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Prediction of tumor-reactive T cellreceptors
from scRNA-seqdatafor personalized T cell
therapy
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W Check for updates

Theidentification of patient-derived, tumor-reactive T cell receptors (TCRs)
as abasis for personalized transgenic T cell therapies remains a time- and
cost-intensive endeavor. Current approaches to identify tumor-reactive
TCRs analyze tumor mutations to predict T cell activating (neo)antigens
and use these to either enrich tumor infiltrating lymphocyte (TIL) cultures
orvalidate individual TCRs for transgenic autologous therapies. Here

we combined high-throughput TCR cloning and reactivity validation to
train predicTCR, amachine learning classifier thatidentifies individual
tumor-reactive TILs in an antigen-agnostic manner based on single-TIL
RNA sequencing. PredicTCR identifies tumor-reactive TCRsin TILs

from diverse cancers better than previous gene set enrichment-based
approaches, increasing specificity and sensitivity (geometric mean)

from 0.38 to 0.74. By predicting tumor-reactive TCRs in a matter of days,
TCR clonotypes can be prioritized to accelerate the manufacture of
personalized T cell therapies.

The success of tumor infiltrating lymphocyte (TIL) therapy trialsinmet-  can exhaust the T cells, compromising their tumor-killing efficacy*
astatic melanoma shows that TILs contain a fraction of tumor-reactive  and leading to clonal depletion’. In contrast, personalized transgenic
T cellsthat canbe harnessed for adoptive cell therapy’. Thissuccessis T cell therapies seek to identify and reinfuse defined tumor-reactive
morelimited innon-melanoma cancer types®where the baselinefrac- T cell receptors (TCRs), either in patient-autologous T cells® or in
tion of experimentally verifiable, tumor-reactive CD8" T cellsislow—  induced pluripotent stem cell-derived, hypoimmunogenic (allo-
oftennot exceeding 0.5% (ref. 3). While the fraction of tumor-reactive  geneic) T cells’. While this generates a highly efficacious product,
Tcells can be enriched before reinfusion via cell expansion, this process  identifying tumor-reactive TCRs is a ‘needle in a haystack’ problem®.
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Fig.1|BT21cell line accurately models resected metastatic lesion, allowing
high-confidence experimental TCR tumor-reactivity testing. a, An overview
of the experimental and computational pipeline underlying the predicTCR
classifier: TILs are sorted and subject to scRNA + VDJ-seq, while adjacent resected
tumor material is used to establish the BT21tumor cell line. TCR reactivity data
arethenintegrated with scRNA + VDJ-seq data to train the predicTCR classifier,
whichis later tested on externally generated TIL datasets from diverse tumor
types. b, Unsupervised clustering (UMAP plot) of scRNA-seq data of TILs
(n=5,651) recovered from brain metastasis sample, with key T cell subtypes
annotated. ¢, The percentage frequency of the top 20 TIL TCR clonotypes and
their distribution projected onto the UMAP, showing that cells of the same

clonotype can occupy diverse phenotypicstates.d, T cells transfected with one
of the 50 most frequently occurring TIL-derived TCR clonotypes (representing 58
distinct TCR o/f3 chain pairs) are cocultured with BT21 cells; the resulting levels of
CD107a (as quantified by flow cytometry, gated on mTCRp" cells, which express
the transgenic TCR as a chimera with the murine constant domain) demonstrate
whether agiven TCR clonotype recognizes the BT21 cell line. For details of
settings per TCRreactivity threshold, see Methods. DMF5is the HLA mismatched
negative control TCR. e, BT21-reactive TCR clonotypes are more frequent than
nonreactive clonotypesin the TIL population. f, BT21 reactivity testing results
projected onto the UMAP plot (b).

Current techniques place emphasis on tumor antigens, using muta-
nome analysis to determine the most likelyimmunogenic neoepitopes
to be screened experimentally against TCRs recovered from TILs’.
This is atechnically challenging and time-consuming endeavor: only
afraction of predicted neoepitopes represent physiologically rel-
evant, naturally processed T cell epitopes. Furthermore, while sub-
stantial focus has been placed on tumor-specific, single-nucleotide

variant (SNV)-derived neoantigens as the source of TCR epitopes, this
neglects antigens generated through diverse mechanisms that are only
recently beginning to be understood. These include complex muta-
tions such as frame shifts, gene fusions and aberrant gene splicing, as
well as novel targets arising though transposable element activation™,
cell stress-induced tryptophan bumps", aberrant posttranslational
modifications', unannotated open reading frames” and even from
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Fig.2|PredicTCR,, classifier training strategy. SCRNA data from healthy
donors, as well as scRNA + VDJ and experimentally derived tumor-reactivity
datafor the 50 most frequent TCR TIL clonotypes from sample BT21, were used
to train anintermediate model using XGBoost. Due to the sparse nature of
scRNA data, we optimized this intermediate model by first performing Bayesian
optimization to tune hyperparameters with stratified k-fold cross-validation.
Subsequently we identified the top features (that is, genes) in this intermediate

model using explainable AISHAP, and then trained a simpler model using only
these features to prevent overfitting to the training data. This simpler model
was retuned as before and then applied to the remaining BT21 TIL data. Per-cell
reactivity probabilities calculated by the classifier were averaged for each

TCR clonotype, and the Fisher-Jenk natural break was used to determine the
appropriate minimum threshold for calling TCRs as tumor reactive.

intracellular pathogens'. Together, these ensure that atumor-focused,
antigen-centric approach is both slow and inefficient in identifying
suitable tumor-reactive TCRs for use in personalized therapies, thus
raising costs and limiting clinical application.

We hypothesized that the identification of tumor-reactive TCRs
could be accelerated by developing a TCR-centric, antigen-agnostic
approach: ascertaining TCR sequence and tumor reactivity directly
from T cells using single-cell combined RNA + VDJ sequencing
(scRNA +VDJ-seq). We have previously shown that tumor-infiltrating
T cells expressing a TCR against a tumor-specific neoepitope in a vacci-
nated patient with glioma could be distinguished from bystander T cells
onthebasis of their expression of CXCL13and CD40LG". This observation
hasbeenextended by other groups using cluster-based differential gene
expressionanalyses to generate multigene ‘signatures’ of tumor-reactive
TILs in melanoma’® ™%, lung cancer'>?°, gastrointestinal cancer?, pan-
creatic ductal adenocarcinoma (PDAC)* and metastatic cancer”. The
reported gene signatures are only partially overlapping, implying that
there may be tumor type-specific transcriptional features in TILs.

We postulated that molecular events in the process of T cell acti-
vation upon recognition of a tumor antigen are specific for tumor
antigens and independent of tumor type. While differences in pub-
lished signatures of T cell activation might reflect bonafide differences

(for example, as a result of distinct tumor microenvironments), they
mightalsoreflect genes playing nonessentialrolesin T cell activation.
In addition to this, the process of validating the tumor reactivity of a
TCR requires the generation of tumor models that accurately reca-
pitulate the mutational landscape and epitope processing capacity
of the tumor—a process complicated by the spatial heterogeneity
of many tumors. The consequence of this is that existing datasets
might be noisy due to false negative TCR testing results, in which the
tumor model lacks many target epitopes found in the primary tumor.
Furthermore, the cost-intensive nature of these experiments and the
desire to discover therapeutically useful TCRs has meant that exper-
iments have typically focused on validating TCR clonotypes most
likely to be tumor reactive rather than unbiased TCR cloning. This
bias may complicate theidentification of confounding transcriptional
signatures not essential for T cell activation in existing data.

