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To this end, probabilistic outcome-generating models (OGMs) are usually utilized to generate the outcomes using the

available covariate information. Parameters of the OGM are to be estimated from real data, taken from literature or just

set based on investigator’s choice. Examples for outcome data generation can be found in Reeb and Steibel,4 Franklin

et al,5 Schulz et al,6 Atiquzzaman et al7 and many others. Shmueli8 depicts the application of OGMs both for explaining

and prediction purposes.

For simulated data, the “truth” is assumed to be known a priori, at least to a some extent.9 That “truth” can be rep-

resented by simulation parameters or prespecified effect sizes, and is used to reliably evaluate the obtained estimates or

predictions.

The most detailed practical introduction to simulation studies that includes structural approaches for their plan-

ning and reporting as well as the discussion on the appropriate performance measures is presented in Morris et al.2 In

particular, the authors introduce a coherent terminology on simulation studies, data-generating mechanisms, and pro-

vide guidance on coding simulation studies. Most prominently, they introduce the aims, data-generating mechanisms,

estimands, methods, and performance (ADEMP) criteria as a guidance for the planning and performing of simulation

studies.

For those researchers who use the results of simulation studies without being familiar with the entire simulation

process, the discussion presented in Boulesteix et al10 can be of great assistance. The paper not only contains many

useful examples and applications, but also describes basic principles of simulation studies, gives insights into sampling

variability and data generating processes, and demonstrates the role of statistical simulations in health research.

A systematic comparison of the performance of statistical methods can also be made using a benchmarking data

set.11,12 The comparison is based on a realistic but unknown DGP where the underlying truth might be partially known

or suspected. However, good benchmarking data sets are rarely available, results are specific and contextual, and com-

parisons are mainly limited to prediction performance. This results in the need to generate data, as we focus on in this

paper.

Two common approaches for data generation are parametric and plasmode simulation, with the first approach being

the most extensively studied and widely used one. Parametric simulations assume that the parametric stochastic model

used to generate data is realistic and representative, with parameters of interest estimated from real data, derived from

the literature or even set up by the user, in order to model specific scenarios.1,2 Plasmode data generation usually begins

by resampling covariate information from the original real data.13,14 External (parametric) “truth” such as effect sizes

or model parameter values in explanatory or prediction models can then be added to the covariable data sets to define

the relationship between the covariables and the outcome. With the OGM being a part of the plasmode data generation

procedure, the resulting plasmode simulation can then be viewed as a semi-parametric data generation procedure. Of

note, parametrically simulated data may often be considered to be purely artificial, whereas plasmode data is claimed to

reflect reality in the most close way.9,13,15

In the present paper, we provide an extensive literature overview of parametric and plasmode simulations. We intro-

duce the concept of statistical plasmodes and discuss its differences to biological plasmodes. We address advantages and

challenges of parametric and statistical plasmode simulation approaches in various contexts and provide step-by-step

recommendations for the generation of statistical plasmodes.

At this point, we have no intention to demonstrate the superiority of a plasmode simulation over a parametric simu-

lation or vice versa. We aim to analyze advantages and challenges of both data generation methods, and to illustrate the

usefulness of plasmode simulations as a complement to and possible extension of parametric simulation studies.

The paper is organized as follows: Section 2 discusses parametric and plasmode simulations, compares their char-

acteristics and provides an extensive literature review on both data generation methods. Section 3 analyzes statistical

plasmodes in more detail by discussing their challenges. Section 4 provides recommendations for planning, perform-

ing and reporting of statistical plasmode simulations. In Section 5, we present a numerical example to illustrate the

application of such a data generation approach. Section 6 concludes with a discussion.

2 FROM PARAMETRIC TO PLASMODE SIMULATION STUDIES

This section provides a comparative introduction to parametric and plasmode simulations. In particular, we start with

a description of the main properties of parametric simulations as one of the most well-established types of data genera-

tion. Then we move on to plasmode simulations which are often claimed to be a more close-to-reality approach for data

generation.
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2.1 Parametric data simulation

In cases where an underlying DGP is defined in closed form and represented by a parametric stochastic model, we speak

of parametric simulations.

Themain asset of parametric simulations is their flexibility in terms of the chosenDGP. That is, one can easily generate

a variety of independent data sets by varying the assumptions imposed on the DGP and its crucial parameters. As a

result, the simulated data sets can cover many complex but relevant scenarios as well as extreme situations that do not

reflect reality. This feature becomes particularly important whenever we aim to analyze the behaviour and performance

of different statistical methods. In addition, the knowledge of the DGP makes the corresponding parametric simulation

more transparent and plausible.

Parametric simulations depreciate the sample size issue as an unlimited amount of data can be generated by means

of a particular DGP. For instance, when applied to simulation of continuous random variables, an “infinite” number of

distinct data points can be generated without much effort.

The corresponding DGP represents a cornerstone of any parametric simulation. However, the existence of an appro-

priate model for the DGP that best fits some underlying real data cannot be taken for granted. On the other hand, even

with a DGP available, the conclusions based on parametric simulationsmight be limited or even biased by the parameters

of the chosen DGP model.

Obviously, the quality of a parametric simulation depends on the level of our comprehension of the underlying pro-

cesses, distributions and possible dependencies. For instance, Vaughan et al15 state that simulations might not fully

reflect the complexity of the biological data that originates from nonrandom mating, recombination, hot spots, and

other genetic mechanisms. Boulesteix et al10 provides a similar statement and claims that many simulation studies

are too simplified to describe the complexity of the real life data and thus may lead to inaccurate or even misleading

findings.

When generating new data, we strive to preserve not only the marginal distributions but also the underlying depen-

dence structure. In this context, the specification of appropriate dependence metrics, such as correlation, emerge. One

of the options for such a specification is estimation of the dependence structure from the data at hand. Computationally,

such an estimation can be very expensive and time-consuming, especially in case of large data sets. For parametric sim-

ulations, this computational issue is one of possible reasons for making independence assumptions on certain variables

that then leads to a block diagonal structure for the corresponding correlation matrix.13 Furthermore, a multivariate nor-

mal distribution provides the simplest model for multivariate covariate data with a pre-specified mean and correlation

structure.1 For generating non-normal correlated data, diverse copulas or the extended Fleischman power method can be

utilized.16 Obviously, certain concerns about the accuracy and realism of the underlying modelling assumptions emerge

for all such approaches.

One of the assumptions imposed in the context of parametric simulations is that the “truth” must be known a priori.

Such an assumptionmay not hold in both low- and high-dimensional situations. However, high-dimensionalitymay even

exacerbate this issue making parametric simulations inapplicable. For instance, the “truth” about the set of biological

markers truly associated with a given outcome may be unknown.17

Within the framework of a parametric simulation, the underlying dependence structure has to be completely spec-

ified in advance. The specification of such a dependence structure for high-dimensional data may become a challenge.

Possible reasons can be not only computational efficiency issues, but also spurious correlations,18 sparsity of the data,

some nonlinear or even hidden dependencies and other issues related to large covariance matrices; for more discussion

and examples see Fan and Li,19 Johnstone and Titterington20 and the references therein. Pitfalls in the specification of

the dependence structure may then lead to false research discoveries and incorrect statistical inferences.

Dimensionality reduction and feature extraction play pivotal roles and are often fundamental in many

high-dimensional settings.19 However, it is not obvious how a parametric simulation may impact the findings of those

procedures considering possible non-representativeness of parametrically generated covariate data sets.

Altogether, in many cases parametric simulations may turn out to be infeasible for high-dimensional data generation

as it is not obvious how such simulations would cope with features of high-dimensionality.

