
ORIGINAL ARTICLE

Genome-wide association studies and Mendelian randomization analyses

provide insights into the causes of early-onset colorectal cancer
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Background: The incidence of early-onset colorectal cancer (EOCRC; diagnosed <50 years of age) is rising globally;

however, the causes underlying this trend are largely unknown. CRC has strong genetic and environmental

determinants, yet common genetic variants and causal modifiable risk factors underlying EOCRC are unknown. We
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conducted the first EOCRC-specific genome-wide association study (GWAS) and Mendelian randomization (MR)

analyses to explore germline genetic and causal modifiable risk factors associated with EOCRC.

Patients and methods: We conducted a GWAS meta-analysis of 6176 EOCRC cases and 65 829 controls from the

Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colorectal Transdisciplinary Study

(CORECT), the Colon Cancer Family Registry (CCFR), and the UK Biobank. We then used the EOCRC GWAS to

investigate 28 modifiable risk factors using two-sample MR.

Results:We found two novel risk loci for EOCRC at 1p34.1 and 4p15.33, which were not previously associated with CRC

risk. We identified a deleterious coding variant (rs36053993, G396D) at polyposis-associated DNA repair gene MUTYH

(odds ratio 1.80, 95% confidence interval 1.47-2.22) but show that most of the common genetic susceptibility was from

noncoding signals enriched in epigenetic markers present in gastrointestinal tract cells. We identified new EOCRC-

susceptibility genes, and in addition to pathways such as transforming growth factor (TGF) b, suppressor of Mothers

Against Decapentaplegic (SMAD), bone morphogenetic protein (BMP) and phosphatidylinositol kinase (PI3K)

signaling, our study highlights a role for insulin signaling and immune/infection-related pathways in EOCRC. In our

MR analyses, we found novel evidence of probable causal associations for higher levels of body size and metabolic

factorsdsuch as body fat percentage, waist circumference, waist-to-hip ratio, basal metabolic rate, and fasting

insulindhigher alcohol drinking, and lower education attainment with increased EOCRC risk.

Conclusions: Our novel findings indicate inherited susceptibility to EOCRC and suggest modifiable lifestyle and

metabolic targets that could also be used to risk-stratify individuals for personalized screening strategies or other

interventions.

Key words: early-onset colorectal cancer, GWAS, genetics, Mendelian randomization, risk factors

INTRODUCTION

The incidence rates of colorectal cancer (CRC) in young

adults aged <50 years are rising globally, while the inci-

dence rates of CRC in older adults are stable or declining in

many of the same countries.1 Explanations for the

increasing incidence rates of early-onset CRC (EOCRC) are

currently lacking.2-5

CRC is a multifactorial disease with high-penetrance ge-

netic syndromes accounting forw30% of the EOCRC cases.
6

Previous genetic studies for EOCRC were limited, focusing

on specific germline pathogenic variants.6,7 We previously

observed stronger associations between genetic risk scores

comprising 95 common CRC single-nucleotide proteins

(SNPs) and EOCRC, particularly in the absence of CRC family

history.8 However, it is currently unknown whether EOCRC

has a unique set of genetic susceptibility variants, as a

dedicated genome-wide association study (GWAS) for

EOCRC with sufficient power to detect genome-wide asso-

ciations has not been undertaken.

In the United States and several other high-income

countries, EOCRC incidence rates have increased in suc-

cessive birth cohorts since 1950.9-11 This suggests that

higher rates in younger adults may be influenced by

changes in lifestyle-related risk factors. However, the role of

modifiable risk factors in EOCRC development remains un-

certain. Existing evidence is from caseecontrol studies,12-14

cohort analyses with relatively low case numbers,15,16 or

clinical database studies17-19 that lack high-quality data on

many risk factors and covariates. These prior observational

studies are also vulnerable to residual confounding and

reverse causality, making casual inference challenging.

Mendelian randomization (MR), which uses genetic variants

as proxies for risk factors to allow causal inference between

an exposure and outcome, is largely free from confounding

and reverse causality.20 To date, MR investigations of as-

sociations between modifiable risk factors and EOCRC have

not been undertaken.

We carried out a GWAS meta-analysis of EOCRC with

6176 cases and 65 829 controls. Next, using data from this

GWAS, we performed two-sample MR analyses to investi-

gate casual associations between 28 potentially modifiable

risk factors and EOCRC.

PATIENTS AND METHODS

Samples, genotyping, and imputation

The overall study design is depicted in Figure 1. The study

comprised a meta-analysis of existing genotyped and

imputed data for 6176 EOCRC cases (<50 years of age) and

65 829 controls from the Genetics and Epidemiology of

Colorectal Cancer Consortium (GECCO), the Colorectal

Transdisciplinary Study (CORECT), the Colon Cancer Family

Registry (CCFR), and the UK Biobank. The details of the

EOCRC cases and controls from each of the studies are

presented in Supplementary Materials, available at https://

doi.org/10.1016/j.annonc.2024.02.008. Details of genotyp-

ing, imputation, and quality control for studies included in

the meta-analysis are described previously21 and detailed in

Supplementary Methods, available at https://doi.org/10.