We reasoned that resolving these issues would allow tumor-
reactive TILs to beidentified regardless of tumor type from single-cell
RNA sequencing (scRNA-seq) data alone. Furthermore, by cloning
TCRsinan unbiased fashion and including large amounts of negative
training data, a machine learning classifier could be trained to iden-
tify tumor-reactive TCR clonotypes from scRNA + VDJ-seq data in an
automated manner.
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Deep screening identifies tumor-reactive TCR
fromTILs

In this study, we set out to identify a tumor sample from which we
could sequence TILs and derive a tumor cell line that appropriately
recapitulated the primary tumor to allow for high-confidence TCR
tumor-reactivity testing to generate a classifier training dataset (Fig. 1a).
As sequencing is destructive, adjacent tumor pieces must be used for
tumor and TIL sequencing as well astumor cell line establishment. Tumor
mutational heterogeneity (which correlates with TIL heterogeneity**)
leads to TILs from one tumor piece recognizing antigens absent from
the tumor cellline generated from adistal piece, resulting in false nega-
tives during TCR testing that lower the quality of the training dataset.
We therefore chose to use ametastatic tumor, as monoclonal metastasis
seeding events represent genetic bottlenecks that fix mutations®, maxi-
mizing the similarity between primary tumor and resultant cell line. We
further hypothesized that a metastasis derived from the brain—which
hasadegree ofimmune privilege—might resultinimproved phenotypic
separation between bystander and infiltrating tumor-reactive T cells.
Weidentified ametastatic brain tumor from a 62-year-old male patient
previously diagnosed with melanoma, which was established as a tumor
cellline hereafter termed BT21. Whole-exome sequencing showed that
BT21was a suitable model of the metastatic tumor, sharing 245 of the
268 functional SNVs (Extended DataFig.1and Source data), and consti-
tutively expressing major histocompatibility class I (MHCI) complexes
required for epitope presentation and TCR testing (Extended DataFig. 2).

Unsupervised clustering of scRNA-seq of TIL-derived T cells
(n=5,651, hereafter referred to as TILs) showed the presence of dis-
tinct clusters expressing known markers of T cell activation includ-
ing CXCL13, GZMK and GNLY (Fig. 1b). Single-cell VDJ sequencing
(scVDJ-seq) of TILs showed the presence of expanded TCR clonotypes,
with one clonotype representing over 5% of all clones—asignal indica-
tive of tumor reactivity due tolocal T cell expansion (Fig.1c). Addition-
ally, TCR clonotypes found in the scRNA + VDJ of TILs could also be
identified in the RNA-seq data derived from a distinct piece of tumor
tissue, suggesting that the source tumor was relatively homogeneous
interms of T cellinfiltration and presumably the underlying mutational
landscape (Supplementary Table1).

We cloned the most frequently occurring o/f3 TCR chain pairs
(n=58) from the TIL population (representing 50 distinct TCR clo-
notypes as some T cells express two productive a chains). TCRs were
transfected into expanded healthy donor peripheral blood mono-
nuclear cells (PBMCs) and screened for reactivity against the BT21
cell line using a flow cytometry-mediated readout of T cell activation
(CD107a") corrected for per TCR background tonic signaling. A con-
servative threshold was set to determine TCRreactivity (Methods and
Extended Data Fig. 3a,b). We found 34/50 TCRs to be tumor reactive
(Fig. 1d and Source data), and showed that there was no significant
difference in transgenic TCR expression between reactive and nonre-
active TCRs (Extended Data Fig. 3c). Tumor-reactive TCR clonotypes
were significantly more expanded in the TIL population than nonreac-
tive clonotypes (Fig. 1e) and individual cells expressing tumor reactive
TCRs could occupy various states (Fig. 1b,c,f).

Development of predicTCR;, classifier from
scRNA + VDJdata
Using the TCRreactivity dataset we established for BT21, we set out to
build amachine learning classifier that could accurately and robustly
predict tumor reactivity of TIL-derived TCRs based on scRNA + VDJ-seq
data using the strategy illustrated in Fig. 2. We first converted the 50
experimentally determined tumor reactivities into a binary label for
each TIL cell expressing a tested TCR clonotype and used the cor-
responding gene expression matrix for those cells as input to train
machine learning frameworks. The predictive performance of sev-
eral machinelearning frameworks was evaluated using the area under
the receiver operating characteristic (ROC) curve (AUC) metric that
ranges between 1 (perfectly predictive), 0.5 (no discrimination capacity
between groups) and O (reciprocating classes). When making a clas-
sifier, a threshold must be set to discriminate between reactive and
nonreactive states; the AUC metric assesses the best possible perfor-
mance ofamodel onagiven dataset by varying the threshold value. This
preliminary comparison found eXtreme Gradient Boost (XGBoost)* to
be the most suitable framework (Extended DataFig. 4). While XGBoost
performs particularly well due toits ability to update subsequent deci-
sion trees during boosting, it has additional advantages for analysis
as it effectively implements within-tree parallelization and is able to
handle dropout datacommonly foundin scRNA datasets. Importantly,
XGBoostalsoincorporates regularization to prevent overfitting, which
otherwise limits the ability to generalize amodel to new datasets.
Weadded scRNA datafromten healthy donor PBMC samples gener-
ated by three independent groups; this produced a maximally diverse
negative control dataset for training. Altogether, atotal of 112,960 cells
were used for training, of which 1,461 cells were TILs from BT21; the
imbalanced nature of the training datarequired careful optimization of
dataweighting (Methods). XGBoost hyperparameters were tuned using
stratified k-fold cross-validation with Bayesian optimization, using 70%
of the TCRs for training and 30% for testing. To reduce the complexity
of our model—important to prevent overfitting that would limit the
performance of the classifier on new samples—weidentified the key fea-
tures (thatis, genes) determining model performance using explainable
artificial intelligence (Al) SHapley Additive exPlanations (SHAP)”. We
thenrepeated hyperparameter optimization using only these features.
The probability of tumor reactivity was calculated for each indi-
vidual T cellusing the model, and amean score then calculated for each
TCR clonotype using the datafromscVD]J-seq (as TILs expressing agiven
TCR clonotype may be found occupying various phenotypic states
from naive to exhausted; Fig. 1b,c). Finally, the minimum reactivity
scorerequired foraTCR clonotypetobe called as being tumor reactive
was calculated using Fisher-Jenk break optimization, a deterministic
statistical analysis that can set sample-specific thresholds. We named
the resulting classifier ‘predicTCR,".