A number of papers share our concerns on the applicability of parametric simulations for the generation of

high-dimensional data sets. For instance, Gadbury et al14 question the applicability of standard simulations performed in

a high-dimensional experiment where hundreds of hypotheses are to be tested. Also Franklin et al5 sees the application

of ordinary simulationmethods as an issue when comparing high-dimensional variable selection strategies. In particular,

the authors point out that the performance of those strategies depend “[… ] on the information richness and complexity
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of the underlying empirical data source” and it is doubtful whether a parametric simulation is able to capture the richness

and complexity of the information.

To overcome, at least partially, the limitations of parametric simulations outlined above, plasmode simulations have

been introduced.5,13,15

2.2 Plasmode data simulation

The term “plasmode” has been first introduced in Cattell and Jaspers,21 with a plasmode data set defined as “[… ] a set

of numerical values fitting a mathematico-theoretical model”. In their seminal work, the authors emphasized that the

certainty for the produced plasmode data set to fit the model comes either because there is a real life experiment pro-

ducing the data of that kind or because the simulated data is produced mathematically to fit the functions. Two different

approaches for plasmode generation, performed either in a lab experiment or by resampling, were also mentioned in

Mehta et al.13 In the present paper, we refine the discussions provided by these authors, introduce the concept of sta-

tistical plasmodes and analyze their properties. From our perspective, the classification of plasmodes in biological and

statistical depends on the procedure used for their generation.

Biological plasmodes are those generated “[… ] by natural biological processes, under experimental conditions that

allow some aspects of the truth to be known”.15 Such plasmodesmay be created, for example, in a wet lab bymanipulating

biological samples as in case of a “spike in” experiment.13,15 The latter paper provides a very illustrative introduction to

biological plasmodes. In their detailed definition, the authors state that “[… ] a plasmode can be defined as a collection

of data that (i) is the result of a real biological process and not merely the result of a computer simulation; (ii) has been

constructed so that at least some aspect of the “truth” of the DGP is known”.

A number of research papers such as Mehta et al,9 Vaughan et al15 deal with “spike in” experiments in microarray

expression analysis as an example for a biological plasmode data set. As part of that experiment, real cases from one

population are randomly assigned to two groups. Then, a known amount of transcript is added to serve as a positive

control. As a result, distributions and correlations in the generated data are viewed as most realistic since being taken

directly from real data. Besides others, Mehta et al13 discusses application of plasmode data sets in high- dimensional

biology. Vaughan et al15 use plasmodes for the estimation of admixture, or the proportion of an individual’s genome that

originated from different founding populations and thus illustrates the utility of plasmodes in the evaluation of statistical

geneticsmethodologies. Several authors such as Sokal et al22 andMehta et al13 provide helpful insights into generation and

application of biological plasmodes as those are expected to incorporate valuable information on biological variation and

capture biological reality. Biological plasmode data sets have also been utilized to evaluate the performance of statistical

methods23 and their validity.9 Plasmode data sets were also used to investigate the validity of multiple factor analysis in a

known biological model.22

Despite their ability to create new and more advanced biological set-ups, for example, by crossing mice,15 sometimes

biological plasmodes may become not only very time-consuming but also require high experimental costs. Researchers

might eventually do not have a lab available to construct biological plasmodes. In some cases, ethical reasons may also

speak against the construction of biological plasmodes. In all such situations, statistical plasmodes offer an advantageous

alternative.

Statistical plasmodes, being in focus of the present paper, begin with generation of covariate information performed

by applying resampling-basedmethods to a real data set, see, for example, Tibshirani,24 Reeb and Steibel,4 Franklin et al;5

note that no biologically new samples are created in the context of such resampling procedure. Further, an appropriate

OGM has to be applied to generate outcomes based on the resampled covariates.5,7,25-34

Statistical plasmodes have often been utilized in causal (propensity-based)methods usingweighted regressionmodels.

The application of these weighted regression models is often related to the presence of a complex covariance structure.31

To calculate the weighted population, exposure (or treatment) modeling is also a part of the study,5,25,26,29,31 and some

known “truth” such as exposure effects can be addedmanually.5,7,28,30,31 For instance, in Franklin et al5 the authors create

statistical plasmode data sets by “[… ] resampling from the observed covariate and exposure data without modification

to preserve the empirical associations among the variables.” In that paper, the “true” treatment effect and the baseline

hazard function are estimated from the empirical data. Furthermore, the baseline hazard has beenmodified to guarantee

a desired rate of events in a certain time interval. In addition, the associations between event times and the covariates as

well as between censoring times and the covariates have been defined by means of two Cox proportional hazard models.

Such a modeling approach corresponds to the application of an OGM in our terminology.
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According to our interpretation, statistical plasmode simulation utilizes aspects of resampling (when generating the

covariate information) as well as parametric modeling (eg, application of OGM, modeling of exposure etc.) and thus can

be interpreted as a semi-parametric method.

There are numerous applications of plasmodes generated by certain methods of data modifications in the literature.

Some of those applications, including explanatory, causal and prediction studies, are based on statistical approaches in

the sense of our definition. For instance, Tibshirani24 utilize plasmodes to assess sample size requirements in microarray

experiments when estimating the false discovery rate and false negative rate for a list of genes. Gadbury et al14 illustrates

use of plasmodes by comparing the performance of 15 statistical methods for estimating the false discovery rate in data

from an high-dimensional experiment. Elobeid et al35 employs plasmode data sets to analyze the performance of sev-

eral statistical methods used to handle missing data in obesity randomized controlled trials. Reeb and Steibel4 suggest

an interesting application of plasmode data sets to complement the evaluation of statistical models for RNA-seq data.

In their subsequent paper, Reeb et al36 then use plasmode data sets to assess dissimilarity measures for sample-based

hierarchical clustering of RNA sequencing data. In Franklin et al,5 plasmode-based studies are used for the evaluation

of pharmacoepidemiologic methods in complex healthcare databases. Resampling in combination with outcome genera-

tion by a logistic model to compare the HDD propensity score method with ridge regression and lasso is used by Franklin

et al.25 Franklin et al26 use plasmode-based studies to compare the performance of propensity score methods in the con-

text of rare outcomes. In Desai et al,28 the authors utilize plasmode data sets to analyze the uncertainty in using bootstrap

methods for propensity score estimation whereas Liu et al30 conduct a plasmode-based study to compare the validity and

precision of marginal structural models estimates using complete case analysis, multiple imputation, and inverse prob-

ability weighting in the presence of missing data on time-independent and time-varying confounders. The issue of data

imputation has also been addressed in Atiquzzaman et al7 where the authors used plasmodes to compare two imputa-

tion techniques when imputing body mass index variable in osteoarthritis-cardiovascular disease relationship. In Ejima

et al,37 the authors use statistical plasmodes to assess type I and type II error rates of analyses commonly used in murine

genetic models of obesity. Similarly, Alfaras et al38 resample from the empirical distributions to create plasmode data sets

for murine aging data. Those plasmodes are then utilized to compute type I error rates and power for commonly used

statistical tests without assuming a normal distribution of residuals. In their most recent study, Hafermann et al33 design

a plasmode simulation study to investigate how random forest and machine learning methods may benefit from external

information provided by prior variable selection studies. Rodriguez et al34 evaluate plasmodes as being useful for preserv-

ing the underlying dependencies among hundreds of variables in real-world data used to evaluate the potential utility of

novel risk prediction models in clinical practice; the authors generate plasmodes when studying lung transplant referral

decisions in cystic fibrosis.