1016/j.annonc.2024.02.008. For the UK Biobank, imputed

genotype data were obtained and details of quality control

and imputation are described elsewhere.22

Association analysis

The association analysis was performed individually for four

datasets: (i) the pooled GECCO dataset including 3135

EOCRC cases and 29 495 controls; (ii) the axiom array

dataset with 656 cases and 3254 controls; (iii) the
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OncoArray dataset with 2138 cases and 11 712 controls;

and (iv) the UK Biobank dataset with 257 cases and 21 368

controls. For each of the datasets, imputed dosage with

imputation quality r
2
<0.3 and minor allele count (MAC)

<50 was used in a logistic regression model adjusted for

age, sex, genotyping project, and principal components to

adjust for population stratification. Approximate allelic log

odds ratio (OR) estimates and standard errors per SNP were

calculated, as described previously,21 for downstream meta-

analysis. An inverse-variance weighted fixed-effects meta-

analysis of the aforementioned datasets including 8 910 416

SNPs with minor allele frequency (MAF) >0.5% was

implemented in METAL.23 The genomic control inflation

statics (lGC) was 1.10. To investigate the inflation in genetic

signal, we calculated lGC and linkage disequilibrium score

regression (LDSC)24 intercept for common variants (MAF

�1%) overlapping with 1000 Genomes European dataset.

The LDSC intercept was 1.05, substantially lower than lGC of

1.12, indicating that the inflation was mostly due to poly-

genicity rather than population stratification.

Genomic risk loci identification, credible SNP set

We used FUMA (version 1.4.1),25 a functional mapping

and annotation tool, to identify genomic risk loci. FUMA

identifies independent variants reaching genome-wide

significance (GWAS P < 5 � 10e08, r2 ¼ 0.6) and selects

lead variants independent from each other at r
2 ¼ 0.1

using 1000 Genomes phase III data for linkage
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Figure 1. Study design of the early-onset colorectal cancer (EOCRC) genome-wide association study (GWAS) and Mendelian randomization (MR) analyses.

25(OH)D, 25-hydroxyvitamin D; 2hGlucose, 2-hour glucose; BMI, body mass index; BMR, basal metabolic rate; eQTL, expression quantitative trait locus; HbA1c,

glycated hemoglobin; IGF1, insulin-like growth factor 1; IGFBP3, insulin-like growth factor-binding protein 3; IVW, inverse variance-weighted; PRESSO, pleiotropy

residual sum and outlier; SNP, single-nucleotide polymorphism; systolic BP, systolic blood pressure; WC, waist circumference; WHR, waist-to-hip ratio.
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disequilibrium (LD) calculations. By combining LD blocks

500 kb apart, genomic risk loci are defined, often identi-

fying multiple independent significant variants or lead

variants at a single genomic risk locus. To identify a

credible set of SNPs at each locus, we used the Bayesian

false-discovery probability26 as described previously27 us-

ing a prior probability of association of 10�5.

Known risk loci definition

We used the most recent multiethnic CRC GWAS28 and

searched the NHGRI-EBI Catalog of GWASs until 31

December 2022 to find all CRC associations with a signifi-

cance level of P < 5 � 10e08. For multiple studies identi-

fying the same loci, association statistics of the first

published GWAS were reported (Supplementary Table S1,

available at https://doi.org/10.1016/j.annonc.2024.02.008).

Sensitivity analysis stratified by high-penetrance gene

mutation status

We also conducted a sensitivity analysis on the association

of the individual SNPs with EOCRC (individually and through

the construction of a genetic risk score) stratified by he-

reditary syndromes (Lynch) or sporadic case status using

two contributing studies [(i) CCFR and (ii) Columbus-area

HNPCC Study, OCCPI study, Ohio Colorectal Cancer Pre-

vention Initiative (OSUMC)] which captured this informa-

tion (more details in the Supplementary Methods, available

at https://doi.org/10.1016/j.annonc.2024.02.008).

Heritability; partitioned and cell-type heritability

We used LDSC to estimate SNP-based heritability (h2SNP)

and enrichment of functional genomic categories24 using

precomputed LD scores from 1000 Genomes European

data. Also, cell-type group partitioned heritability was

estimated using LD scores partitioned across 220 cell-type-

specific annotations that were divided into 10 tissue types

as described earlier29 and detailed in Supplementary

Methods, available at https://doi.org/10.1016/j.annonc.

2024.02.008.

Fine mapping and functional genomic annotation of

variants

We fine-mapped the credible set of variants at each locus

with information on the functional consequences of vari-

ants on genes using ANNOVAR30; gene body annotations,

using GENCODE release 42; Combined Annotation Depen-

dent Depletion (CADD) scores (CADD scores >12.37 suggest

a variant is deleterious); Regulome DB scores; 15-core

chromatin states representing the accessibility of genomic

regions (every 200 bp) from 127 epigenomes in the Road-

map Epigenomics Project31; and transcription factor motif

binding implemented in HaploReg (version 4.1).32 To iden-

tify coding variants with predicted functional consequences,

we annotated variants with the SIFT33 and PolyPhen234

using the SNPnexus version 4
35

annotation tool.

