for five biological process biomarkers:

tumor infiltrating lymphocytes regional fraction (TIL RF), proliferation (Prolif.),

leukocyte fraction (LF), lymphocytes infiltrating signature score (LISS), and stromal

fraction (SF). These biomarkers were tested on the sets of various cancer types

including breast cancer (BRCA), colorectal cancer (CRC), liver hepatocellular car-

cinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell cancer (LUSC),

pancreas adenocarcinoma (PAAD), stomach cancer (STAD), and endometrial can-

cer (UCEC), which were all sourced from The Cancer Genome Atlas (TCGA)

program for site-aware split folds. Higher positive delta indicates a superior per-

formance by the CAMIL regression model. Asterisks denote statistical significance

resulting from a paired two-tailed DeLong’s test (ɑ =0.0167). C Representative

attention heatmap of a slide from the TCGA-BRCA test set. Image 0 displays the

entire slide, highlighting a diagnostic area of interest in Image 1. Image 2 represents

an area containing presumably non-essential diagnostic information. This

sequence is repeated for the original slide, the attention heatmap using CAMIL

classification, and the attention heatmap using CAMIL regression for the LISS

biomarker. Areas with higher attention scores are more critical for the model’s

decision-making. Source data are provided as a Source Data file. Parts of the figure

were drawn by using pictures from Servier Medical Art. Servier Medical Art by

Servier is licensed under a Creative Commons Attribution 3.0 Unported License

(https://creativecommons.org/licenses/by/3.0/).
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correspondence to regions of known clinical relevance in 34 out of 42

cases. In 6 out of 42 cases, the CAMIL classification approachwasmore

favorable. Similar performance between the CAMIL classification and

regression approaches was observed in 2 out of 42 cases. Hence,

CAMIL regression outperforms CAMIL classification in 81% of cases

based on blinded review. Taken together, these data demonstrate that

the regression approachgives a statistically significantly better AUROC

for the investigated biomarkers (p ≤0.0167; Supplementary Tables 8

and 9), and a markedly improved capability of correspondence to

regions of known clinical relevance, compared to the CAMIL classifi-

cation and Graziani et al. regression approach (Supplementary Fig. 5).

Regression-based biomarkers improve survival prediction in
colorectal cancer
Biological processes of tumor cell proliferation, deposition of stro-

mal components, and infiltration by lymphocytes are biologically

relevant during tumorigenesis and progression, and are known to be

related to clinical outcome37,38. Thus, prediction of lymphocytic

infiltration from H&E pathology slides should be relevant for prog-

nostication. We investigated this in a large cohort of 2297 patients

with colorectal cancer from the Darmkrebs: Chancen der Verhütung

durch Screening (DACHS) study, for which H&E WSIs and long-term

(10 years) follow-up data were available for overall survival (Supple-

mentary Table 10).

First, we deployed the models that were trained on breast cancer

patients in TCGA, as it is the only cancer type where CAMIL classifi-

cation and CAMIL regression exhibited significantly different AUROCs

(p ≤0.0167) in 2 out of 5 biomarkers (Fig. 3B). We then deployed the

CAMIL classifications models on WSIs from patients enrolled in

DACHS. However, instead of utilizing the predicted label from the

classification model, we employed the continuous scores for classifi-

cation, i.e. logits [0,1], which allows for a more comparable survival

analysis with the continuous regression scores. Upon following this

approach, we assessed the prognostic impact of the predicted classi-

fication scores using univariable and multivariable Cox proportional-

hazards models for overall survival (Fig. 4A, B), yielding hazard ratios

(HR). In our analysis, significant risk-group stratification was observed

in 2 out of 5 biomarkers by the classification models (Fig. 4A, Supple-

mentary Table 11), namely TIL RF (p ≤0.01) and leukocyte fraction

(p ≤0.01) exhibiting statistically significant findings. In the multi-

variable survival model (Fig. 4B, Supplementary Table 12), the classi-

ficationmodels show significant prognostic capabilities in only 1 out of

5 biomarkers: proliferation (p ≤0.05). This hazard ratio represents only

a modest predictability of survival, as the CI of proliferation in the

multivariable survival model touches the point of insignificance on its

lower boundary with an HR of 1.44 [1.00–2.06]. After repeating the

procedure with continuous scores obtained from the CAMIL regres-

sionmodels, we found that the regressionmodelsmarkedly improved

Fig. 4 | Overview of the externally validated prognostic capabilities of the

trainedmodels to predict overall survival. A,BDepiction of univariable (UV) and

multivariable (MV) Cox proportional-hazards (PH) analyses of the CAMIL classifi-

cation models. C, D Depiction of UV and MV Cox PH analyses of the CAMIL

regression models. These models were trained on the biological process bio-

markers from the breast cancer cohort from The Cancer Genome Atlas (TCGA)