To our understanding, two central steps in the statistical plasmode generation procedure can be derived, namely:

(i) Generation of the covariate data by

(i.1) Resampling from an original data set

(i.2) Artificial covariates (treatment, exposure, etc.) by a parametric model

(ii) Outcome generation that includes

(ii.1) Choice of an appropriate outcome generating model (OGM)

(ii.2) Choice of covariate effects either by individual specification or by estimation based on the original data

(ii.3) Generation of new outcomes by drawing from the OGM chosen in (ii.1), with the effects specified in (ii.2),

applied to the covariate data generated in (i)

The discussion performed in this section is summarized in Table 1 that provides a comparative summary of parametric

and plasmode simulation studies. That discussion as well as the supporting literature imply that plasmodes provide an

attractive supplement to parametric simulations in data-based research. In particular, it is expected that plasmode data

sets resemble the reality most closely, especially regarding the covariate dependence structure. In the following, we will

analyze plasmodes to examine their strengths and weaknesses in more detail.

3 CHALLENGES OF STATISTICAL PLASMODE SIMULATIONS

Simulations studies are, at least in the scope of the present work, designed to enable the practical analysis of statistical

methods. To this end, data generation should satisfy several criteria, such as, amongst others, to provide the basis for
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TABLE 1 Parametric simulations versus statistical plasmodes: Similarities and differences.

Feature Parametric simulations Statistical plasmodes

Data-generating process

(DGP)

DGP is to be specified in advance No DGP specification is required

Outcome-generating model

(OGM)

Parameters of a chosen OGM to be

estimated from data or derived from

literature or set manually

Parameters of a chosen OGM to be

estimated from the original data or

derived from literature or set manually

Range of possible scenarios Arbitrary scenarios, in particular, extreme

and rare scenarios can be generated

Only reality bounded to the sample at hand

can be generated

Knowledge of “truth” “Truth” must be completely known in

advance

At least some “truth” such as effect sizes

should be known a priori

Data availability and repre-

sentativeness

Irrelevant for simulations based on

literature results or previous knowledge

Crucial, as the simulated data is always

limited to the sample at hand

Reality reflection Parametric simulations may not be able to

capture the complexity of real life data

Plasmodes are expected to resemble the

reality in the most accurate way

High-dimensional data sim-

ulations

Usually time- and cost-consuming. Latent

dependencies may also become an issue

Mostly straightforward, as no estimation of

distributions and/or dependencies is

required

Small sample sizes Essentially uncomplicated, but may

become an issue in cases when

simulation parameters are to be

estimated from the real data at hand

Difficult due to resampling

Dependence structure Becomes a challenge with complex

dependencies

No modeling/estimation of dependence

structure is required

subsequent undistorted model comparisons or to enable a specific covariate dependence structure. Constructing, report-

ing and comprehending a parametric simulation study is mostly straightforward and transparent, as the resulting data

is artificially generated in a target-oriented way. Critical steps in the construction of parametric simulations include, for

instance, the investigator’s choice of the outcome-covariable association. While this ambiguity is shared by statistical

plasmode simulations, many of the properties of statistical plasmodes are typically less obvious and verifiable because

statistical plasmodes are designed with the complex task to mimic reality in the closest way while simultaneously spec-

ifying some aspects of the truth. The main advantage of statistical plasmodes lies in their ability to generate data with

specific distributions and dependence structures without the need for explicit assumptions. The assumption that statisti-

cal plasmodes can faithfully generate data that closely resemble reality has rarely been questioned. For instance, the lack

of statistical analyses or simulations to verify the preservation of dependence structures can undermine the reliability of

the generated data. Consequently, the advantages attributed to statistical plasmodes can also transform into challenges.

Further potentially critical steps in the construction of plasmode data include the representativeness of the underlying

data and the choice of the resampling scheme. Below, we theoretically discuss these potential pitfalls in more detail while

also providing corresponding examples from literature.

3.1 Resampling of covariate information

In our concept of statistical plasmodes, the simulation is based on the generation of covariable information by resam-

pling from a real data set. This has the intention to preserve the characteristics of the original underlying data set such

as, amongst others, the number and type of covariables and the corresponding dependence structure, see for example,

Franklin et al,25 Atiquzzaman et al,7 Conover et al.31 This preservation is primarily achieved through the use of appro-

priate resampling techniques. Consequently, the applied resampling scheme, which consists of specifying the number of

generated data sets (N) and the resampling technique, has central importance for the generated plasmode (covariable)

data sets.
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Of note, while utilizing resampling, statistical plasmodes are arguably even more complicated to analyze because of

the additional artificial outcome generation. Consequently, not all established theoretical results concerning resampling

might be transferable to the full plasmode data set but only to the plasmode covariable data sets. We use the terminology

resampling and bootstrap interchangeably and indicate the concrete resampling/bootstrapping technique if necessary.

The analysis of resampling methods is almost exclusively formulated in terms of the asymptotic performance of the boot-

strap distribution L∗ of an estimator T (eg, variance, confidence interval) applied to the empirical distribution of the

resampled data.39 For statistical plasmode covariable data sets, the estimator T could be, for example, some function of

the covariance matrix of the covariables (preservation of correlation structure). When considering the statistical plas-

mode procedure as a whole, the estimator of interest T typically utilizes the artificial outcomes, for example, T could be

the linear predictor in ridge regression when investigating its performance compared to other models. The resampling is

said to “have worked”, if L∗ convergences weakly to L (the theoretical distribution of T) for increasing sample size n of the

underlying data.40 Otherwise, one speaks of “bootstrap failure” which implies that the bootstrap estimator should not be

trusted because it does not provide the correct value even asymptotically. This could imply that some characteristic of the

population which we want to preserve, for instance some complex association structure, might in fact not be preserved

in the bootstrap samples. In the following, we discuss the influence of the chosen resampling scheme on the generated

plasmodes in more detail, focusing mainly on the preserveness of the covariable information.

3.1.1 Number of plasmode data sets N

The specification of the number of resampled plasmode data sets N is often performed ad-hoc and potentially leads to

different answers to the same question, in particular if N is specified as too small.41 In the framework of bootstrap tests,

Davidson and MacKinnon42 propose a pretest procedure for choosing the number of bootstrap samples to minimize the

loss of power due to N being finite. A more general, data-dependent three-step procedure is proposed by Andrews and

Buchinsky41 who estimateN to achieve a desired accuracy of the approximation of the bootstrap to the ideal (N → ∞) dis-

tribution of the estimator of interest. However, to the best of our knowledge, there is no general guideline to theoretically

specify the number N of data sets to be generated in a data-independent way (ie, without already performing the resam-

pling scheme) such that asymptotic resampling results hold with sufficient accuracy. Moreover, existing results might not

be valid for statistical plasmodes due to the additional artificial outcome-generation procedure.

In the plasmode literature, N = 5005,7,28 and N = 100029,30,33 seem to be popular ad-hoc choices. We have not seen

any application where the choice of N was explicitly justified or the convergence or stability of the subsequent analyses

applied to the plasmode data have been checked for increasing N. In summary, the number of data sets can be a critical

aspect in the generation of statistical plasmodes, in particular if convergence of T is not reached. In Section 4 we provide

some recommendations for determining N which we further illustrate in Section 5.