PredicTCR;, prediction performanceinbrain
metastasis

We used predicTCR, to generate tumor-reactivity predictions for
all TILs recovered from the BT21 metastasis, with the per-clonotype

Fig.3|PredicTCR accurately predicts tumor-reactive TCRs in diverse
tumor types. a, AUMAP plot asin Fig. 1 overlaid with predicTCRs, per-cell
tumor-reactivity predictions. b, An additional 22 TCR clonotypes (29 distinct
TCR o/3 chain pairs) were tested for reactivity against the BT21 cell line. ¢, The
performance of predicTCR;, in prospective prediction of tumor-reactive TCR
in BT21 patient. d-g, The performance of predicTCR in predicting TCR tumor
reactivity in published scRNA + VD] datasets with TCR reactivity data available:
seven PDAC samples from Meng et al.” (d), one colon metastasis® (e), two
NSCLC" (f) and three gastrointestinal cancers® (g). The metrics were calculated
by clonotype, with the number of TCR clonotypes for each sample and the AUC
value listed. The overall performance was assessed using all available TCRs per
cancer modality. Additional metrics and details of the sequencing technology

and reactivity testing method used for each sample are listed in Table 3.

h, PredicTCR reactivity predictions for PDAC sample TIPC418 from Meng et al.”*
who tested eight TCRs and found none to react to the TIPC418-derived tumor
cellline (blue dots, dot size scaled to number of TIL TCR clonotypes). PredicTCR
analysis predicted seven of these eight TCRs to be nonreactive (reactivity scores
below the Fisher-Jenk natural break threshold, dashed line in plot). Seven
additional TCR clonotypes (red dots) predicted to be tumor reactive were cloned
for prospective validation of predicTCR. i,j, Flow cytometry analysis of T cells
expressing predicted TIPC418-reactive TCRs cocultured with TIPC418 cells (top)
orirrelevant MeWo control cells (bottom) confirmed all seven TCRs to be reactive
asassessed by CD107a (i) and TNFa (j). k, The relative frequency and absolute
number of recovered TILs for the TCR clonotypes tested in h-j.
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reactive score clearly separating TCR clonotypes into a bimodal dis-
tribution corresponding to reactive and nonreactive TCRs (Fig. 3a).

Wetested these predictions by cloning and experimentally validating
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Table 1| Performance of tumor-reactivity prediction methods
on BT21

Method Threshold TP FP TN FN Accuracy G-mean AUC
NeoTCR8 0.39 2 0 9 1  0.50 0.15 0.87
Hanada 0.43 183 5 4 0O 0.82 0.67 0.72
Caushi 0.46 183 5 4 0.77 0.67 0.72
MengTR30 0.37 12 4 5 1 0.77 0.72 0.85
PredicTCR 0.52 2 1 8 1 091 0.91 0.92

The performance of each prediction method on the BT21 test set of 22 TCRs was quantified
using accuracy, G-mean and AUC. TP, true positive; FP, false positive; TN, true negative;
FN, false negative; and threshold, Fisher-Jenk threshold for calling a TCR as tumor reactive.

and Table1). Our CD107a" threshold for tumor reactivity captured T cells
with a broad range of activated phenotypes, with CD8" BT21-reactive
TCRskilling significantly more BT21 cellsin bulk culture xCELLigence
assays (Extended DataFig.5). We were able to recapitulate these results
atsingle-cell resolution by tracking hundreds of individual transgenic
effector T cells using miniaturized microwell coculture assays using
the Cellply VivaCyte platform (Extended Data Fig. 6). We then imple-
mented the previously published gene signature-based approaches that
generate per-cell TCR tumor-reactivity predictions'>*** and used the
same clonotype thresholding procedure as for predicTCR;, to distin-
guish tumor-reactive fromnonreactive TCR clonotypes. We found that
predicTCR;, performed considerably better than the signature-based
approachesat predicting reactivity inour 22 TCR set: NeoTCR8 (AUC of
0.87 and accuracy of 0.50), Hanada and Caushi (both AUC of 0.77 and
accuracy of 0.72) and Meng TR30 (AUC of 0.85 and accuracy of 0.77)
as presented in Table 1 (detailed per-clonotype predictions, Uniform
Manifold Approximation and Projection (UMAP) plots and ROC curves
shownin Extended DataFig.7b-e). This was not unexpected given that
thesignature approaches were derived fromother tumor types, while
predicTCRs, was trained on BT21 data.

Benchmarking predicTCR,, false positive rate
Given that 34/50 of the TCRs in the training set and 13/22 of the TCRs
inour validation set were tumor reactive, we questioned whether our
predicTCR;, classifier might have a bias toward calling TCRs as tumor
reactive. Published TCR reactivity datasets (such as those used to
derive the signature-based approach) typically present more data for
tumor-reactive than nonreactive TCRs; this imbalance means that a
classifier that calls many TCRs to be tumor reactive would have an
apparently high performance. We therefore evaluated the false positive
rate of our classifier by analyzing scRNA data from PBMCs of patients
with coronavirus disease 2019 (COVID-19). Severe COVID-19 disease is
associated with an enrichment of proliferating and effector memory
T...populations®, and previous studies have shown that virus-reactive
T cells have a transcriptional signature similar to—but distinct from—
tumor-reactive T cells. We found that predicTCR,, did not classify any
T cells from patients with COVID-19 as tumor reactive (Table 2 and
Extended Data Fig. 8), suggesting that predicTCRy, is highly specific
to tumor-reactive T cells and has a low false positive rate. In contrast,
gene signature-based approaches such as NeoTCR8 typically called
1-2% of PBMCs as tumor reactive ina majority of patients with COVID-19,
eventhoserecovered frominfections with mild symptoms where fewer
T cellswould be expected to express the virus-reactive signature.

PredicTCR performance generalizes to diverse
tumor types

Having shown that our training method did not generate a classifier
withahigh false positive rate, we created the final version of predicTCR
by retraining on all 72 BT21 derived TCRs (1,679 cells) and healthy
donor data (111,499 cells). We set out to compare the performance

Table 2| PredicTCR does not falsely detect tumor-reactive
T cells in PBMC samples from patients with COVID-19
before and after infection

Severity No. No.cells  PredicTCR NeoTCR8
patients PFP CFP PFP CFP
Asymptomatic 5 26,093 0 0] 3 260
Mild 6 31,91 (0] (0] 2 95
Moderate 2 19,010 0 (0] 2 380
Severe 12 74,308 0 0 9 670
Mild - Post 2 11,095 0 0 1 98
Moderate - Post 1 6,865 0 0 0 0
Severe - Post 17 70,087 0 0 4 406

Virus-reactive T cells express a transcriptional program that partially overlaps with that

of tumor-reactive T cells. PredicTCR does not call any T cells as being tumor reactive in
scRNA+VDJ data from PBMCs drawn from patients with COVID-19 (ref. 28), exhibiting better
discrimination than gene signature approaches such as the NeoTCR8 signature®. Clonotype
level analysis not possible as scVDJ-seq was not performed. PFP, the number of patients with
false positive cells called as tumor reactive; CFP, the number of cells called as being tumor
reactive.

of predicTCR with that of signature approaches using only externally
generated data. Given the aforementioned imbalancein validation data,
we primarily used the geometric mean (G-mean) of sensitivity (true
positive rate) and specificity (true negative rate) tobenchmark model
performance. We first applied predicTCR to nine PDAC tumors from
which tumor celllines, TIL scRNA + VD] dataand TCR reactivity testing
for118 clonotypes were available”. Despite not being trained on PDAC
data, we found that predicTCR could accurately predict experimentally
determined tumor reactivity as shown in Fig. 3d and detailed in Table
3 (accuracy of 0.88, G-mean of 0.88 and AUC of 0.88). This suggested
that predicTCRdetects core transcriptional features of tumor-mediated
Tcellactivation that areindependent of tumor type. These scores are
notably higher than those achieved when applying gene signature
approachesincludingNeoTCR8 (accuracy of 0.47, G-mean of 0.03 and
AUC of 0.65; Supplementary Table 2), Hanada (accuracy of 0.77, G-mean
of 0.76 and AUC of 0.76; Supplementary Table 3), Caushi (accuracy
of 0.54, G-mean of 0.13 and AUC of 0.51; Supplementary Table 4) and
the TR30 signature from Meng et al. (accuracy of 0.81, G-mean of 0.81
and AUC of 0.88; Supplementary Table 5), highlighting the increased
predictive value of the machine learning-derived classifier.