program and deployed on the external colorectal cancer (CRC) cohort from the

Darmkrebs: Chancen der Verhütung durch Screening (DACHS) study. For the MV

Cox PH analysis, each model’s continuous output for the DACHS samples, from

CAMIL classification and CAMIL regression, is independently considered alongside

three covariates: tumor stage (TS), age, and sex. The observed biological process

biomarkers include tumor infiltrating lymphocytes regional fraction (TIL RF),

proliferation (Prolif.), leukocyte fraction (LF), lymphocyte infiltration signature

score (LISS), and stromal fraction (SF). Stars indicate statistical significance

(p ≤0.05) for hazard ratios (HR) and their 95% confidence intervals (CI). The p-

values and 95% CI are calculated through fitting the Cox’s proportional hazard

model for each variable independently. An HR confidence interval crossing 1 indi-

cates non-significant prognostication capability. Prognostic capabilities that exhi-

bit a stronger effect canbeconsidered relatively better, as indicatedby aHR further

away from 1, printed in bold. The error bars are the 95%CI, with the measure of the

centers being the estimated HR for each variable. The sample size to derive sta-

tistics is n = 2297 independent patient samples for each variable, with n = 1345

males (median age 69),n = 952 females (median age 70). Source data, including the

exact p-values and disaggregated results by sex for the univariate Cox PH analysis,

are provided as a Source Data file.
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the survival prediction. The regression model demonstrated a sig-

nificant risk-group stratification in 3 out of 5 biomarkers (Fig. 4A,

Supplementary Table 11): TIL regional fraction (p ≤0.01), leukocyte

fraction (p ≤0.0001) and LISS (p ≤0.0001). Furthermore, in the mul-

tivariable survival model (Fig. 4B, Supplementary Table 12), the

regression models exhibited significant prognostic capabilities in the

same 2 biomarkers: leukocyte fraction (p ≤0.01) and LISS (p ≤0.01).

Second, we replicated the aforementioned experiments by

deploying the TCGA colorectal cancer biomarker models on DACHS.

Thesemodels demonstrated comparable performancemetrics overall,

with the exception of one biomarker (Fig. 3B). The CAMIL regression

and classification models showed significant risk-group stratification

in the majority of the biomarkers (Supplementary Table 11). When

measuring the significant prognostic capabilities of the models

through the HR and corresponding p-value, CAMIL regression yielded

HRwith a stronger effect compared toCAMIL classification in3out of 5

biomarkers (Supplementary Table 12): TIL regional fraction (0.33,

p ≤0.05), leukocyte fraction (0.24, p ≤0.05) and LISS (0.07,

p ≤0.0001).

These observations provide evidence that CAMIL regression has

effectively learned robust andgeneralizable prognostic features across

diverse cohorts and cancer types, a capability that was notmatched by

CAMIL classification. Similarly, we conducted the same experiments

for the Graziani et al. regression models (Supplementary Table 13).

However, the Cox models failed to converge due to low variability

observed in the patients’ predictions. This outcome strongly suggests

that theprognostic features learnedby the regressionmodel proposed

by Graziani et al. lack the necessary generalizability when extended to

external cohorts. Moreover, we disaggregated the univariable Cox

proportional-hazardmodels for CAMIL classification and regressionby

sex (Supplementary Tables 14 and 15). Taken together, these data

demonstrate that training models on biologically relevant biomarkers

using weakly supervised learning result in CAMIL regression models

that outperform the state-of-the-art classification and regression

approaches in prognostication. This highlights the potential of CAMIL

regression to enhance weakly supervised learning for clinical applica-

tions of DL systems.