3.1.2 Resampling technique

Resampling can be performed without replacement as in the n-over-m bootstrap (subsampling with m < n) and

sample-splitting (cross-validation) bootstrap. Subsampling draws from the data-generating process of the original data43

and has been shown to lead to consistent estimators under minimal conditions, see theorem 1 in Bickel et al,39 as long as

the subsampling sizem and the size of the original data set n are appropriately specified. Alternatively, resampling with

replacement such as the n-out-of-n bootstrap (also called nonparametric bootstrap) can be utilized. Resampling schemes

based on drawing with replacement draw from the empirical probability distribution derived from the underlying data43

and require additional assumptions for consistent estimation, but are more efficient if the bootstrap “works”.39 However,

the nonparametric bootstrap can fail, for example when the limiting distribution of the estimator has discontinuities,

when estimating extremes and when setting critical values for some test statistics.39,44,45 In that case, the nonparametric

bootstrap estimator should not be trusted to provide asymptotically correct results. As a remedy, them-out-of-n bootstrap

(sampling m ≤ n with replacement) has been introduced to prevent bootstrap failure while losing efficiency if the non-

parametric bootstrap was consistent. Sampling fewer than n observations has since been treated as a “cure-all” method

(being asymptotically valid under weak assumptions, not failing and hence showing less asymptotic problems) which

has been critically discussed, for instance, in Andrews and Guggenberger.45 A comprehensive overview of resampling

techniques is provided, for example, in Bickel et al.39
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For increasing sample size n, estimators based on subsampling and the m-out-of-n bootstrap become more similar

as the probability of repeating observations decreases. Note that, contrary to subsampling, resampling with replacement

allows for m = n. The additional requirements for the consistency of sampling with replacement compared to sampling

without replacement mainly state, informally speaking, that the influence of tied observations on the bootstrap estimator

should be small.40

In the majority of literature concerning plasmode generation, the m-out-of-n bootstrap has been used,5,27,32 whereas

the nonparametric bootstrap has been used by Rodriguez et al,34 the sample-split bootstrap by Gerard46 and subsam-

pling by Hafermann et al.33 In some publications we did not find indications whether resampling was performed with

or without replacement, for example, in Ju et al,47 Ripollone et al.29 All in all, the type of resampling technique influ-

ences asymptotic properties of estimators including the covariables and hence the plasmode data sets, effects whether the

resampling “has worked” (ie, whether estimators or predictions can be trusted) and consequently impacts subsequent

analyses on the generated plasmodes data sets. However, to the best of our knowledge, we have not seen any application

in the literature concerning plasmode data generation in which the choice of a particular resampling technique has been

explicitly justified.

3.1.3 Resampling sizem

Using resampling with replacement of size m, with m → ∞ and m∕n → 0, typically resolves failure of the n-out-of-n

bootstrap, but requires the specific choice of m as a key issue.40 An adaptive rule for the choice of m for subsampling

and the m-out-of-n bootstrap in the case of independent observations has been proposed by Bickel and Sakov40 and is

further illustrated in our example in Section 5. Informally speaking, if m is in the right range of values, the bootstrap

distributions of the estimator for similar m’s are close to each other, indicating consistency of the estimator. The rule

provides an adaptive estimator m∗(n) and leads to optimal convergence rates of the estimator irrespective whether the

nonparametric bootstrap would work in the example (thenm∗(n)∕n → 1 as n → ∞) or would fail (thenm∗(n)∕n → 0).

To the best of our knowledge, only fixed resampling sizesm have been chosen in the plasmode literature, and we have

not observed any explicit justification of the specific value ofm. In other words,m appeared to be chosen arbitrarily. For

instance, Hafermann et al33 used a selection ofm′s (250, 500, 1000, 2000, 4000) which are small compared to the number

of observations n = 198, 895 while Liu et al.30 chosem = 500 for a data set with n = 646 and Atiquzzaman et al7 sampled

m = 75, 000 out of n = 84, 452. Interestingly, different authors used different values ofmwhich have been chosen without

justification for the same underlying data set, as exemplified for the NSAID data set with n = 49, 653. Whilem = 30, 000

has been picked by Franklin et al5 and Ripollone et al29 used a comparably large m = 25, 000 as well, Ju et al47 chose

a much smaller value in m = 1, 000 and Wyss et al32 set m = 10, 000. In summary, when applying subsampling or the

m-out-of-n bootstrap, the value ofmmatters for the consistency of T, and should be properly justified and adapted to the

underlying data and estimator(s) of interest.

3.1.4 Covariable dependence structure and HDD

Resampling the covariable information has, amongst others, the aim of preserving the covariable dependence structure

of the underlying data set; see for example, Franklin et al,5 Karim et al,27 Conover et al.31 Under some assumptions such

as i. i. d. observations and finite fourth moments of the covariables, Beran and Srivastava48 have shown that the resam-

pled covariancematrix converges to the original covariancematrix for the nonparametric bootstrap when n increases and

the number of covariables p is fixed (ie, most HDD situations excluded, see also below). However, for other resampling

schemes similar results have, to the best of our knowledge, not been shown. For the m-out-of-n bootstrap, the optimal

m could be estimated with the estimator T specified to represent the covariable covariance matrix in order to investi-

gate and ensure that the resampling scheme works (at least for that certain aspect of the data), see also our example in

Section 5. However, other aspects of the covariable information, such as extreme values, might bemore important in some

applications.

Awell-discussed issue, in particular in the context ofHDD, is the occurrence of spurious correlations. Amongst others,

Fan et al18 have shown that sampling p independent normal n-vectors leads to empirical covariance structures strongly

deviating from a diagonal matrix, in particular if p ≫ n. However, the risk of spurious correlations is not limited to para-

metric simulations. An increasing number of covariates p increases the risk that the underlying data sample suffers from
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spurious correlations, which may be propagated to the generated plasmode data sets by resampling. Further, spurious

correlation is likely to distort the empirical covariance structure of the statistical plasmodes, leading to even stronger

deviations from the population covariance matrix.

For a fixed number of covariables p, the bootstrap has been shown to work in linear models if p∕n is small.49 If

the number of covariables growths with the number of observations, Mammen50 has shown that the bootstrap works

for effect estimates in high-dimensional linear models if p(n) → ∞ and p(n)∕n → 0 as n → ∞, and Karoui and Pur-

dom51 have shown that the confidence intervals of the pairs and residual bootstrap in linear models are too wide if

p(n)∕n → c, c ∈ R.

In summary, the goal of preserving the covariable dependence structure can be used to determine an optimal

resampling scheme. In particular in high-dimensions, the covariance structure could, however, be distorted by spuri-

ous correlations and whether resampling and subsequently statistical plasmodes work in these scenarios might require

additional research.

3.2 Representativity of the underlying data sample

One of the main assets attributed to statistical plasmode simulations is that they are expected to preserve the complex

real-world data structure by resampling the covariable information from a real data set. Naturally, an appropriate rep-

resentative data set has to be available and constitutes the basis for the entire plasmode simulation study. Parametric

simulations, on the other hand, can be artificially constructed without requiring representative data. The data sample is

expected to represent the population of interest. This limits the generalizability of the results of the analyses that the plas-

mode simulation study was designed for, which has been acknowledged, amongst other, by Franklin et al,5 Liu et al,30

Atiquzzaman et al.7

The data sample should satisfy the assumptions of the applied resampling technique. As a result, the choice of the

resampling technique depends strongly on the underlying data set at hand. Standard resampling techniques, such as

discussed above, assume that the observations are independent.39 This assumption is violated, for instance, if the obser-

vations show clusters, repeated measures, population structure or longitudinal measurements. In this context, more

sophisticated resampling schemes including block-wise resampling have to be applied, for which most of the asymptotic

results are not explicitly formulated.40

Depending on the underlying data and the resampling scheme, the characteristics of the original data set to

be conserved might not be reflected by the generated data. This is acknowledged by Karim et al27 who state that

“[… ] it is possible that important confounders in the empirical study might not remain important in the plasmode

samples”.