We next extended our analysis toinclude additional publicly avail-
able TIL scRNA + VDJ datasets from additional tumor types. From
Lowery etal., we analyzed asingle colorectal metastatic cancer patient
(SR4323) for whom both reactive and nonreactive TCRs were avail-
able, showing predicTCR accuracy with a G-mean of 0.76 (accuracy of
0.83 and AUC of 0.96; Fig. 3e and Table 3). By comparison, NeoTCR8
performed perfectly on its training dataset with a G-mean of 1.00
(accuracy of 1.00 and AUC 0f1.00), whereas the Hanada et al., Caushi
etal.and Mengetal. TR30 gene signature-based approaches performed
with respective G-means of 0.53 (accuracy of 0.72 and AUC of 0.64),
0.00 (accuracy of 0.61 and AUC of 0.50) and 0.53 (accuracy of 0.72
and AUC of 0.84), suggesting that gene signature-based approaches
fail to generalize beyond the tumor type in which they were derived
(Supplementary Tables 2-5).

We analyzed three non-small cell lung cancer (NSCLC) samples
from Caushi et al. for which TCRs were cloned and tested. Since only
ten TCRs were directly tested inthese samples, we also included TCRs
shown to be neoepitope-reactive based on mutation-associated neo-
antigen functional expansion or virus-reactive based on viral antigen
functional expansion. PredicTCR once again performed well, with a
G-mean of 0.87 (accuracy of 0.87 and AUC of 0.94; Fig. 3fand Table 3),
better thanthe Caushi et al. signature derived from these samples, with
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Table 3 | Summary of predicTCR TCR tumor-reactivity predictions in diverse cancer types

Patients Source Type Tech. Validation Threshold TP FP TN FN Accuracy G-mean AUC
TIPC249 Meng et al. PDAC 10X Cellline 0.39 5 0 0 1 0.83 NA NA

TIPC262 Meng et al. PDAC 10X Cellline 0.39 9 0 0.88 0.87 0.89
TIPC282 Meng et al. PDAC 10X Cellline 0.39 8 1 4 0 0.92 0.89 0.98
TIPC301 Meng et al. PDAC 10X Cellline 0.39 0 1 n 3 073 0.00 0.61
TIPC309 Meng et al. PDAC 10X Cellline 0.39 21 (0] 13 0 1.00 1.00 1.00
TIPC413 Meng et al. PDAC 10X PDX 0.39 1 (0] & 1 0.80 071 0.67
TIPC416 Meng et al. PDAC 10X Cellline 0.39 3 1 2 2 0.63 0.63 0.53
TIPC418 Meng et al. PDAC 10X Cellline 0.39 0 1 7 0 0.88 NA NA

TIPC432 Meng et al. PDAC 10X Cellline 0.39 8 0 3 1 0.92 0.94 0.89
TIPC overall Meng et al. PDAC 10X Cellline NA 55 6 49 8 0.88 0.88 0.88
SR4323 Lowery etal. Colon-met 10X TMG 0.45 n 3 o] 0.83 0.76 0.96
MDO1-004 Caushietal. NSCLC 10X Peptide 0.57 8 2 0 0.86 0.82 1.00
MDO1-005 Caushietal. NSCLC 10X Peptide 0.45 1 0 12 2 0.87 0.58 0.89
MDO043-011 Caushietal. NSCLC 10X Peptide 0.54 2 0 0 0 1.00 NA NA

MD overall Caushietal. NSCLC 10X Peptide NA n 2 16 2 0.87 0.87 0.94
CRI3061 Zhengetal. GI(PDAC) SS2* TMG+Pep 0.16 2 (0] 4 (0] 1.00 1.00 1.00
CRI3244 Zhengetal. GI(PDAC) SS2* TMG+Pep 0.24 0] 1 7 (0] 0.88 NA NA

CRI3281 Zhengetal. Gl (bile duct) SS2 TMG+Pep 015 0 2 2 0] 0.50 NA NA

CRI3395 Zhengetal. Gl (bile duct) SS2* TMG+Pep 015 1 1 5 0 0.86 0.91 1.00
CRI3571 Zhengetal. Gl (bile duct) SS2* TMG+Pep 0.15 1 14 5 (0] 0.30 0.51 0.74
CRl overall Zhengetal. Gl SS2 TMG+Pep NA 4 18 23 0 0.60 0.78 074

The true positive (TP), false positive (FP), true negative (TN) and false negative (FN) clonotype level tumor-reactivity predictions, as well as the resulting accuracy, G-mean and AUC scores

for 18 different tumor samples from four studies. The AUC and G-mean calculations were only possible if both reactive and nonreactive TCRs were available, not available (NA) otherwise.

Type, Colon-Met, colorectal metastatic cancer; Gl, gastrointestinal cancer. Tech., the single-cell sequencing technology used; 10X, 10X Genomics Single Cell Immune Profiling;

SS2, Smart-seq2; SS2*, modified Smart-seg2 (scM&T-Seq); validation, the methodology used to test TCR reactivity; cell line, T cell coculture with tumor cell line, where PDX is T cell coculture
with patient-derived xenograft, TMG is T cell coculture with antigen presenter cells expressing a tandem minigene encoding tumor neoantigens and Pep is T cell coculture with peptide-pulsed
antigen presenter cells; and threshold, Fisher-Jenk threshold for calling a TCR as tumor reactive.

which we observed a G-mean of 0.75 (accuracy of 0.74 and AUC of 0.83;
Supplementary Table 4). The Hanada et al. signature was also derived
from NSCLC samples, and as expected, it performed similarly to the
Caushi et al. signature with a G-mean of 0.76 (accuracy of 0.81and AUC
0f 0.86; Supplementary Table 3). NeoTCRS8, on the other hand, was not
predictive with a G-mean of 0.00 (accuracy of 0.58 and AUC of 0.50;
Supplementary Table 2), while surprisingly the TR30 signature derived
from PDAC samples performed well with a G-mean of 0.79 (accuracy
of 0.77 and AUC of 0.98).

Finally, we analyzed five gastrointestinal cancer samples gener-
ated by Zheng et al.” using Smart-seq2 (ref. 29), which contain an
order of magnitude fewer cells (mean 328 cells per sample) than other
external datasets generated using the 10x Genomics platform'?%%,
Notably, this dataset contained testing data for both CD4 and CD8
T cells; however, as published signature-based prediction approaches
focused on CD8 cells, we restricted our comparisons to only the CD8
Tcelldata. For three samples, predicTCR performed with high accuracy
(Fig. 3g and Table 3), while for two samples accuracy was reduced,
leading to an overall G-mean of 0.78 (accuracy of 0.60 and AUC of
0.74). All other gene signature approaches were not predictive, with
G-means of 0.00 (accuracy of 0.91 and AUC of 0.50; Supplementary
Table 2),0.41(accuracy of 0.24 and AUC of 0.54; Supplementary Table
3),0.16 (accuracy of 0.11and AUC of 0.57; Supplementary Table 4) and
0.41 (accuracy of 0.24 and AUC of 0.52; Supplementary Table 5) for
NeoTCRS8, Hanada, Caushi and Meng TR30 gene signatures, respec-
tively. These results suggest that predicTCR is applicable to datasets
with few cells (probably to include tumor biopsies that can be more
easily obtained than resection material), and sequenced at lower cost
duetothereduced cell number.