Gene-level association and network analyses

We used MAGMA36 (implemented in FUMA) for mapping

variants to genes. NetworkAnalyst 3.037 was used for

proteineprotein network analysis using STRING version

1038 with a confidence score cut-off of 900 recommended

for experimental evidence to support the proteineprotein

interaction (PPI). Genes with P < 0.05 in MAGMA were

used as seed genes/proteins. Hub nodes in the interaction

map were defined as nodes with degree centrality�10.

Pathway analysis of the seed proteins identified as hub

nodes in the largest subnetwork was conducted using the

‘enrichr’ tool
39

with the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway repository.

Target gene prioritization

We used results of FUMA’s gene prioritization based on (i)

positional mapping, which maps SNPs to genes based on

physical distance (within a 10-kb window) from known

protein-coding genes in the human reference assembly

(GRCh37/hg19); (ii) cis-quantitative trait loci (eQTL) map-

ping, which maps SNPs to genes using eQTL data of colo-

rectal datasets from Genotype-Tissue Expression (GTEx)40

(sigmoid colon and transverse colon), CEDAR
41

(rectum

and transverse colon), and blood eQTL from BIOS42 and

eQTLgen43 datasets at false discovery rate (FDR) of 0.05;

and (iii) chromatin interaction mapping, which maps SNPs

to genes using DNAeDNA interaction between the SNP

region and a gene region using Hi-C data for the GM12878

lymphoblast cell line. We selected only interaction-mapped

genes involving enhancer-promoter regions in colonic and

rectal cells from the Roadmap Epigenomics project with an

FDR < 1 � 10e06 to define significant interactions.44

Combining the aforementioned approaches with missense

variant annotations from SIFT and Polyphen2 and gene-

level results from MAGMA and PPI network hub status,

we prioritized putative functional target genes at each

genome-wide significant locus.

Mendelian randomization analyses

We used two-sample MR45 to examine associations be-

tween 28 potentially modifiable risk factors (all established

or suspected risk factors for overall CRC) and EOCRC risk,

including eight body size-related traits, 11 diet and lifestyle

traits, four inflammatory and growth factors, and five gly-

cemic traits (Figure 1). The largest GWAS or meta-analysis of

each risk factor performed until December 2022 was

identified. Index SNPs associated with the trait at a P value

< 5 � 10e08 within a 10-Mb window and r
2
< 0.01 were

used as instrumental variables (Supplementary Table S2,

available at https://doi.org/10.1016/j.annonc.2024.02.008).

Exposure genetic instruments were extracted either

manually from the respective GWAS or from the Integrative

Epidemiology Unit (IEU) OpenGWAS project portal using the

TwoSampleMR version 0.5.6 R package (R Foundation,

Vienna, Austria).46 Effect allele harmonization, MR analyses,

and sensitivity analyses were performed using the

TwoSampleMR package (version 0.5.6) implemented in

Annals of Oncology R. S. Laskar et al.
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R (version 4.2.1). The inverse variance-weighted method

was used as the main analytic approach, with MR-Egger,47

MR-PRESSO,48 and the weighted median method49 used

as sensitivity analyses to account for pleiotropy. ORs per

genetically predicted standard deviation (SD) unit increase

were reported for most risk factors to facilitate comparison.

A Bonferroni-corrected significance threshold of 0.002

(0.05/28 risk factors) was used to identify associations with
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Figure 2. Early-onset colorectal cancer (EOCRC) genome-wide results. (A) Manhattan plots displaying the two new and 10 known genome-wide associations between
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strong statistical evidence and P values between 0.002 and

0.05 were considered suggestive. Furthermore, we

compared overall CRC risk associations for the 28 exposures

using summary statistics from the latest CRC GWAS28

following similar methods as described earlier.

RESULTS

Early-onset colorectal cancer risk loci

We identified 464 SNPs that attained genome-wide signifi-

cance (P < 5 � 10e08) with little evidence of association

heterogeneity across the GWAS sets (Phet > 0.05). LD-based

clumping in FUMA mapped these variants to 15 lead SNPs

tagging 731 candidate SNPs (LD r
2
> 0.6) within 12 genomic

loci >500 kb apart (Figure 2A, Supplementary Table S3,

available at https://doi.org/10.1016/j.annonc.2024.02.008).

We identified two new loci at 1p34.1 and 4p15.33 that have

not been previously associated with CRC, along with 10

previously known risk loci for CRC (Table 1). Three previ-

ously identified loci at 11q13.4, 5q22.2, and 15q23 were

just below the genome-wide significance (P < 4 � 10e07)

and 106/177 previous risk SNPs were nominally associated

with EOCRC risk at P < 0.05 (Supplementary Table S1,

available at https://doi.org/10.1016/j.annonc.2024.02.008).