In summary, the generated statistical plasmode data sets depend strongly on the representativeness of the underlying

real data and are limited to the population represented by the data sample. The resampling scheme should be adaptive to

the characteristics of the real data such as population structure, which have to be identified and reported.

3.3 Investigator’s choice of the “truth”

The concept of plasmode simulations is mainly based on preserving the complex but realistic structure of the underlying

data while inserting some “truth” by investigator’s choice. This specification can be manifold in type, and potentially

distort the real-word characteristics of the generated plasmode data.

3.3.1 Artificial covariables

Additional to resampling covariable information, important covariables such as exposure or treatment variables have

been artificially created using an exposure (or treatment) generating model. This is in particular useful when investi-

gating causal models where the influence of (high-dimensional) confounders on the exposure and the outcome is to be

modeled. For instance, Franklin et al26 and Conover et al31 model a binary exposure variable in relation to confounder

variables via logistic regression (exposure-generating model), while Rodriguez et al34 simulate covariables at a later stage

of a longitudinal study. In particular, it is possible to control the exposure prevalence which could be important in
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the area of causal inference, for example, for propensity-based methods. For instance, Franklin et al,26 Conover et al31

modified the intercept in the OGM for the binary exposure to generate simulation setups with a variety of exposure preva-

lences. Naturally, artificially generating covariables does not preserve the full real-world setting and should be performed

with care.

3.3.2 Artificial outcome generation

With the covariable information generated (by resampling or artificially), corresponding artificial outcomes are created.

In our concept of statistical plasmodes this is mainly done according to some outcome-covariable association specified by

the investigator. A straightforward way to create a transparent association between resampled covariates and the artificial

outcomes is to utilize regression models specified by the combination of a link function (type of OGM) and the linear

predictor (effect structure).

The OGM determines the type of the artificial outcome (eg, binary, survival) and strongly influences subsequent

results of the analyses of the generated data. For instance, if the aim of the study is the performance assessment of several

models, the model closest to the chosen type of OGM has an advantage induced by the investigator, leading to potentially

distorted comparisons. Most commonly, logistic regression is used for binary outcomes7,26,27 and the Cox model for sur-

vival endpoints,5,25,28 whereas Rodriguez et al34 apply an exponential survival model. Normal linear regression is used by

Liu et al,30 and Conover et al31 use a Poisson model for the number of events.

Besides the type of OGM, the determination of the effect structure of the corresponding linear predictor is vital.

Elements of the effect vector have been specified by literature review,31 by sampling from independent standard nor-

mal distributions,47 by estimation on the original data set30,32 or manually by investigator’s choice.5,25,28 Some authors

specify the treatment or exposure effect by hand while estimating the confounder effects on the original data.26,27

In propensity-based methods, effects of confounders on exposure or treatment can be set in the exposure generating

model while the effect of the same confounders on the outcome can be set in the OGM. Specifying the value of the

effects of covariables might represent a strong intervention in the generation process of a realistic data set. Potential

problems include creating artificial outcome-covariate associations and invalidating or even nullifying existing “real”

associations between the covariables and the novel, artificial outcomes, in particular if the effects are set manually by

investigator’s choice. Also, the effect size alone does not fully describe the relevance of a covariate for the exposure

or the outcome. When considering the coefficient of determination, for instance, the variances of and the covari-

ances between covariates strongly influence the explanatory potential in terms of variance. Hence, manually picking

effects might lead to an unrealistic association structure in terms of explanatory potential. If the effects are estimated,

they depend on the underlying data sample and estimation uncertainty is ignored. Additionally, the specification of

the type of OGM influences effect estimates and subsequent analyses might become problematic. For example, an

effect vector estimated by a sparse method will induce advantages of sparse methods in model comparisons on the

generated data.

Outcomes on the scale of the observations might then be generated by drawing from the probabilistic family corre-

sponding to the OGM. In the context of logistic regression, for instance, the event rate is typically drawn from a Bernoulli

variable with probability determined by the link function applied to the calculated linear predictor (in the respective

plasmode covariate dataset).25,26

By specifying the type of the OGM and the effect structure we might be able to control outcome rates, for example,

in the case of a binary outcome such as response to treatment. For instance, Franklin et al25 and Franklin et al26 specify

the probability of the outcome generating Bernoulli distribution via the estimated OGM. A variety of simulation scenar-

ios were generated by setting the prevalence of the outcome to desired values by modifying the intercept in the linear

predictor of the OGM. For time-to-event endpoints, the estimated baseline hazard function can be adjusted in order to

approximately control the event rate in a specified time period.5

In summary, a crucial assumption for both parametric and plasmode simulations is that the chosen outcome gen-

eration reflects realistic, natural or biological associations between outcome and covariables. Whereas the choice of the

OGMand the effect structure is a natural aspect of parametric simulation studies, plasmodes are often described as closely

depicting reality. However, the outcome data in statistical plasmodes are also artificially created while inducing some

investigator’s choice “truth”. These manipulations of the real-data are harder to assess and less transparent than in para-

metric simulations studies as the structure of the data is typically more complex. In the end, plasmode generation also

leads, at least in part, to artificial data and constructed associations.
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F IGURE 1 Statistical plasmode data generation procedure step-by-step.

4 STATISTICAL PLASMODES: STEP-BY-STEP RECOMMENDATIONS

We provide a hands-on overview of our recommendations for the generation and reporting of our concept of statisti-

cal plasmodes in Figure 1. This summary extends the basic plasmode generation procedure described in Section 2 and

addresses the critical steps discussed in the previous section. We theoretically discuss our step-by-step procedure below

and illustrate its application in a real data example in Section 5.

4.1 Step 1: Planning of the simulation study

We recommend to clearly formulate the research problem and to plan the simulation study using the ADEMP criteria.2

In a first step, researchers should specify the general aims of the simulation study, for example, whether the authors are

concerned with specific properties of estimators such as precision or efficiency or prediction performance of competing

models. Choosing a data-generating mechanism, either explicitly using parametric models or by resampling, might be

the most time-consuming part, depends on the specified aims and mainly influences the applicability and generalizabil-

ity of the results of the study. The estimand might describe a population parameter to be estimated or targets concerned

with method evaluation such as prediction performance or model selection. In the design of the study it is required to

specify the methods to be investigated, each of which should be appropriate and aim for the same estimand. Naturally,

all relevant methods for the determined estimand should be included in the study. The performance measures are used

to evaluate the methods and should correspond to the identified estimand. Morris et al2 recommend that the relevance of

the performance measures should be justified, that the formulae should be stated, and that uncertainty estimates for the

estimate of the performance measures should be provided. Additionally, the implementation of the performance mea-

suresmight be helpful. Fixing the aims and the data-generating processes aids in the choice whether statistical plasmodes
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are needed in the first place or whether a parametric simulation study might be more appropriate. Additionally, it guides

the choice of the population of interest in Step 2 and potentially the choice of the resampling technique in Step 4. Impor-

tantly, the methods and performance measures indicate the subsequent choice of the OGM in Step 6. For instance, if we

plan to assess the prediction performance of several models, we should make sure that the chosen OGM does not bias

the subsequent model comparisons. Also, the choices of the OGM and the DGP determine the scenarios in which the

properties of novel statistical methods can be empirically assessed in the context of the plasmode simulation study.