Having demonstrated the generalizability of predicTCR, we set
outto experimentally validate anumber of TCRs predicted to be tumor
reactiveinadifferent tumor type. Meng et al. processed a PDAC sample
(TIPC418) and tested 12 TCR clonotypes, eight of which were found to
be nonreactive and four of which showed weak reactivity*. PredicTCR
analysis identified many other TCR clonotypes with a high chance of
being tumor reactive (Fig.3h). From these, we selected seven new TCR
clonotypes expressed inmultiple TILs (Source data) and confirmed that
all seven showed reactivity against the TIPC418 PDAC line as assessed
by flow cytometry-based quantification of CD107a and TNFa but not
against a negative control MeWo cell line (Fig. 3i,j). In this sample,
many of the nonreactive TCRs were present at higher frequencies in
the TIL population than the reactive clonotypes (Fig. 3k); we found
that the two most frequent clonotypes shared a CDR3 o sequence
that has been reported to bind to a cytomegalovirus-derived epitope
inVDJdb*, confirming the utility of predicTCRinidentifying TCRs for
personalized cell therapies.

Discussion

Here, we present predicTCR, the first automated classifier of tumor TCR
reactivity capable of highly accurate identification of tumor-reactive
TCRclonotypesin TILs derived from diverse cancer types through the
use of machine learning models combined with deterministic thresh-
olding. We show that through careful sample choice, generation of a
large, high-confidence TCR reactivity dataset and inclusion of exten-
sive negative training data, an accurate classifier can be generated. In
contrast to previous approaches using differential gene expression
to elucidate a gene signature specific to one tumor type, predicTCR
enables rapid, antigen-agnosticidentification of tumor-reactive TCRs
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in diverse tumor types—the first step in manufacturing personalized
TCR-transgenic T cell cancer therapies.

The majority of signature-based approaches rely on gene set
enrichment analysis of clustered tumor-reactive T cells, and thus
identify genes that are upregulated in the CXCL13 expressing cluster
that we have previously shown to contain tumor-reactive infiltrating
Tcells”. However, CXCL13 expression does not always define a discrete
population of T cells (see the example in Extended Data Fig. 9), as cell
clusteringis highly dependent on upstream processing methods such
as normalization®, the type of clustering algorithm used and the num-
ber of cellsina particular dataset®. Furthermore, tumor-reactive TCRs
may be expressed in T cells of diverse phenotypes (including memory
and exhausted populations): here, cluster-based approaches struggle
to interpret genes that are expressed across clusters but which have
context-specific predictive value that can be discriminated by machine
learning. Finally, clustering approaches require manual verificationand
annotation to achieve optimal results, making automation difficult.
This particularly affects small datasets such as those generated with
Smart-seq2, for which cluster-based gene signatures did not detect
reactive T cell clusters inas many as six out of ten patients (Zheng etal.”).

We interrogated the predicTCR classifier using explainable Al
SHAP to determine the key genes marking tumor reactivity in T cells.
While the known reactivity marker CXCL13 contributed the most to our
classifier for prediction (Extended Data Fig. 10), of the two next best
genes, AC243829.4 was only identified by Caushi et al., while LINC02099
was completely absent from signature approaches. AC243829.4 has
recently been reported to correlate with the presence of immune cells
inthe tumor microenvironmentin clear cell renal cell carcinoma, and is
associated with positive patient prognosis®, possibly by regulating the
expression of the inflammatory cytokine CCL3 (ref. 34). Notably, the rela-
tionship between expression of LINC02099 and tumor reactivity is not
linear, which we believe is the result of LINC02099 being identified as
the hub of alarge long noncoding RNA-messenger RNA (mRNA) regula-
tory network inabreast cancer study”, giving rise to complexinteraction
effects that can be best determined by machine learning approaches.

Giventhe high cost of manufacturing personalized TCR-mediated
celltherapies under GMP or GMP-like conditions, only alimited number
of TCRs can be manufactured per patient, so it will be important to
avoid manufacturing nontumor-reactive TCRs (that is, false positive
predictions). As predicTCR generates per-cell reactivity predictions,
predicted reactive TCR clonotypes can be ranked by their meanreactiv-
ity score: for BT21 picking TCR clonotypes with reactivity scores above
the 95th percentile threshold would exclude the one false positive pre-
dicTCR prediction we obtained by using abinary reactivity threshold
(Extended Data Fig. 7). Among the TCR clonotypes exceeding a given
threshold, the most frequent TCR clonotypes can be prioritized as
having amore reliable reactivity score, as well as showing evidence of
antigen-driven expansion. Finally, complementary analysis of the CDR3
repertoire canassist in picking between TCRs of similar frequency and
score, such as identifying clusters of similar CDR3 sequences that are
statistically unlikely to occur in naive repertoires using tools such as
ALICE (antigen-specific lymphocyte identification by clustering of
expanded sequences)*. We illustrate a cluster of TCRs in the BT21 TIL
repertoire that have convergently recombined the tumor-reactive
CDR3 f3 sequence ‘CASSLGGASYEQYF’ in Supplementary Table 6.
Oflessimportanceinatranslational contextis the single false negative
reactivity prediction made by predicTCRin the BT21 test set. We specu-
late that this might reflect abonafide tumor-reactive TCR which could
not be validated using the BT21 cell line, either due to transcriptional
changes occurring to the cell line during adaptation to cell culture
conditions resulting in downregulation of the TCR’s target antigen or
due to the BT21 cell line lacking SNVs found in the original tumor. We
note that in general, the performance of predicTCR is better on TCR
tumor reactivity datasets generated using atumor cellline as the T cell
target. Tumor cell lines recapitulate the diversity of potential TCR

target antigens found in the original tumor, including tumor-associated
antigens, posttranslationally modified antigens and neoepitopes
derived from cryptic splicing or the dark proteome, some of which are
hard to capture using tandem minigene (TMG) assays. It is therefore
possible that the higher false positive prediction rate exhibited by pre-
dicTCRwhenanalyzing external samples generated using TMG assays
to validate TCRreactivity actually reflects a higher false negative TCR
reactivity testing rate in the source assays.