Discussion
Since 2018, the field of digital pathology has rapidly expanded to

include the development of tools for predicting molecular bio-

markers from routine tumor pathology sections, which has led to the

developmentof clinically approvedproducts. TraditionalDLmethods

have limited the analysis of many biomarkers, including HRD and

gene expression signatures, which are continuous values, by cate-

gorizing them into discrete classes. Our study provides direct evi-

dence that regression networks, such as the CAMIL regression

method described in this study, which builds on recent work using

attention-based multiple instance learning and self-supervised pre-

training of the feature extractor18,20,33, outperforms traditional classi-

fication and regression networks in predicting these biomarkers. This

approach unlocks a key clinical application area for pathology-based

biomarker prediction.

Our proposed CAMIL regression approach has shown promising

results in improving the accuracy and separability of biomarker pre-

dictions compared to CAMIL classification and Graziani et al.32

regression. This improvement is particularly noticeable for biomarkers

that have a clinically established threshold for categorization, such as

HRD. Our observations of HRD predictions in relation to BRCA1 and

BRCA2 somatic andgermlinemutations inTCGA-BRCAwereconsistent

in all threemodeling approaches, which align with a previous study on

HRD39. Collectively, these findings affirm the ongoing need for formal

germline testing in breast cancer. In our analysis of the predicted HRD

scores usingCAMIL regression in relation toMSI status andTMB status

in TCGA-CRC, we discovered that CAMIL regression successfully

identified correlations that align with established medical

concepts40,41. These correlations remained undetected by the Graziani

et al. regression andCAMIL classification approaches. Additionally, the

paucity of HRD+ cases in TCGA-CRC (n = 16) suggests that CAMIL

regression has the capacity to identifymorphologicalHRDphenotypes

with fewer patient samples compared to CAMIL classification and

Graziani et al. regression. Similar improvements can be observed for

biomarkers that do not have any clinically relevant cut-off point and

would traditionally necessitate dichotomization for analysis, such as

immune biomarkers. Moreover, our CAMIL regression approach

demonstrates better generalization capabilities compared to both the

regression approach by Graziani et al.32 and CAMIL classification, as

seen in the external test cohorts across multiple experiments. Of note,

we identified that the optimizer used in Graziani et al.32 predominantly

caused the regression model to converge towards the mean, thereby

explaining the observed discrepancy.

In addition, our study highlights the advantages of CAMIL

regression-based biomarker prediction over CAMIL classification-

based and Graziani et al. regression-based predictions in terms of the

correspondence to regions of known clinical relevance. We demon-

strated that, for tumor infiltrating lymphocytes, attention heatmaps

generated through CAMIL regression were preferred in 81% of cases

compared to those generated through CAMIL classification. CAMIL

regression also resulted in an improvement in survival prediction

based on immunologic biomarkers, as it allowed for more effective

stratification of risk groups for overall survival compared to CAMIL

classification models. The biomarkers were deliberately chosen on

the basis of their prognostic capabilities42–45, and are better reflected

by the tumor morphology analysis through the CAMIL regression

approach as compared to the CAMIL classification approach. Our

CAMIL regression approach has consistently demonstrated superior

prognostic capabilities, even when compared to the state-of-the-art

CAMIL classification model. In contrast, when applying the Graziani

et al. regression approach to the external cohort, it yielded predic-

tions with exceedingly low variance, obstructing the Cox

proportional-hazards model from converging, thereby further high-

lighting the limitations inherent in the Graziani et al. regression

approach.

Our study brings valuable insights and contributions to the field,

but it is not without its limitations. For example, the range of our

experiments were limited to a select number of tumors and clinical

targets, where not every analyzed clinical target had an external test

set with the same clinical information available. This resulted in

pseudo-external test sets through site-aware splits, and blind deploy-

ments on an external cohort. Additionally, none of the hyperpara-

meters of the trained models were optimized. Further research could

expand the analysis to a wider variety of cancers and clinical targets,

while also exploring potential pitfalls of regression in computational

pathology. Moreover, the analysis of continuous biomarkers, such as

gene expressions, encounter various sources of noise and uncertainty

in the measurements to define the ground-truth46. In such cases,

relying solely on the exact values of the variable for prediction pur-

poses can be problematic for training a regressionmodel. Futurework

should consider the Kullback–Leibler divergence as a loss function47 to

deal with label noise of continuous biomarkers. By utilizing cut-offs,

the prediction task is transformed into a seemingly simpler classifica-

tion problem, at the cost of information loss24. The trade-off between

noisy labels in regression versus loss of information in classification

through dichotomization requires further research for the explicit

delineation in which biological prediction task regression fails, and

why. The approaches described here, however, provide a proof-of-

principle for the use of regression-based attMIL systems and their

potential impact for the inference of biomarkers and prediction of

outcomes from histologic WSIs, expanding the repertoire of applica-

tions of DL in precision medicine.
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Methods
Ethics statement
We examined anonymized patient samples from several academic