4.2 Step 2: Population of interest

The population of interest can be of primary interest and consequently be strongly connected to the aim of the simulation

study and the DGPs determined in the previous step, in particular if methods are developed to deal with populations

with certain characteristics (eg, many missing values, complex covariance structure, high-dimensionality). However, we

might also be mainly interested in the analysis of statistical methods such that the population of interest serves primarily

as an illustration and is not necessarily connected to Step 1. In the latter case, particular effort should be taken clarify

why the chosen population covers those situations in which themethods under consideration are claimed to work. In any

case, the hypothetical population should be stated and described as clearly as possible, for example, the entity of interest,

covariables and population structure. Since the data sets generated by the statistical plasmodes should be representative

of the population of interest, this step influences several of the following steps, in particular Steps 3, 4 and 6.

4.3 Step 3: Representative sample

It is a central aspect of statistical plasmodes that the underlying sample is representative of the population of interest

clarified in the previous step, refer also to the discussion in Section 3.2. Consequently, it is vital to investigate and com-

municate why the utilized data sample represents the population of interest and which potential limitations arise. In

particular, it should be stated how the data was sampled, which covariables are included andwhat the endpoint of interest

is. Additionally, the sample size should be justified and potential population structures investigated, as this can influence

the choice of the resampling technique, see Steps 4 and 5 and the discussion in Section 3.1. Note that even if the sample

is representative, the generated plasmode data sets might not be, for example, as a result of a poor resampling plan or a

outcome generation that distorts either the relationship between the covariables or the outcome-covariable association.

4.4 Step 4: Resampling scheme

The resampling scheme consists of the number of bootstrap samples, the type of resampling techniqueused and, if applica-

ble, the justification of the resampling size, see also Section 3.1. It determines, togetherwith the data sample, the plasmode

covariate data sets. Each of the aspects of the resampling scheme plays a crucial role for the asymptotic properties of the

estimators applied to the data generated by resampling and to properties such as the preserveness of the covariable cor-

relation structure, see the discussions in Section 3.1. Unfortunately, the resampling scheme has to be decided on for each

application individually, while keeping those research aims and properties of the population of interest, that should be

preserved with high priority, in mind. Ensuring the plasmode sets are drawn from the hypothetical population is only

possible by applying subsampling,43 whereas sampling with replacement draws from the empirical distribution of the

data sample specified in Step 3. However, if the underlying data set is representative of the population of interest, drawing

with replacement might become preferable due to its increased efficiency and second-order properties.39 As described in

Section 3.1, the nonparametric bootstrap potentially fails, although this is often impossible to know before the applica-

tion. To avoid bootstrap failure, it is often recommended to utilize the m-out-of-n bootstrap although this might lead to

efficiency losses. The optimal resampling size m can be determined by applying the algorithm introduced in Bickel and

Sakov40 while using those properties of priority as estimator in Step 2 of the optimization algorithm for m. It has to be

noted that the estimation of m might require high additional computational cost. The algorithm requires to use an esti-

mator of some characteristic that we want to be able to estimate in a consistent way based on our simulated datasets.

In many applications it might be meaningful to opt for some function of the covariate covariance structure as an esti-

mator, as it is often stressed that the empirical dependence structure of the original data set should be preserved. This
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might, however, lead to the nonparametric bootstrap (optimalm equal to n) at least for low-dimensional situations as dis-

cussed in Section 3.1. The choice of an appropriate measure for the specification of the subsampling sizem for statistical

plasmode simulations is beyond the scope of this paper and remains part of future research.

4.5 Step 5: Plasmode covariate information

After determining the details of the resampling scheme in the previous step we can perform resampling of the covari-

ate information. Reproducibility should be enhanced by setting and reporting seeds and by making the resampling

scheme publicly available. Artificial covariate information might be created by parametric simulations or by using an

exposure-generatingmodel as discussed in Section 3.3.We refer to the set of resampled and artificial covariate information

as the plasmode covariate information.

4.6 Step 6: Outcome generating model

The choice of theOGM includes the type of probabilisticmodel to determine the association between the plasmode covari-

ables information and the novel artificial outcomes, as well as corresponding OGM components such as, for example,

effect sizes. The OGM determines the artificial outcomes in type and value, and is a crucial component for many research

questions formulated in Step 1. Also, it gives the investigator the opportunity to fix some aspects of the “truth”, see also

the discussion in Section 3.3. Special care should be taken that the OGM does not bias the subsequent analyses that the

statistical plasmode simulations are generated for. To do so, it might be helpful to investigate the models or methods to be

compared in detail and contrast them with the OGM. For instance, a sparse OGMwill most likely support sparse models

in subsequent model comparisons. If the effect structure is chosen in a sparse way, a sparse model might be more likely to

correctly estimate the effect sizes or perform valid predictions. Additionally, if important relationships between variables

have been detected, the effect structure should be chosen accordingly to preserve these. For instance, in linear predictor

models, the observed outcome variation depends on the (co-)variances of the covariables weighted by their corresponding

effects, stressing their influence on the artifical outcomes of the plasmode data sets.

4.7 Step 7: Outcome generation

Each of the N plasmode covariate data sets sampled in Steps 4 and 5 is combined with the OGM determined in Step 6

to create N corresponding artificial plasmode outcome vectors. Depending on the type of model it might be necessary to

sample from the probabilistic model corresponding to the OGM. For instance, if we consider logistic regression as the

OGM then the natural link function (logit-link) applied to the calculated linear predictor results in a probability vector.

The final outcomes might then be generated by drawing from Bernoulli distributions based on the derived probabilities.

Note that this introduces a parametric source of variability, additionally to the variability introduced by resampling the

covariates.

4.8 Step 8: Quality checks

The quality of the covariables can be assured by appropriate resampling as described in Steps 4 and 5. It is, however,

often not feasible to compare the original covariable covariance structure with those of the N statistical plasmode data

sets. More research might be necessary to judge the distance of the original and the generated data. The original out-

come values of the real data set are, if at all, only explicitly used to determine the effect structure in Step 6. The quality

of the simulated data could be checked by comparing the generated outcomes of (some of) the statistical plasmode data

sets with the original outcome. The type of potentially meaningful checks depends on the type of outcome. For contin-

uous observations, the distributions of the two outcomes could be compared by the empirical densities or histograms

as is done for example, in Franklin et al.5 Additionally, the range of the data should be checked as well as potential

outliers. For categorical (including binary) outcomes, the prevalence of the classes can be compared, see for example

Franklin et al.5
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4.9 Step 9: Reporting

Within each step of the statistical plasmode generation every investigator’s decision should be justified and reported to

enhance reproducibility and transparency of the proposed data generation procedure. Additionally, the programming

code including the seeds used to generated the statistical plasmodes should be made readily available to further increase

transparent research. Whenever appropriate, we recommend that plasmode generation follows the scheme presented in

Figure 1 and the corresponding descriptions provided in the present section. Finally, the results for the research question

determined in Step 1 should be addressed.

5 STATISTICAL PLASMODES: A NUMERICAL EXAMPLE

The following example has been constructed to illustrate the step-by-step procedure introduced in the previous section.

Reproducible code is available as supplementary material.

Step 1. Assume that we are interested in the aim (A) of investigating the application of ridge regression52 and the

linear mixed model53 in the context of high-dimensional RNA-expression data with sparse effects on a normal outcome

(data-generating process, D). The estimands (E) are specified as the parameter vector and the predictions of the respective

model implying that we are both concerned with the models explanatory (inferential) potential as well as their prediction

accuracy.We split the sample once into training and test data (2:1), whichwe deem sufficient for our illustration purposes.