Ingeneral, predicTCR predicted more tumor-reactive TCR clono-
types for each sample than could be practicably manufactured for a
personalized cell therapy. We found this to be the case even for PDAC
samples, which are generally considered to be ‘cold tumors’ with a
low tumor mutation burden and limited T cell infiltration, which may
therefore be refractory to conventional TIL therapies® PredicTCR
predictions can be refined with accessory analyses, such as compu-
tational prediction of TCR avidity that has been shown to enrich for
neoantigen-specific TCRs over tumor-associated antigen-specific
TCRs”. Optimally, a minimal panel of computationally predicted
tumor-reactive TCRs will advance to experimental resolution of the
target epitope using sensitive, high dynamic range reporters of T cell
activation®. Such analyses might be further informed by compu-
tational reconstruction of tumor heterogeneity to identify clonal
or near-clonal tumor mutations®; TCRs reactive to these targets
are most likely to result in tumor clearance. Combining these new
computational and experimental tools will allow for the creation of
avalidated patient-derived cell therapy product targeting diverse,
tumor-specific, clonal antigens at lower cost than current screening.
However, for aggressive cancers in which patient survival is short,
the rapid sample-to-vein turnaround enabled by predicTCR would
allow for the creation of a personalized cell therapy product in an
entirely antigen-agnostic fashion. Although the TCRs contained in
suchaproduct would target unknown antigens, given that autologous
TCRshave undergone thymicselection, they pose little risk to patients,
and targeting subclonal (that is nonoptimal) tumor antigens may yet
offer patients clinical benefit by nucleating an immune cascade and
epitope spreading effects. Furthermore, resolving the target epitope
of aTCR from TCR sequence aloneis arapidly advancing field*° and we
believe that by pairing tumor mutanome datawith predicTCR reactivity
predictions, datasets with dramatically reduced numbers of possible
TCR-epitope interactions can be generated, serving to train and test
TCR-epitope prediction tools, which willthemselves allow for the train-
ing of TCRreactivity classifiers withever higher predictive accuracy. As
the costs of TCR synthesis falland validated scRNA + VDJ-seq datasets
become more widely available, it will become possible to generate
increasingly large training datasets, ensuring that future classifiers
canidentify tumor-reactive TCRs (or specialized subsets thereof) with
even greateraccuracy.

In conclusion, we believe that accurate machine learning clas-
sifiers such as predicTCR will accelerate the realization of personal-
ized T cell-mediated transgenic cell therapies by reducing overall
sample-to-vein turnaround times and increasing the likelihood of
therapy delivery before tumor progression, while reducing the costs
that currently limitimplementation.
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Methods

Sample and patient consent

Patient BT21, a 62-year-old male previously diagnosed with melanoma,
was treated for abrain metastasis at the University Hospital Mannheim
following written consent. The patient was not financially compensated
for participation. The study was approved by the institutional review
board (Ethikkommission 2019-643N).

Processing of tumor samples for sequencing
Freshly resected brain tumor tissue was obtained from the Uni-
versity Hospital in Mannheim. The patient gave informed written
consent before sample collection. Tissue was transported on ice in
phosphate-buffered saline (PBS) (Sigma-Aldrich) and processed within
3 hof resection by dissection into into small pieces (2 x 2 x 2 mm).
Individual tumor pieces were snap frozen and stored at -80 °Cbefore
extracting DNA and RNA for sequencing. The whole-exome library was
prepared using SureSelect Human All Exon V7 (5191-4028, Agilent)
and the RNA sequencing library was prepared using Ultra Low Input
RNA-Seq from TakaraBio. Both were sequenced using NovaSeq 6000
(2x100 bp). DNA isolated from PBMCs from patient BT21 wasincluded
asthe whole-exome reference sample.

Theremaining tumor pieces were gently mashed througha100 pm
cell strainer using the back side of a syringe plunger to generate a
single-cell suspension. To generate a tumor cell line, a portion of the
single-cell suspension was spun down (350g, 5 min, room temperature)
and resuspended in Dulbecco’s modified Eagle medium/F12 (Gibco)
supplemented with 1x penicillin-streptomycin (Sigma), 1x B27 sup-
plement (ThermoFisher), 20 ng mI™ epidermal growth factor (236-EG,
R&D Systems) and 20 ng ml™ fibroblast growth factor (13256-029,
Thermo Fisher). Cells were placedina37 °C CO, incubator where they
started to grow as spheroids. Cells were subsequently transferred into
Roswell Park Memorial Institute (RPMI)-1640 media (Sigma) supple-
mented with penicillin-streptomycinand 10% fetal bovine serum (FBS),
whereupon they grew as a monolayer. Cells were split with accutase
(A1110501, Thermo Fisher) when appropriate during establishment
of'the robustly growing tumor cell line.

Theremaining single-cell suspension was filtered through a70 pm
cell strainer, myelin was removed using myelin removal beads Il (130-
096-433, Miltenyi) and LS columns (130-042-401, Miltenyi) according
to the manufacturer’s protocol, and aliquots of the single-cell suspen-
sion were cryopreserved as described for PBMCs. Thawed aliquots
were used for fluorescence-activated cell sorting (FACS)-based enrich-
ment of T cells (CD3* and CD45") and prepared for sequencing using
Chromium Single Cell V(D)) Reagent kit v1.1chemistry (PN-1000006,
PN-1000020, PN-1000005 and PN-120262,10X Genomics) according to
the manufacturer’s protocol. The constructed scVDJ library and scGEX
libraries were sequenced using the NovaSeq 6000 platform (Illumina).

Exome sequence variant calling

Variant calling was performed by the German Cancer Research Center
Omics Data Core Facility using previously described pipelines*. Briefly:
exome sequencing was performed on DNA extracted from PBMCs,
tumor and the tumor cell line. SNVs were called relative to the human
genome reference sequence GRCh37, and tumor and cell line SNVs
determined by subtracting germline SNVs present in the PBMC sample
using the One Touch Pipeline*.

Insilico HLA typing from bulk RNA-seq data

Forinsilico humanleukocyte antigen (HLA) typing on paired fastq files
from bulk RNA-seq analysis, arcasHLA* was used to perform in silico
HLA typing on paired fastq files from bulk RNA-seq analysis.

Recovery of TCR sequences from bulk RNA-seq data
We used TRUST4 toreconstruct unpaired aand 3 TCR chain sequences
fromwithin the bulk RNA-seq data as described by Song et al.**.

Generation of TCRin vitro-transcribed mRNA constructs

Cell Ranger-derived TCR clonotype data were processed in R using
tidyverse functions®. VD] regions of TCRs were ordered as synthetic
DNA fragments from Twist Biosciences and cloned in 96-well format as
chimeric TCRs, using murine TRAC or TRBC constant region sequences
thathadbeen further modified toinclude an additional disulfide bond
toimprove stability and avoid mismatches with the endogenous human
TCRafter transduction intohuman T cells***. As negative controls, we
cloned two TCRs targeting HLA-A*02:01restricted epitopes of MART1
(DMF5 TCR: CDR3a CAVNFGGGKLIF and CDR33 CASSLSFGTEAFF) or
influenza (CDR3a CAVSESPFGNEKLTF and CDR33 CASSSTGLPYGYTF).
For in vitro transcription, RNA-mediated expression TCR constructs
were PCR amplified using a primer to add a T7 promoter, and the
resulting PCR product used as atemplate for the T7 mScript Standard
mRNA Production System (CELLSCRIPT C-MSC11610). mRNA was
m’G capped and enzymatically polyadenylated following the manu-
facturer’s instructions. For TCR killing assays, TCR constructs were
subclonedinto S/MAR nanovectors using classical molecular biology
techniques as previously described*s.