institutions in this investigation. The collection and analysis of samples

in the DACHS cohort was approved by the local ethics board. Written

informed consent was obtained by participants in DACHS. Participants

received no compensation for participation. CPTAC and TCGA did not

require formal ethics approval for a retrospective study of anonymised

samples. The overall analysis was approved by the Ethics commission

of the Medical Faculty of the Technical University Dresden (BO-EK-

444102022).

Image data and cohorts
A total of 11,671 rawWSIswere scanned by anAperio ScanSlide scanner

and pre-processed in this study. Two types of clinical targets were

analyzed to observe the performance of the classification and regres-

sion models: 1) continuous variables with a known clinically relevant

cut-off for categorization, and 2) continuous variables with unknown

clinically relevant cut-offs, thus requiring categorization by splitting at

the median. These categories of targets were chosen due to theory

mentioning the loss of information by splitting at the median24, but

does not mention the loss of information when utilizing clinically

relevant cut-offs before training the model.

The target with a clinically relevant cut-off is homologous

recombination deficiency (HRD) (Supplementary Table 16), a clinically

relevant biomarker in solid tumor types, such as breast cancer. One

way to calculate HRD is by adding up the three subscores, Loss of

Heterozygosity (LOH), Telomeric Allelic Imbalance (TAI) and large-

scale state transitions (LST), giving us a continuous value ranging from

0 to 103 in the training sets. A clinically relevant cut-off point of

HRD ≥ 42 was used to binarize the continuous score48.

The targets without a known clinically relevant cut-off point are

biological process biomarkers (Supplementary Table 17), which are

interesting to analyze due to their prominent role in immunotherapy

outcome prediction36,49,50: Stromal Fraction (SF) with range [0, 0.92]

and leukocyte fraction (LF) with range [0, 0.96] as assessed via DNA

methylation analysis, lymphocyte infiltrating signature score (LISS)

with range [−3.49, 4.17] and proliferation (Prolif.) with range [−2.86,

1.59], as measured by RNA expression data and tumor infiltrating

lymphocytes regional fraction (TIL RF)with range [0, 63.65], quantified

using a DL based classification. For TCGA-LIHC, there was no data

available for TIL regional fraction, leading to ananalysis of 5 targets in 7

cancer types with 5-fold cross-validation, resulting in (35-1)*5 models

for each modeling type, of which the AUROC and 95% CI of the 5 folds

per target and tumor type was reported.

Model description
The entire image processing pipeline, fromwhole-slide image (WSI) to

patient-level predictions, consisted of three main steps: 1) image pre-

processing, 2) feature extraction, 3a) classification-based attention

attMIL and 3b) regression-based attMIL for score aggregation resulting

in patient-level predictions (Fig. 1A, B).

All WSI in the experiments were tessellated into image patches at

a resolution of 224 by 224 pixels with an edge length of 256 µm,

resulting in a Microns Per Pixel (MPP) value of approximately 1.14.

After tessellation, every image patch underwent a rejection filter

using the Canny edge detection method51, removing blurry patches

and the white background of the image when two or less edges were

detected in the patches. The remaining patches were color-

normalized in order to reduce the H&E-staining variance across

patient cohorts according to the Macenko spectral matching

technique52, with a prior added step of brightness standardization.

For pre-processing, our end-to-end WSI pre-processing pipeline was

utilized. The target image used to define the color distribution was

uploaded to the GitHub repository.

Every pre-processed image patch was turned into a 2048 feature

vector through inference of a ImageNet-weighted ResNet50-based

self-supervised contrastive clustering model fine-tuned on 32,000

WSIs from different cancer types; RetCCL33. The feature extraction

resulted in an (n × 2048) feature matrix per patient, where n is the

number of (224 ×224 pixels) pre-processed image patches.