All 106 SNPs were directionally concordant, and 11 SNPs

showed significant heterogeneity (P < 0.05) in effect sizes

when compared with overall CRC, with generally stronger

effect estimates for EOCRC (Supplementary Table S1,

available at https://doi.org/10.1016/j.annonc.2024.02.008).

As hereditary cases with high-penetrance genetic muta-

tions could not be systematically removed, we conducted a

sensitivity analysis on a smaller subset of cases from the

CCFR and OSUMC studies that have data on Lynch

and other high-penetrance rarer genetic CRC syndromes

(N ¼ 202). Overall, a similar pattern of GWAS effect esti-

mates was found according to Lynch syndrome status for

most SNPs (all Phets > 0.05), albeit with wider confidence

intervals (CIs) because of limited power due to the smaller

sample size. For three SNPs (rs11255835, rs12427378, and

rs2427291), however, the estimates were attenuated to-

ward the null (Supplementary Figure S1, available at

https://doi.org/10.1016/j.annonc.2024.02.008). Similar es-

timates were also obtained when combined into a genetic

risk score (Lynch cases per unit increase, OR 1.59, 95% CI

1.05-2.42; P ¼ 0.03) and non-Lynch cases per unit increase

(OR 2.99, 95% CI 2.73-3.27; P ¼ 2.12 � 10e121; Phet ¼ 0.55;

Supplementary Table S4, available at https://doi.org/10.

1016/j.annonc.2024.02.008).

Heritability of EOCRC and cell-type-specific enrichment

The narrow sense heritability of EOCRC was estimated to be

6.2% (standard error 0.009). Heritability enrichment of

genome functional categories found enrichment in regions

with high levels of active transcription, such as H3K27ac

regions/peaks (enrichment ¼ 2.45, P ¼ 9.5 � 10
e08

),

H3K9ac regions (enrichment ¼ 1.77, P ¼ 1.5 � 10e05), and

in super-enhancers (enrichment ¼ 2.87, P ¼ 3.03 � 10e07;

Figure 2B, Supplementary Table S5, available at https://doi.

org/10.1016/j.annonc.2024.02.008). Partitioned heritability

across cell-type-specific epigenetic marks identified strong

enrichment in histone marks in gastrointestinal epithelial

cells (Figure 2C, Supplementary Table S6, available at

https://doi.org/10.1016/j.annonc.2024.02.008. These re-

sults are consistent with previous GWAS of other traits

where SNP trait heritability was shown to be enriched in

transcriptionally active open chromatin regions in trait-

relevant cell types.50,51

Functional enrichment of EOCRC-risk SNPs

To further fine map variants, we identified 570 credible sets

of SNPs across the 12 loci using a Bayesian false-discovery

probability cut-off of <0.1 (Supplementary Table S7A,

available at https://doi.org/10.1016/j.annonc.2024.02.008).

Four loci had exonic variants (Supplementary Table S7B,

available at https://doi.org/10.1016/j.annonc.2024.02.008);

however, the credible SNPs were mostly intronic

and intergenic and overlapped with regulatory regions,

Table 1. Summary of the genome-wide significant risk loci for EOCRC represented by the lead SNP in each locus

rsID Cytoband Chr Pos (hg37) Alt/Risk RAF OR (95% CI) PGWAS BFDP I
2

Phet

New loci

rs186107317 1p34.1 1 46045280 T/A 0.008 1.82 (1.32-1.2.86) 2.35 � 10e08 8.16 � 10e19 0.0 0.82

rs9991540 4p15.33 4 14881360 G/C 0.09 1.2 (1.14-1.27) 2.28 � 10
e08

6.66 � 10
e05

0.0 0.68

Known loci

rs16892766 8q23.3 8 117630683 A/C 0.09 1.33 (1.22-1.45) 3.56 � 10
e18

1.01 � 10
e24

0.0 0.68

rs10808556 8q24.21 8 128413147 T/C 0.41 1.14 (1.08-1.19) 3.07 � 10e10 7.18 � 10e06 39.8 0.17

rs11255835 10p14 10 8732887 C/A 0.45 0.88 (0.84-0.92) 1.82 � 10
e09

6.42 � 10
e05

0.0 0.89

rs7944895 11q23.1 11 111167776 G/C 0.30 1.14 (1.1-1.19) 2.60 � 10
e10

3.06 � 10
e06

0.0 0.52

rs12427378 12q13.12 12 51074199 T/C 0.34 1.14 (1.09-1.19) 2.76 � 10e10 4.31 � 10e06 34.0 0.21

rs73376930 15q13.3 15 33012502 A/G 0.21 1.28 (1.20-1.35) 7.05 � 10
e25

3.39 � 10
e33

0.0 0.70

rs11874392 18q21.1 18 46453156 T/A 0.45 1.19 (1.15-1.23) 1.27 � 10e18 4.66 � 10e19 77.7 0.004