Isolation and expansion of healthy donor PBMCs

PBMCs from healthy donors were isolated from heparinized blood. In
short, 15.5 ml of Ficoll Paque Plus Media (Cytiva) was loaded per Leu-
cosep tube (Greiner Bio-One) and spun down. After adding 3 ml of PBS
(Sigma), up to 25 ml of blood was loaded on top and a density-gradient
centrifugation was performed at 800g (acceleration 4 and decelera-
tion 3). After collection of the interphase, PBMCs were washed twice
with PBS and frozeninacontrolled rate freezing deviceat -80 °Cin 50%
freezing medium A (60% X-Vivo 20 and 40% fetal calf serum) and 50%
medium B (80% fetal calf serum and 20% dimethylsulfoxide). Cells were
stored in liquid nitrogen at -140 °C until further analysis.

Therapid expansion protocol was used to expand T cells. PBMCs
fromthreeindependent donors wereirradiated at 40 Gy usinga Gam-
macell 1000 (AECL) irradiation device to serve as feeder cells. Then,
1x 10’ cells from each donor were pooled together, cells were spun
down (400g, 10 min, room temperature) and resuspended in rapid
expansion protocol media (X-Vivol5 (Lonza, BE02-060Q), 2% human
ABserum (H4522-100ML, Sigma-Aldrich), 2.5 ug ml™ Fungizone (15290-
018, Gibco), 20 pg ml™ gentamicin (2475.1, Roth), 100 IU mI™ penicillin
and 100 pg ml™ streptomycin (15140122, Life Technologies)). Next,
150,000 PBMCs were plated into a standing T25 flask and 666 ng of
OKT-3 antibody (Life Technologies, 16-0037-85) was added to the
culture and the flask was topped up to a total volume of 20 ml. The
nextday, 5 mlof X-Vivol5 supplemented with 2% AB serum containing
7,500 IUinterleukin-2 (IL-2) was added to the culture. Three days later,
12.5 ml of medium was removed and replaced with 12.5 ml of X-Vivol5
supplemented with 2% AB serum containing 600 IU mI™ IL-2.

Melan A expression
Melan A expression was confirmed using anti-Melan A-FITC (cat. no.
sc-20032, clone A103, Santa Cruz Technology), diluted at 1:10.

TCRreactivity screening via flow cytometry
TCR-encoding RNA was electroporated into expanded healthy donor
PBMCs using the Lonza4D-Nucleofector (program EO-115, solution P3
supplemented according to the manufacturer’s recommendations),
which were plated into 48-well plates containing TexMACS media
(130-097-196, Miltenyi) supplemented with 2% human AB serum. At
18-24 hafterelectroporation, cells were collected and 50 IU ml™ ben-
zonase (YCP1200-50KU, Speed BioSystems) was added to avoid cell
clumping. TCR expression levels were measured via flow cytometry
with markers including fixable viability dye (AF700, BD), CD3 (clone
HIT3A, BV510, BD) and mTCRb (clone H57-597, PE, Biolegend).

To assess TCRreactivity, atotal of 150,000 T cellsand 75,000 cells
ofthe patient-autologous tumor cell line were cocultured in U-bottom
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96-well plates in a total volume of 200 p. Wells withonly T cells, or T cells
and TransAct beads (130-111-160, Miltenyi) were used as negative and
positive controls, respectively. Then, 5 pl of CD107a FACS antibody
(REF 561343, BD) was added per well. After 1 h of coculture, GolgiPlug
and GolgiStop (555029 and 554724, BD) were added toreacha1:1,000
dilution, and after four additional hours of coculture cells were used for
flow cytometry analysis. Markersincluded fixable viability dye (AF700,
1:1,000 dilution, eBioscience), CD3 (clone HIT3A, BV510, 1:20 dilution,
BD), mTCRb (clone H57-597, 1:50 dilution, PE, Biolegend) and TNFa
(clone MAb11, BV711,1:10 dilution, Biolegend). Samples were acquired
on a FACS Lyric device and flow cytometry data were analyzed using
FlowJo software, v10.6.2 (FlowJo LLC).

TCRs were classified as reactive or nonreactive based on flow
cytometry data acquired after coculture. The percentage of CD107a
positive cells (%CD107a) was quantified by gating on viable CD3"
mTCRp" singlets. TCRs were included in the analysis if the mTCR[
expression was >2%.

The %CD107asignal per TCR after coculture withthe cell line (‘TCR
versus cellline’) or after running the coculture assay without stimula-
tion (‘TCR, unstimulated’) was corrected for background by calculating

(%CD1073TCRvscel]line - %CD1073TCR,unstimu[ated)_
(%CD107aMockvscellline - %CD107aMock,unstimulated)

where mock refers to expanded T cells electroporated without
TCR-encoding RNA. TCRs were classified as reactiveif the background
corrected %CD107a signal per TCR was larger than 2x the standard
deviation of the %CD107a" signal measured in all samples without
stimulation (1x s.d. of 0.34%). Where a TCR clonotype expressed two
o chains, data are presented for the a chain resulting in the %CD107a
expression (thatis, the functional pair).

TCRreactivity screening via xCELLigence real-time killing assays
Primary human CD3’ cells were isolated from healthy donor volunteers
using the Pan T cellisolation kit from Miltenyi Biotec according to the
manufacturer’sinstructions. Theisolated T cells were then activated for
3 daysusing the human T Cell TransAct kit (Miltenyi Biotec) according
to the manufacturer’sinstructions and cultured in TexMACS medium
from Miltenyi Biotec supplemented with IL-7 and IL-15, both at a final
concentration of 10 ng ml™, at a concentration of 1 x 10 cells ml™.
3 days post activation 2 x 10° cells were washed and resuspended in
20 pl of primary P3 solution (Lonza), mixed with 2 pg of S/MAR DNA
nanovectors and pulsed with the FI-115 pulsing code using the Lonza
4D-Nucleofector.

Primary human T cells were collected, washed two times and
resuspended in FACS buffer (PBS containing 1% of FBS). TCR expres-
sion was detected by flow cytometry and T cells were stained with a
PE-conjugated antibody (clone H57-597, PE, Biolegend) for 30 minonice
inthe dark. Dead cells were excluded by 4,6-diamidino-2-phenylindole
gating and alive TCR" cells were gated. Data analysis was performed
using FlowJo software.

A real-time killing assay using the xCELLigence was performed.
Briefly, BT21 tumor cells were seeded on a 96-well plate (3 x 10* cells
per well) and incubated for 24 h. Transgenic T cells were added at an
effector-target cell ratio of 2:1and co-incubated at 37 °C in RPMI110%
medium for 24 h. Cell growth was then monitored for 24 h.

TCRreactivity screening via cell-mediated cytotoxicity

Analysis of transgenic TCR cell cytotoxicity at microfluidic scale was
carried out onthe VivaCyte platform (Cellply) loaded with a CC-Array
microfluidic device based on amodified version of the open-microwell
technology®. The CC-Array contains 16 lanes, each lane comprising
1,200 microwells where effector and target cells can interact. Lower
microfluidic channels under the microwell array of the CC-Array
devicewereinitially preloaded with 6% gelatin methacryloyl hydrogel

(900622, Sigma-Aldrich) in PBS and the gel was polymerized with an
ultravioletlamp. BT21target cells were prestained with CellTracker Blue
CMAC Dye (C2110, Thermo Fisher, Invitrogen). Transgenic T cells and
BT21 target cells were resuspended in 100% FBS (10270106, Thermo
Fisher, Gibco) and loaded on the upper channels of the CC-Array device,
resulting in the formation of cocultures on the bottom part of the
microwell at the interface between the liquid and the underlying gelatin
methacryloyllayer. Each lane wasloaded with T cells expressing asingle
TCR. After cell delivery, asolution of RPMI-1640 (R0883, Sigma-Aldrich)
and propidiumiodide (P3566, Thermo Fisher) was then delivered into
the microchannels and the microfluidic design allowed to rapidly
exchange media in the microwells without displacing the cells. The
CC-Array device was maintained at 37 °C, 5% CO, and >90% relative
humidity in the VivaCyte instrument for the duration of the assay and
fluorescence images were acquired every 2 hfor12 h.