Experimental setup and implementation details
For the experiments, 5-fold cross-validation on patient-level with site-

aware splits was performed to train the models. Site-aware splits

ensure that patients are stratified and grouped by the hospital theWSI

originated from, creating a stratified random 80-20 split which forces

all patients from the same hospital to exist in either the training and

internal validation set, or the internal test set, while retaining ground-

truth class distributions. Specifically, in TCGA, site-specific histological

features were shown to be present in the WSI, causing biased evalua-

tions in the model when not accounted for accordingly during the

training procedure34. The basis for the weakly supervised classification

and regression was adapted from the attention-based multiple

instance learning (attMIL) method by Ilse et al.53. Our proposed model

used Balanced MSE54 as a loss function to account for the natural class

imbalance in clinical settings, as well as the Adam optimizer55 and an

attention component followed by a MLP head53 which was trained for

25 epochs. Thedropout layerwas removed, due to lossof performance

in regression in tabular data settings56. The attMIL variant in our pro-

posed CAMIL regression differs from Ilse et al. by swapping their fea-

ture extractor with a pre-trained ResNet50 with ImageNet weights,

fine-tuned on 32,000 histopathology images in a self-supervised

manner using contrastive clustering shown to yield significantly better

results on WSI image analysis33. Moreover, the classification head

consisting of a fully-connected (FC) layer and sigmoid operation was

swapped with custom heads to allow for classification and regression

tasks to be performed. The attention component was not altered.

To evaluate the relative supremacy between classification and

regression, first, the CAMIL regression method was compared with 1)

the regression method from Graziani et al. and 2) the CAMIL classifi-

cation method on the continuous HRD score and clinically-relevant

binarized HRD score, respectively. Similarly, CAMIL regression was

compared to CAMIL classification and Graziani et al. regression on

continuous biomarkers related to biological processes with no known

clinically-relevant cut-off points, where the median score per target

was used for binarizing. Moreover, an expert review by a pathology

resident was conducted on attention heatmaps produced by CAMIL

classification and CAMIL regression to determine which method yiel-

ded the heatmaps with the best correspondence to regions of known

clinical relevance. Finally, the prognostic capabilities of CAMIL

regression, CAMIL classification and Graziani et al. regression was

evaluated on an external data cohort DACHS-CRC by predicting sur-

vival of groups stratifiedby themodelswhichwere trainedon the same

biological process biomarkers and extracted features. For the HRD

scores, the models were trained on TCGA-BRCA, TCGA-CRC, TCGA-

GBM, TCGA-LUAD, TCGA-LUSC, TCGA-PAAD, TCGA-UCEC and exter-

nally validated on CPTAC-LUAD, CPTAC-LSCC, CPTAC-PDA and

CPTAC-UCEC. For the biological process biomarkers, the models were

trained on TCGA-BRCA, TCGA-CRC, TCGA-LUAD, TCGA-LUSC, TCGA-

LIHC, TCGA-STADandTCGA-UCEC. Every biomarker predictionmodel

thatwas compared, both regression and classification, consisted of the

exact same patients for training, internal validation, internal testing

and external testing (Supplementary Tables 16 and 17).

For the regression method from Graziani et al. we introduced the

self-supervised component as feature extractor33 followed by

embedding-level attention aggregation, instead of the ImageNet

weighted ResNet18 backbone followed by patch-level attention

aggregation in the original study by Graziani et al.32. As it was shown

that the self-supervised backbone increases performance and
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generalizability compared to an ImageNet weighted architecture as

backbone33, we added the self-supervised component in order to

compare the regression heads in isolation. The commonalities

between the models are the learning rate (1.00E-04), weight decay

(1.00E−02), patience (12 epochs), the attention component53 and the

fit-one-cycle learning rate scheduling policy57. The differences of the

models’ hyperparameters and optimization strategies (Supplementary

Table 5) ofGraziani et al. andourCAMIL regressionmodelwerebroken

down in an ablation study to find the reason for the performance

differences of the regression heads.