rs913245 20p12.3 20 6382301 A/G 0.32 1.12 (1.08-1.18) 1.43 � 10
e08

0.001 0.0 0.76

rs6066825 20q13.13 20 47340117 A/G 0.38 0.87 (0.84-0.90) 7.13 � 10e11 4.64 � 10e07 0.0 0.40

rs2427291 20q13.33 20 60921324 G/A 0.20 0.85 (0.8-0.9) 9.69 � 10
e10

2.81 � 10
e06

0.0 0.78

Alt, alternative/other allele; BFDP, Bayesian false-discovery probability; Chr, chromosome; CI, confidence interval; EOCRC, early-onset colorectal cancer; GWAS, genome-wide

association study; I
2
, proportion of the total variation due to heterogeneity; OR, odds ratio calculated for risk allele; PGWAS, P-value from GWAS meta-analysis; Phet, P-value

for heterogeneity across studies; Pos, base position; RAF, risk allele frequency; Risk, risk allele; SNP, single-nucleotide polymorphism.
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particularly active transcription sites and enhancers

(Supplementary Figures S2A, B, and S3AeJ, available at

https://doi.org/10.1016/j.annonc.2024.02.008) that are

enriched in gastrointestinal tract epithelial cells

(Supplementary Figure S4, available at https://doi.org/10.

1016/j.annonc.2024.02.008).

Cis-regulatory transcriptional networks of the credible

SNPs identified 428 cis-eQTLs at FDR <0.05 in multiple

datasets. We found eQTLs at 8 of 10 previously known CRC

risk loci, as well as at the 4p15.33 locus for the BST1 and

CPEB2 genes (Supplementary Table S8, available at https://

doi.org/10.1016/j.annonc.2024.02.008). Around 13.7% of

the credible set of SNPs mapped to regions with significant

(FDR < 1 � 10e06) chromatin interactions. In gastrointes-

tinal epithelial cells, we identified three significant chro-

matin interactions at 1p34.1, between enhancer containing

rs36053993 and promoter regions of multiple genes at two

loci, and between rs145667118 and rs41309177 over-

lapping enhancers and promoter regions of the PIK3R3,

TSPAN1, and LUPAP1 genes. At 4p15.33, we observed sig-

nificant interactions between eight enhancer-overlapping

SNPs and CPEB2, CPEB2-AS1, and long intergenic non-

coding RNA LINC01182 (Supplementary Table S9, available

at https://doi.org/10.1016/j.annonc.2024.02.008, Figure 3).

We further confirmed 22 other significant interactions at

eight previously known CRC risk loci (Supplementary

Table S9, available at https://doi.org/10.1016/j.annonc.

2024.02.008, Supplementary Figure S5AeF, available at

https://doi.org/10.1016/j.annonc.2024.02.008).

Gene-level association and proteineprotein interaction

networks

Using MAGMA-based gene-level association tests, we

identified 16 genes at genome-wide significance level

(P < 2.6 � 10e06) involved in transforming growth factor

(TGF) b signaling, mothers against decapentaplegic (SMAD)

binding, BMP, and mismatch repair pathways

(Supplementary Figure S6A, Supplementary Tables S10 and

S11, available at https://doi.org/10.1016/j.annonc.2024.02.

008). To obtain a more inclusive functional overview, we

performed a PPI network analysis using genes with MAGMA

P < 0.05 as ‘seeds’ and obtained a large subnetwork with

165 seed proteins as major hub nodes (Supplementary

Figure S6B, available at https://doi.org/10.1016/j.annonc.

2024.02.008). These included known CRC-associated genes

such as MYC, TCF7L2, SMAD3, EIF3H, and PIK3R3 at the

newly identified locus 1p34.1. CPEB2 and MUTYH at the

new loci were also part of the subnetwork (Supplementary

Table S12, available at https://doi.org/10.1016/j.annonc.

2024.02.008). This is in line with the observation that

trait-associated genes are often part of larger biological

networks.51,52 The seed hub proteins were enriched for

cancer and immune-related pathways, cellular proc-

essesdsuch as cell cycle, apoptosis, and DNA repairdand

CRC risk factors such as insulin resistance and type 2 dia-

betes (Supplementary Table S13, available at https://doi.

org/10.1016/j.annonc.2024.02.008). The enrichment of

several pathways involved in infection might reflect shared

cellular signaling between cancer and infection, particularly

related to inflammation and immune response.53

Functional gene prioritization of EOCRC

We identified potential genes based on functional fine-

mapping including deleterious nonsynonymous classifica-

tion, eQTL and chromatin interaction data, gene-based

tests, and hub status in PPI networks (Supplementary

Table S14, available at https://doi.org/10.1016/j.annonc.