The plasmode data sets are generated using the training data. Each plasmode data set of sizem and number of covariates

p is analysed (methods, M) using ridge regression of the form

y = �1m + X� + �, ||�||2L2 ≤ �, � ∼  (0, �2Im×m) (1)

via penalized maximum likelihood with cross-validation for � as implemented in the R-package glmnet,54 as well as the

linear mixed model in the variance components form

y = �1m + X� + �, � ∼  (0, �2�Ip×p), � ∼  (0, �2� Im×m) (2)

with restricted maximum likelihood estimation as implemented in the R-package sommer.55 Here, 1m denotes the

m-column vector of ones while Ip×p denotes the identity matrix of dimension p. As performance measure (P) for the

explanatory potential and the accuracy of the methods we utilize the mean absolute bias

MAB =
1

p + 1
||(�̂, �̂) − (�, �)||L1 (3)

where � and � are known as part of the “truth”. Naturally, a variety of performance measures, such as mean-square error

for the precision of the estimators, might be investigated as well. Also, cross-validated or bootstrapped MSEP instead

of a sample-split approach might be applied. As a performance measure (P) for the validity of the methods we use the

sample-split mean squared error of prediction

MSEP =
1

m
||ŷ − ytest||2L2 , ŷ = �̂1m + Xtest�̂ (4)

where y corresponds to the artificial outcome in the test split. We estimate both measures using the mean of the estimates

(indexed by superscript b) in the generated N statistical plasmode data sets

M̂AB =
1

N

N∑

b=1

1

p + 1
||(�̂, �̂)(b) − (�, �)||L1 , M̂SEP =

1

N

N∑

b=1

1

m
||ŷ(b) − ytest||2L2 . (5)

and visualize the N individual measures via boxplots, see Step 9 and Figure 5.

Step 2. In the scope of this example, we are interested in the model choice for high-dimensional RNA-expression data

with normal outcomes for female breast cancer patients which constitutes the population of interest.
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F IGURE 2 Empirical distributions illustrated by histograms (15 breaks each) and smoothed densities for four genes selected at

random to illustrate the differences in location and shape.

Step 3. The data sample underlying the statistical plasmode simulation was generated by The Cancer Genome Atlas

(TCGA) Research Network (https://www.cancer.gov/tcga). The breast carcinoma (BRCA) cohort which provides a basis

for the following numerical example was last updated on May 31, 2016.

We restrict the publicly available data to n = 1, 098 female patients with breast cancer with cancer tissue, excluding

normal tissue and male patients. RNAseqV2 gene expression data and clinical data for BRCA were obtained from the

TCGA Data Portal56 via the R/Bioconductor package TCGAbiolinks.57-59 For computational reasons, we choose p =

5, 000 out of the 25,828 available genes at random for this illustration. Naturally, this introduces additional selection

variability and a sensitivity analysis should be conducted if we move beyond illustration purposes. The R/Bioconductor

package limma60 has been utilized to normalize the RNA gene expression data. The expression levels can be assumed to

be measured continuously and they show different shapes and ranges. This is illustrated in Figure 2 using their empirical

distributions at four randomly chosen genes.

The outcome of interest is age at diagnosis date which can be considered to be approximately normally distributed, see

Figure 3A.While the data set can be considered to be representative of a female breast cancer population from the United

States of America, we acknowledge that RNA expression data from other populations (eg, different countries) might lead

to different results for our research question.

Step 4. Before the analysis, we set the number of plasmode data sets to be generated toN = 500. In the final Step 9, we

investigate the convergence of the estimators of the performance measures, see Equation (5), in the statistical plasmode

data sets.

We choose them-out-of-n bootstrap in order to prevent potential bootstrap failure but with the potential drawback of

losing estimation efficiency. Performance analysis of resamplingmethod and the estimation of the optimalm requires the
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F IGURE 3 Empirical distributions illustrated by histograms (15 breaks each) and smoothed densities for (A) the original outcome (age

at diagnosis) and (B–D) versus artificial outcomes of three plasmode data sets selected at random. (A) Original outcomes (age at diagnosis).

(B) Artificial outcome plasmode dataset 1. (C) Artificial outcome plasmode dataset 2. (D) Artificial outcome plasmode dataset 3.

specification of an estimator which is applied to the generated data. Since resampling in statistical plasmodes is primarily

concerned with the covariate information, already using the performance measures defined in Equation (5) as estima-

tors is not feasible as they require the subsequent artificial outcome generation. Naturally, there are several reasonable

estimators that could be considered. In this example, we opt for the covariate dependence structure as the measure of

interest because the majority of publications which applied plasmodes referred to the advantage of the preserveness of

the original covariable dependence structure.

We determine the resampling size m via the algorithm described in Bickel and Sakov.40 In particular, to adopt that

algorithm to our problem formulation, we specify the sequence of potential m’s by setting q = 0.97, choose the L2-norm

of the covariance matrix (of the resampled covariate data) as a metric, and calculate the resulting empirical distribution

functions. We estimate the covariance matrix using the Ledoit-Wolf linear shrinkage estimator61 to obtain a more precise

estimate which is necessary because the covariate data are high-dimensional. The optimal resampling sizem∗ is the one

which minimizes the distance between the distributions of subsequentm’s, where the distance is exemplarily measured

by the Wasserstein metric. The optimal resampling size based on the Wasserstein metric using 100 iterations resulted

in m∗ = 732, hence m∗ = ntrain. Hence, we effectively apply the nonparametric bootstrap which is a special case of the

m-out-of-n bootstrap.

We acknowledge that there is variety of optimal resampling sizesm∗ if any of the parameters of the algorithms would

be changed (such as, amongst others, estimator, distancemetric for empirical distributions and sequence of potentialm’s).

Step 5. We apply resampling with replacement of size m∗ = 732 to the matrix of covariable information to obtain

N = 500 statistical plasmode covariable data sets. As we have determined the resampling size with optimality criterion as
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the L2-norm of the covariance matrix of the covariables, the empirical covariance structure of the original data set should

be sufficiently preserved.

Step 6.We choose the LASSO62 as an appropriate OGM to represent the sparse effect structure associated with the

high-dimensional data as required in Step 1. Additionally, the LASSOmost likely does not distort the comparison between

ridge regression and the linear mixed model as both of these methods are shrinkage methods used to model polygenic

effects. The “true” effect structure for the LASSO is chosen as the vector of estimated effect sizes obtained after a LASSO

had been fit to the original data. The proportion of non-zero estimated effectswas 93.56%. This implies that 322 covariables

are selected in the investigator’s choice “truth” while 4,678 genes are given a null effect. The effect sizes of the selected

covariables has a median of −0.0196 (range [−1.0320, 1.6389]).

Step 7.We generate one artificial outcome vector of size m∗ = 732 for each of the N = 500 plasmode covariate data

sets by calculating the linear predictor based on the combination of the resampled covariable information (Step 5) and

the “true” effects (Step 6). Thus, we obtain statistical plasmode simulations based on real covariate information with an

investigor’s choice “truth”. Note that the normal linear model is the only representative in the class of linear predictor

models which explicitly includes a random variable representing an error term. Hence, drawing from the probabilistic

linear model to generate outcomes we might also add normally distributed random variables with expectation zero and

variance equal to, for example, the estimated residual variance in the full dataset or some investigator’s choice. Addi-

tionally to the variability in the artificial outcome induced by resampling the covariates this would represent additional
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F IGURE 4 Convergence of the performance measures mean absolute bias (MAB) and mean squared error of prediction (MSEP) for

increasing number N of statistical plasmode data sets. The horizontal lines illustrate the estimates of MAB and MSEP based on N = 500

Plasmode datasets. (A) Mean absolute bias of ridge regression. (B) Mean absolute bias of linear mixed model. (C) Mean squared error of

prediction of ridge regression. (D) Mean squared error of prediction of linear mixed model.
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parametric variability. For our example we have decided to abstain from modeling residuals, although we acknowledge

that there might be valid reasons to include them.