To explicitly denote the terminology in this paper, we define

training as performing 5-fold cross-validation, thus 5 training iterations

of n epochs, on the respective cohorts of TCGA with corresponding

molecular biomarkers. As previously described, training is executedwith

5 times an 80-20 split of the TCGApatients, resulting in 5models trained

and tested on different subsets of the training cohort. This 20% test

set allows for the evaluation of the selected architectures’models on the

TCGA cohort. We define retraining as performing a single training

iterationofn epochson 100%of theTCGAcohort. Consequently, no test

set remains to evaluate the performance on the training cohort TCGA.

We define internal validation of the models as applying the models on a

subset of data that was unseen during training, but still belongs to the

same cohort of patients from TCGA. We define external validation as

deploying the models on a subset of data that was unseen during

training, given that the subset of data comes fromadifferent submission

site than the training cohort, such as CPTAC and DACHS. External vali-

dation is important in order to test the generalizability of the trained

models to different environments in which the pathology slide and

corresponding biomarker information is prepared. For the statistics, we

use an ensemble of the predictions resulting from the 5-fold models

being applied to the test sets. Thus, we obtain multiple scores for each

patient, which are then aggregated using the median. This results in 1

ensembled score for each patient, now considered an independent

sample, which is used in subsequent statistical analyses. The effective-

ness of the models’ decision-making, as indicated by their attention

heatmaps, is evaluated through the models’ ability to correspond pre-

dictions to clinically relevant regions. Note that this evaluation concept

should not be conflated with the comparison of interpretability cap-

abilities across models58, as the tested modeling approaches employ an

identical attention mechanism to facilitate interpretability.

Statistics and endpoints
The classification and regression method were made comparable in a

similar dimension by utilizing the area under the receiver operating

characteristic (AUROC) metric. For the definition of the binarized

groups required for theAUROCs, the clinically-relevant cut-off forHRD

was used, while for the biological process biomarkers, the continuous

targets were split at the median. The prediction scores of the classifi-

cationmodel [0,1] and the predictions of the regressionmodels (−∞,∞)

were used as continuous score for all the possible thresholds of the

AUROC59. By utilizing this approach, it was possible to test which type

of model, when provided with the same ground-truth binarized label,

had the least overlap between the predicted score distributions for

different groups. This, in turn, resulted in achieving the highest

AUROC.However, the AUROCmeasures only the separation of groups’

score distributions, but does not account for the distance between the

distributions. Therefore, to determine whether there is an increased

distance between distributions, the median and interquartile range

(IQR) were calculated for the clinically relevant HRD+ and HRD-

groups. However, this calculationwas not performed for the biological

process biomarkers due to the unclear relevance of distance between

the dichotomized groups.

To determine statistical significance of the AUROCs, the 95%

confidence interval (CI) of the 5 training folds was calculated for each

model. For the statistical analyses, a median ensemble of predictions

across the 5 folds was preferred instead of retraining a singlemodel on

the entire training cohort. This approach offers a more consistent

generalizability to external cohorts (Supplementary Fig. 6), as also

observed in other studies in computational pathology15,60. In order to

identify if the AUROCs of the three compared models (CAMIL classi-

fication, regression from Graziani et al. and our proposed CAMIL

regression) had a significant difference for the HRD target, three

paired two-tailed DeLong’s tests were performed for each cancer type.

Similarly, the AUROCs of the biological process biomarkers’ models

were also compared using three paired two-tailed DeLong’s tests

performed for each cancer type. To account for multiple hypothesis

testing, the p-values were adjusted through a Bonferroni correction

(α = 0.0167). For comparisons between the regression approaches, the

Pearson’s r and corresponding p-values were calculated using the

median ensemble of predictions, resulting in a single aggregated

prediction score for each patient.

To determine the prognostic capabilities of the biological process

biomarkers’ models, survival prediction analysis was done on an

external cohort, DACHS. All 5 models trained through site-aware splits

were blindly deployed, of which the median of the predicted scores

were used for further analysis. The univariable and multivariable Cox

proportional-hazards analysis were independently performed to

determine the Hazard Ratio (HR) of the classification and regression

models’ predictive biomarker. The continuous score from the regres-

sion and classification models were used for the Cox proportional-

hazards analyses, enabling a comparison between the survivalmodels.