2024.02.008). At each locus, genes nominated by the

maximum of these approaches were selected with addi-

tional weightage to deleterious coding, eQTL genes, and

genes previously identified in CRC-GWAS.21,27,28,54 Notably,

some genes at the known risk loci were not previously

associated with CRC risk, including the DNA repair gene

RAD21 involved in loss of heterozygosity and Wnt signaling

in CRC55; and genes such as SIK2, TFCP2, ARHGAP11A,

ZNFX1, SNORD12B, CSE1L, and OSBPL2 (Figure 4), all with

reported oncogenic roles in several gastrointestinal malig-

nancies.56-62

Among the new loci, at 1p34.1 we identified the DNA

repair geneMUTYH with a rare (MAF 0.8%) nonsynonymous

variant (rs36053993, G396D) associated with an increased

risk of EOCRC (OR 1.80, 95% CI 1.47-2.22; P ¼ 2.84 � 10
e

08). With 6176 cases, we had w70% power to detect the

association in a one-stage study (Supplementary Figure S8,

available at https://doi.org/10.1016/j.annonc.2024.02.008).

This biallelic MUTYH variant is associated with adenoma-

tous polyposis of the colon63 and an increased risk of CRC at

younger ages.64 Fine mapping of the locus also identified

PIK3R3 encoding the regulatory subunit p55 of phosphati-

dylinositol kinase (PI3K) that is known to promote cell

proliferation in CRC by inducing the epithelial-to-

mesenchymal transition65 and the p53/CDKN1A (p21)

signaling pathway.66 At 4p15.33, we prioritized the trans-

lational regulatory factor CPEB2,67 which is known to pro-

mote senescence and suppress epithelial-to-mesenchymal

transition by regulating p53, HIF1a, and Twist1 trans-

lation.68,69 Knockdown of CPEB in vitro caused p53 protein

levels to decrease by 50%.
70

The risk variants at this locus

were cis-eQTLs, downregulating CPEB2 expression

(Supplementary Table S8, available at https://doi.org/10.

1016/j.annonc.2024.02.008). In The Cancer Genome Atlas

(TCGA) and GTEx datasets, the expression of CPEB2 was

lower in CRC cells compared with normal cells

(Supplementary Figure S8, available at https://doi.org/10.

1016/j.annonc.2024.02.008), suggesting that these SNPs

might increase the EOCRC risk by lowering CPEB2 expres-

sion and affecting p53 translation and cellular senescence.

The prioritized genes annotated to several common

biological processes/pathways based on gene-level func-

tional annotation from the Gene Ontology (GO) database71

and literature search. This includes common cellular pro-

cesses, such as cell cycle, DNA repair, transcription, trans-

lation, and chromatin regulation; CRC signaling pathways

such as PI3K/protein kinase B (AKT), BMP, TGFb; and

R. S. Laskar et al. Annals of Oncology

Volume 35 - Issue 6 - 2024 https://doi.org/10.1016/j.annonc.2024.02.008 529



15-core Chromatin state

-

-
P

0
1

g
ol

-v
a

lu
e

-
0

1
g

ol
e

Q
T

L
P

- v
a
lu

e

B
S

T
1

C
P

E
B

2

B
S

T
1

rs186107317

rs9991540

4p15.33

1p34.1

Figure 3. Regional plots of the two new early-onset colorectal cancer risk loci. The genome-wide association study meta-analysis �log10 P-values (y-axis) of the

single-nucleotide polymorphisms (SNPs) are shown according to their chromosomal positions (x-axis) based on GRCh37 in the main panel. The extent of linkage

disequilibrium with the top SNP is denoted by the color scheme from gray (r
2
< 0.1) to dark red (r

2 ¼ 1.0), with r
2
estimated from EUR 1000 Genomes data. The lower

panel shows the 15-core chromatin states from the Roadmap Epigenomics project (E075, colonic mucosa; E076, colon smooth muscle; E106, sigmoid colon; E101,

rectal mucosa 1; E102, rectal mucosa 2; E103, rectal smooth muscle; E084, fetal large intestine). The lowermost panel shows the elog10 P-values from the expression

Annals of Oncology R. S. Laskar et al.

530 https://doi.org/10.1016/j.annonc.2024.02.008 Volume 35 - Issue 6 - 2024



immune- and inflammation-related pathways. Three of the

newly identified target genes, CPEB2, PIK3R3, and SIK2, had

roles in insulin signaling and several others were involved in

organelle membrane or intracellular transport (Figure 4).

Mendelian randomization

Genetically predicted body size measures were positively

associated with EOCRC risk, with the highest OR estimates

observed for central adiposity measurements such as waist-

to-hip ratio (OR per 0.1 increase (1eSD) 1.47, 95% CI 1.26-

1.71) and waist circumference [OR per 13.4 cm increase

(1eSD) 1.42, 95% CI 1.22-1.64). BMI, body fat percentage,

and basal metabolic rate were also positively associated

with EOCRC risk. No significant association was found be-

tween genetically predicted birth weight and early-life body

size with EOCRC risk. We observed a suggestive positive

association between genetically predicted adult height and

EOCRC risk [OR per 9.2 cm increase (1eSD) 1.09, 95% CI

1.03-1.16; Figure 5).