Step 8. The artificial outcomes (of some of) theN = 500 plasmode data sets are compared with the original outcomes

via histograms in Figure 3. The distribution of the original and artificial outcomes is very similar in shape and mean. The

range of the original outcomes is larger than the range of the artificial outcome which can be explained by the outcome

generation via resampled covariables and effects determined by LASSO (sparse and shrunken effects) which most likely

will not lead to more extreme outcome values than contained in the underlying data set.

We conclude that the artificial outcome data come close to reality but might not properly reflect extreme values. The

range of the artificial outcomes could be increased, for example, by manually altering some elements of the effect vector

estimated by LASSO (as investigator’s choice of the “truth”). By doing so, however, we would further alter the association

between some of the covariables and the novel outcomes.

Step 9.We have described and justified the decisions for our plasmode simulations in each of the previous steps. The

code for the generation of the plasmode simulation and their evaluation is available as supplemental material.

In Figure 4, we illustrate the convergence of the performance measures for increasing number of plasmode data sets.

The estimators for MAB andMSEP for both ridge regression and the linear mixed model seem to have stabilized at about

200 generated simulations. Thus, we conclude that the generated number of statistical plasmode is sufficient to obtain

stable estimates of the performance measures defined in Step 1.

Finally, we compare the performance of ridge regression and the linear mixedmodel in our statistical plasmode simu-

lations. TheMAB of the Ridge regression is estimated as 0.03415 while the estimate of theMAB of the linear mixedmodel
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F IGURE 5 Boxplots of (A) the mean absolute bias for both the linear mixed model (LMM) and ridge regression (Ridge) in N = 500

statistical plasmode data sets; (B) the mean-squared error of prediction for both the linear mixed model and ridge regression in N = 500

statistical plasmode datasets. (A) Bias LMM versus ridge, N = 500. (B) Prediction error LMM versus ridge, N = 500.
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is 0.03491, see also Equation (5). The sample-split MSEP of ridge regression is estimated as 26.01 while the sample-split

MSEP of the linear mixed model is 17.62, see also Equation (5). In Figure 5, we depict the estimated values for each

plasmode data set via boxplots. These results suggests that in our generated statistical plasmode simulations, which rep-

resent high-dimensional RNA expression data with sparse known effects and artificial normal outcomes, the linearmixed

model performs superior to ridge regressionwith respect to prediction although the Ridge regression has a slightly smaller

average bias.

6 CONCLUSIONS AND OUTLOOK

Many simulation studies impose relatively strong assumptions regarding the nature of randomness in the data and

its dependence structure. Mostly of theoretical kind, those assumptions primarily rely on the assumptions inherent in

the statistical models applied to generate the data. Since not all assumptions can be justified in applied settings, the

corresponding simulation studies may not be able to capture biologically meaningful relationships and thus result in

misleading conclusions and research findings.

To avoid (at least some of) those issues, plasmode data sets are considered as an alternative data generation approach.

While parametric simulations are known to provide only a partial representation of reality,4 plasmodes have been declared

to generate data that resemble reality in the closestway.9Highly appreciated for their ability to generatemost realistic data,

plasmode do not impose any specific model assumptions on their data generation process. Thus, no assumptions need to

be justified to address the applicability of plasmodes. Nevertheless, a number of assumptions such as the representative-

ness of the underlying data sample have to be verified in order to guarantee the reliability of the generated plasmode data.

Plasmodes can accommodate unknown features such as dependence structure, distributions, and others, in particular,

in the case of high-dimensional data. We recall that in case of parametric simulations most of those quantities are to be

specified in advance. All in total, plasmode data sets may provide an attractive supplement to parametric simulations and

can be applied in order to increase the reliability of the obtained research results.

In the present paper, we first discuss the concept of statistical plasmodes as those created by resampling of covariate

information from empirical data at hand, optional parametric exposure generation and subsequent outcome genera-

tion using an appropriate outcome-generating model. This is what distinguishes them from biological plasmodes which

are usually created by conducting lab experiments. We interpret statistical plasmodes as an intermediate step between

the parametric and nonparametric simulations, with the parametric component mainly represented by the chosen

outcome-generating model. After the introduction of statistical plasmodes, we discuss their main advantages and chal-

lenges and propose a step-by-step scheme for their generation and reporting. That scheme is then illustrated by means

of a numerical example. All discussions in the present paper are presented in the context of prediction and explanatory

models (including propensity-based methods such as propensity score weighted regression).

Plasmodes are bounded to the sample they are based on, and thus cannot produce the same variety of different sce-

narios as parametric simulations do. In this context, questions on the data availability and representativeness arise. In

particular, even if plasmodes offer a flexible data generation procedure which creates realistic data, the representativeness

of the generated data still substantially depends on the representativeness of the underlying real data set. To address this

limitation, some authors such as Ejima et al37 assume that the empirical data at hand represents the entire population of

interest. Of course, such an assumption cannot be satisfied in each particular situation.

Spurious correlations are another issue closely related to the question of representativeness. Although plasmodes

do not specify the underlying dependence structure explicitly, they do reproduce it to a certain extent while generating

new data. Thus, if the sample at hand does not adequately represent the population of interest, the existing spurious

correlations may be increased or even distorted for the generated plasmode data sets. As a result, the corresponding

generated dependence structure will not represent the real one.

Statistical plasmodes as introduced in the present paper incorporate features from both parametric simulations and

resampling approaches, and, as a result, inherit the strengths and weaknesses of each data generation method. On

one hand, statistical plasmodes offer the advantage of creating more realistic data by generating covariate information

through resampling techniques. On the other hand, they may also introduce certain challenges with respect to the sub-

sequent model comparisons, as compared to purely parametric simulations.32 Statistical plasmodes enable to control

and manipulate certain aspects of the “truth” through the use of parametric OGMs, which can be advantageous over

pure resampling methods. Nevertheless, asymptotic results established for resampling techniques may not be directly

applicable to statistical plasmodes.
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Our discussion points out several interesting options for future research. First, basic expectations placed on the plas-

modes are related to their ability to preserve real data distributions, the underlying dependence structure and, as a result,

the existing empirical associations. Those expectations are to be guaranteed by resampling from the observed covari-

ate data at hand, without any additional data modification. However, it is not obvious how the choice of a particular

resampling technique and specification of its parameters (such as the subsampling proportion in case of the subsampling

technique) might impact the robustness of the obtained data generation results, for example, in the context of spurious

correlations or sparse data. Additionally, the calculation of the optimal m might require high computational costs. A

closer analysis of these impacts are possible topics for future research.

Second, a data generation method is considered to be realistic if it reflects the real data structure and the existing

dependencies in the most accurate way. Thus, appropriate distance measures need to be specified in advance and also

included into the reporting step of the data generation procedure. Such measures can then be used to measure the close-

ness of the generated plasmode data set to the underlying real data set. The choice of an appropriate distance measure, as

well as the robustness of the plamode generation procedure with respect to that choice, can also be an interesting research

topic.

Finally, the outcome-generating models present the major obstacle for plasmodes to become a purely non-parametric

data generation approach. In the future we intend to analyze the impact of an OGM on the performance of the plasmode

data generation procedure and to construct examples where the replacement of a parametric OGMwith a non-parametric

one improves the obtained data generation results. It is also of great interest to address possible “plasmode failure” for

data sets generated through statistical plasmodes.

In total, our paper presents a comprehensive analysis of statistical plasmode simulations, discusses their potentials and

central challenges and provides step-by-step recommendations for their generation. Our future research aims to address

(at least some of) the pitfalls in the most close way to potentially provide more understanding and further novel insights

into statistical plasmode generation.
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