The prognostic capabilities of the classification and regressionmodels

were independently analyzed together with three covariates: age

(continuous, ℝ+), sex (male versus female) and tumor stage (stage 1

versus 2, stage 1 versus 3, stage 1 versus 4). Thus, one model’s con-

tinuous scores per target and the three covariates were analyzed for

eachmodel independently. Statistical significance of theHR is reached

when the 95% CI does not cross a HR = 1, with models yielding HR

further away from 1 indicating a stronger effect and thus defined as

having better prognostic capability.

Visualization and explainability
To compare the separability of the models’ score distribution for HRD

at a similar scale, all values for all three models were normalized

individually to redistribute every model’s score output between [0,1].

The method used for rescaling the predictions is a variation of min-

max normalization with robust scaling, where min-max normalization

is performed on 95% of the data falling in between the 2.5th and 97.5th

percentiles of the predictions for each method. This procedure

removes the extreme values in the predictions for each of the classi-

fication and regression methods, enabling us to calculate the separa-

tion for 95% of the remaining data. Consequently, we reduce the risk of

extreme values affecting the scaling, and it focuses the performance

comparison on the central portion of the data distribution. The robust

min-max normalization method is only applied for the calculation and

visualizationof the separability, anddoes not affect any other reported

metrics. To explain the classification and regressionmodels’ capability

of decision-making using clinically relevant features, the attention

component from the attMIL model architecture was utilized. The

attention heatmaps were created by loading the attMIL model archi-

tectures for classification and regression into a fully convolutional

equivalent61with their respective weights from the training procedure,

which allows for a high-resolution attention heatmap, rather than

224×224 patches the model was trained on. By running inference on

the WSIs of the patient, the attention layer which resulted from the

patient-wise prediction was extracted and used as an overlay on the

WSI to indicate hot zones which the model used in decision making.

The TCGA-BRCA cohort was chosen for visualization to observe the

contrast between similar- and superior performance of the regression

model compared to the classification model in lymphocyte-based
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targets. For each target, the classification and regression model were

trained, validated and tested on the exact same patients using site-

aware splits. The attention heatmaps for the blinded review were

generated frompatients with the top 42 highest expression of the LISS

biomarker from the unseen internal TCGA-BRCA test set through the

trainedCAMIL classificationandCAMIL regressionmodels, resulting in

84 heatmaps in total. The models’ capability of corresponding pre-

dictions to regions of known clinical relevance was reviewed by a

pathologist, choosing themost accurate attention heatmap for each of

the 42 patients. The attention heatmaps generated by the Graziani

et al. regression models were excluded from the pathologist review

due to initial observations that indicated unsatisfactory performance

in both quantitative metrics (Supplementary Fig. 4) and the quality of

the generated heatmaps (Supplementary Fig. 5).

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The slides for TCGA are available at https://portal.gdc.cancer.gov/. The

slides for CPTAC are available at https://proteomics.cancer.gov/data-

portal. Themolecular data for TCGAandCPTACare available at https://

www.cbioportal.org/ and additional biomarker data is available from

Thorsson et al.36. The slides and biomarker data for DACHS were gen-

erated for prior studies62–64 with restricted access. Biomarker data for

DACHS are available by requesting Authorized Access to the

phs001078 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.

cgi?study_id=phs001113.v1.p1] study. Applications for access to DACHS

biomarker data are reserved for Senior Investigators and NIH Investi-

gators as defined in https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi, and

upon successful application grants access to the data for 1 yearwith the

option to renew access. The slides for DACHS can only be requested

directly through theDACHSprincipal investigators. The contact details

are listed at http://dachs.dkfz.org/dachs/kontakt.html. The data gen-

erated in this study for the creation of the figures are provided in the

Source Data file. Source data are provided with this paper.

Code availability
All source codes are available under an open-source license onGitHub.

The pre-processing pipeline is found at https://github.com/KatherLab/

end2end-WSI-preprocessing/releases/tag/v1.0.0-preprocessing, the

classification pipeline is found at https://github.com/KatherLab/

marugoto/releases/tag/v1.0.0-classification, the regression pipeline is

found at https://github.com/KatherLab/marugoto/releases/tag/v1.0.0-

regression, and the classification and regression attention heatmaps

are found at https://github.com/KatherLab/highres-WSI-heatmaps/

releases/tag/v1.0.0-heatmaps.
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