Among diet and lifestyle factors, genetically predicted per

unit increase in log-transformed alcoholic drinks per week

was strongly associated with EOCRC risk (OR per unit in-

crease 1.97, 95% CI 1.34-2.90). Smoking; coffee consump-

tion; leisure screen time; and blood concentrations of

vitamin D, calcium, and iron were not associated with

EOCRC risk. Genetically predicted higher years of schooling

were strongly associated with lower EOCRC risk (Figure 5).

For glycemic traits, we observed a positive association

per unit increase in log(pmol/l) for fasting insulin levels (OR

2.35, 95% CI 1.33-4.16). A suggestive positive association

was observed with type 2 diabetes, but the MR-Egger

sensitivity analysis effect estimate was unsupportive of a

causal effect (Figure 5).

Genetic instruments for these potentially modifiable risk

factors were 4 to 3594 SNPs. F-statistics were high (>10),

indicating strong instruments, for all considered traits

(Supplementary Tables S2 and S15, available at https://doi.

org/10.1016/j.annonc.2024.02.008). Similar patterns of ef-

fect estimates were observed for EOCRC and overall CRC

(Supplementary Figure S9, available at https://doi.org/10.

1016/j.annonc.2024.02.008). While alcohol consumption

was more strongly associated with EOCRC, lifetime smoking

index and physical activity were more clearly associated with

overall CRC. Overall, weighted median and MR-Egger sensi-

tivity analyses showed similar magnitude and effect direc-

tion in causal estimates for body size parameters, alcohol

consumption, and fasting insulin measures (Supplementary

Table S16 & Supplementary Figure S10, available at

https://doi.org/10.1016/j.annonc.2024.02.008). Leave-one-

out analyses for inverse variance-weighted tests did not

identify any bias from single-sensitive SNPs for any of the

significant associations (Supplementary Table S17, available

at https://doi.org/10.1016/j.annonc.2024.02.008). MR-

Egger regression did not identify any evidence of

horizontal pleiotropy for most exposures, and similar esti-

mates were found when the few outliers detected by MR-

PRESSO were excluded from analyses (Supplementary

Tables S18 and S19, available at https://doi.org/10.1016/j.

annonc.2024.02.008).

DISCUSSION

We report the first comprehensive GWAS for EOCRC. We

identified new EOCRC risk loci, confirmed the involvement

of previously identified CRC risk loci, and report new

EOCRC-susceptibility genes and pathways through func-

tional annotation. We identified a high penetrance delete-

rious coding variant and showed that most of the EOCRC

genetic susceptibility comes from the noncoding signals

that are enriched in epigenetic markers present in the

epithelial cells of the gastrointestinal tract. Our findings

show that common germline variants alone are unlikely to

explain a substantial heritability or account for the increase

in EOCRC incidence.

Our study provides novel insights into possible biological

mechanisms underlying EOCRC. Alongside known CRC sus-

ceptibility pathways such as TGFb, Wnt, SMAD, BMP, and

PI3K signaling, which are crucial for maintaining normal

intestinal homeostasis,21,27,28 we highlight the role of in-

sulin signaling, immune, and infection-related pathways in

EOCRC. Intestinal insulin signaling is critical for maintaining

normal epithelial integrity, and damage to the intestinal

barrier causes gut dysbiosis, leading to inflammation and an

increased risk of developing colon cancer.72,73 Target genes

with immune function, by contrast, might act through

various mechanisms that affect immune surveillance,

chronic inflammation, hostepathogen interactions, and the

tumor microenvironment.53 However, given the relatively

smaller size of the current GWAS compared with the overall

CRC study,28 several important genes and pathways likely

remain unidentified.We could only explain 6.2% of the SNP-

based heritability of EOCRC, highlighting the need for larger

GWASs and whole genome sequencing studies to identify

the missing heritability and provide further biological in-

sights into EOCRC susceptibility.

The current GWAS enabled us to explore potential causal

relationships between EOCRC and modifiable risk factors in

comprehensive MR analyses. Temporal increases in expo-

sures such as obesity, unhealthy diets, and other unfavor-

able lifestyle behaviors in young adults over the past few

decades have been linked to the increase in the incidence of

early-onset cancers.74,75 However, disentangling the causal

relevance of each individual exposure in traditional obser-

vational studies is challenging because of confounding and

potential bias from reverse causality. In our MR analyses,

we found novel evidence of potential causal associations for

higher levels of body size and metabolic factorsdsuch as

body fat percentage, waist circumference, waist-to-hip ra-

tio, basal metabolic rate, and fasting insulindhigher alcohol

quantitative trait locus (eQTL) analysis where available. The semicircular plot on the right shows Hi-C chromatin interaction involving the credible SNP set in the loci

from the GM12878 cell line. The genes in green represent eQTL-mapped genes, black represents chromatin interaction-mapped, and red are both eQTL and chromatin

interaction-mapped genes at each locus.
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Figure 4. Summary of prioritized candidate genes associated with early-onset colorectal cancer risk. Shown are the 44 candidate genes identified in this study and

gene-level functional annotation from the Gene Ontology database
79
and literature search. Genes in burgundy are the genes identified in the two newly identified loci;

gene names in black are previously prioritized genes in known loci, and green-cyan genes are the newly identified genes in known risk loci. Red blocks in front of gene

names represent genes with nonsynonymous coding variants, dark green bars represents positional mapping; dark magenta bars represent chromatin-interaction;

dark blue bars represents protein-protein interaction hubs, and light green bars represents eQTL mapping.

Akt, protein kinase B; BMP, bone morphogenetic protein; eQTL, expression quantitative trait loci; PI3K, phosphatidylinositol kinase; PPI, proteineprotein interaction;

TGF, transforming growth factor.
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drinking, and lower education attainment with increased

EOCRC risk.

The positive effect estimates we observed for adiposity

are consistent with results from some observational

studies
15,76

and an increasing obesity trend in young

adults.77 Hyperinsulinemia and insulin resistance are

frequently present in individuals who are obese. The posi-

tive effect estimate we observed for fasting insulin and

EOCRC is consistent with recent evidence supporting a role

for metabolic dysregulation in EOCRC development.17

Given that per capita alcohol consumption increased

between 1960 and 2010 in many countries78 and the

candidate risk factor status of alcohol for EOCRC in obser-

vational studies,14,75 our findings suggest a probable causal

association between alcohol drinking and EOCRC risk. This is

in contrast to a weaker and statistically nonsignificant as-

sociation we and others have found for overall CRC.79

Interestingly, alcohol intake has been associated with CRC

tumors exhibiting LINE-1 hypomethylation,80 a key feature

of EOCRC tumors.81,82 Additional studies investigating the

effects of different patterns of early-life alcohol

consumption (e.g. moderate and binge drinking) are

needed to further probe the alcoholeEOCRC relationship.

Overall, our MR results suggest that public health policies to

reduce obesity and alcohol consumption might have a

positive impact on EOCRC prevention. Further, pharmaco-

logical or lifestyle interventions that lower circulating insulin

levels may be beneficial in preventing EOCRC.

We also observed a strong inverse effect estimate for

genetically predicted higher years of schooling with EOCRC

risk, a result directionally consistent with what we and

others found for overall CRC, and possibly a consequence

of socioeconomic status and related behavioral risk

factors.
83

Our study has several notable strengths. In addition to

being the first dedicated GWAS of EOCRC conducted with

substantial power and detailed functional analyses of the

identified genetic associations, this was the first compre-

hensive MR analysis to understand potentially modifiable

risk factors of EOCRC. We conducted multiple sensitivity

analyses to account for potential biases due to pleiotropy,

and our results remained generally robust across these

Inflammation and growth factors
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Figure 5. Mendelian randomization (MR) analyses. Odds ratios (ORs) from inverse variance-weighted MR analysis for the association between putative risk factors

and early-onset colorectal cancer (EOCRC). All associations are expressed as OR per standard deviation (SD) increase in the risk factor except for alcoholic drinks per

week and fasting insulin, which were expressed as OR per unit increase in the natural logarithm of the exposures. For categorical risk factors such as smoking initiation

(ever versus never), type 2 diabetes (yes versus no), and physical activity (inactive versus active), the ORs were expressed as unit change in the exposure, compared

with the reference group.

25(OH)D, 25-hydroxyvitamin D; HbA1c, glycated hemoglobin; IGF, insulin growth factor; MVPA, moderate-to-vigorous physical activity; SNP, single-nucleotide

polymorphism.
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analyses. However, some MR analyses may have been

limited in statistical power, and the size of the EOCRC GWAS

limited our ability to carry out analysis stratified by sex and

tumor location.84 Because of the lack of data on high-

penetrance gene mutations in several contributing

studies, we were unable to systematically account for ge-

netic mutations related to Lynch and other rarer hereditary

cancer syndromes in our GWAS analysis. However, sensi-

tivity analysis on a subset of cases with Lynch data showed

a similar pattern of effect estimates, suggesting that our

EOCRC GWAS meta-analysis and MR analyses are largely

representative of sporadic disease which is driving the

alarming rising incidence rates in young adults globally.2,4,5

Certain risk factors such as alcohol, education attainment,

and fasting insulin showed relatively large effect sizes,

which might be indicative of either stronger associations

with EOCRC compared with overall CRC or some inflation

due to a smaller sample size. Overall, for our MR analyses,

the genetic instruments used were obtained from a single

timepoint which means that for time-varying exposures,

temporal effects could not be inferred.85 Furthermore, the

exposure and outcome GWASs were conducted mostly on

individuals of European descent, which restricted the

testing of applicability to other at-risk populations. None-

theless, this provides further support for the prioritization

of future large-scale multiethnic studies.

In conclusion, our findings provide novel insights into the

inherited susceptibility to EOCRC including target genes and

functional pathways that provide insights into the biological

basis of EOCRC. It also reveals key modifiable targets for

primary prevention, such as excess adiposity, hyper-

insulinemia, and alcohol drinking. Our findings may help

prioritize individuals for personalized screening regimens or

other intervention strategies.
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