Anautomated analysis of the images was carried out by the Viva-
Cyte software featuring a pretrained deep learning method*’ to detect
target cell cytoplasm. Nine hundred microwells wereimaged per micro-
channel by acquiring 20 subarrays per microchannel. Cell viability was
quantified as the frequency of cells stained with CMAC and not stained
with propidiumiodide.

ScRNA-seq analysis

Fastq files from sequenced TIL samples were processed using 10X
Genomics’ Cellranger v6.1.2 (ref. 51) and count matrices are imported
into R v4.1(ref. 52). Briefly, SoupX** was used to removed background
noise and miQC>* used to remove poor quality or degraded cells
(that can be identified as having an unusually high mitochondrial
gene expression). Cells with an ‘RNA count’<1,200 and ‘Feature count’
<500 were excluded from further analysis.

Healthy PBMC datasets

PBMC datasets enriched with T cells from healthy donors were obtained
asfollows: asingle healthy donor PBMC sample from 10X Genomics®,
two donors from Szabo et al.*® and seven donors from Gao et al.”’. In
total, datafrom 111,499 T cells were obtained.

PredicTCR classifier training

All scRNA count data from both internally and externally gener-
ated datasets were normalized using the ‘sctransform’ method
as implemented in Seurat v4 (ref. 58), resulting in a gene-cell
matrix of Pearson residuals that was used as the model input. TCR
reactivity was converted to abinary value from the CD107a flow cyto-
metric quantification as described above; all healthy donor PBMCs
were assumed to be nonreactive. The model was trained using sScRNA +
VDJ-seq data from healthy donors (111,499 cells) plus data from
experimentally validated BT21 derived TCRs for predicTCR, (1,461
cells) or predicTCR (1,679 cells) as appropriate. Data were imported
in Python (v3.9.16) using pandas (v2.0.2) for preprocessing before
training with xgboost (v1.7.4). Due to the scRNA data having many
dropouts, we performed hyperparameter tuning before feature selec-
tion. The XGBoost hyperparameters ‘colsample_bytree’, ‘gamma’,
‘learning_rate’, ‘max_delta_step’, ‘max_depth’, ‘min_child_weight’,
‘n_estimators’, ‘alpha’, lambda’, ‘scale_pos_weight’ and ‘subsample’
were tuned by Bayesian optimization using scikit-optimize (v0.9.0)*
with tenstratified k-fold cross-validations to generate anintermedi-
ate classifier model. Due to the imbalanced nature of the training
dataset, particular attention was put on optimizing data weighting
(‘scale_pos_weight’). We used 70% of the data as training data, and
the remaining 30% as testing dataset for hyperparameter training. To
prevent overfitting to the BT21 training data, we simplified the inter-
mediate classifier using SHAP? to identify the key genes contributing
to the model. The final predicTCR classifier was then trained on the
top 100 SHAP features and hyperparameters were again optimized
as before.
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Prediction of tumor-reactive T cells using predicTCR

External datasets used to validate predicTCR were downloaded and the
raw data preprocessed as described above. The prediction probability
for each cell was averaged for each clonotype and the subsequent
prediction probability for each clonotype was used to calculate the
AUC using pROC. The threshold used to classify TCR reactivity was
determined using Fisher-Jenk natural break optimization as imple-
mentedinjenkspy. The confusion matrix and accuracy of the resulting
prediction were then calculated using caret (v6.0-94), and G-mean
(the square root of sensitivity and specificity) was calculated using
the output of caret.

Prediction of tumor-reactive T cells using the NeoTCRS8 gene
signature

Predictions using the NeoTCRS8 gene signature were performed as
described in Lowery et al. Briefly, the raw gene count matrix was
imported into R and scGSEA (using GSVA package, v1.46.0) was per-
formed using the signature gene list (NeoTCR8) obtained from Lowery
etal.”. Cluster(s) that correspond to 0.95 percentile expression were
designated as reactive. A reactive score was calculated using the ratio
of predicted reactive cell to the total number of cells for each clono-
type. The AUC was then calculated based on this probability score
using pROC. To make direct comparisons with the performance of
predicTCR, we applied the same Fisher-Jenk optimizationto determine
the threshold for distinguishing between reactive and nonreactive TCR
clonotypes on the basis of the reactive score.

Prediction of tumor-reactive T cells using the Hanada et al.
gene signature

Signature analysis using the Hanada et al. gene signature was per-
formed as described in Hanada et al. Briefly, the raw gene count matrix
wasimported into Rand the score was calculated by adding the genes
that contributed positively to the signature and minus the genes that
contributed negatively to the signature. Cells that were positive for the
signature were called as (neoantigen) reactive. A reactive score was cal-
culated and aminimum threshold for tumor reactivity was determined
using Fisher-Jenk optimization as described above.

Prediction of tumor-reactive T cells using the Caushi et al.
gene signature

Signature analysis using the Caushi et al. gene signature was per-
formed similarly to Caushi et al. Briefly, the raw gene count was
importedinto Rand analyzed using Seurat. Seurat was used to normal-
ize theraw countdata, then using ‘AddModuleScore’, a signature score
was calculated using the mutation-associated neoantigen functional
expansion genes. Cells that were positive for the signature were called
asreactive. Areactive score was calculated and aminimum threshold
for tumor reactivity was determined using Fisher-Jenk optimization
asdescribed above.

Prediction of tumor-reactive T cells using the Meng et al. TR30
gene signature

Signature analysis using Meng TR30 gene signature was performed as
described Meng et al.”. Briefly, the raw gene count wasimportedintoR
and analyzed using Seurat. Seurat was used to normalize the raw count
data; thenthe TR30 signature was computed using the UCell package
(v2.2)°°. The mean of the TR30 signature score was then calculated for
each TCR clonotype and termed the Meng TR30 score. The minimum
threshold for tumor reactivity was similarly determined using Fisher-
Jenk optimization.

Material availability
The use of the primary tumor cell lines specified in this manuscript is
restricted by patientinformed consent and institutional review board
approval to this study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Single-cell sequencing data for BT21 have been deposited in National
Center for Biotechnology Information BioProject with acces-
sion code PRJNA985415. External datasets were obtained from
GSE123139, GSE173351and phs002748.v1.pl. Source data are provided
with this paper.

Code availability

The codeis hosted on Zenodo (https://zenodo.org/records/8059129,
https://doi.org/10.5281/zenodo.8059129) and will be made available
toacademicresearchersonrequest.
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Extended Data Fig.1| BT21displays a pattern of mutations characteristic of
melanoma. a: Metastatic melanoma sample BT21displays the predominance
of UV mediated C > T transition mutations typical of melanoma. b: Visualisation
of mutations across chromosomes and their density, showing mutations
spread throughout the genome, again typical of primary melanoma. c: Variant
allele frequency (VAF) diagram showing overlap between the SNVs found in
BT21 metastatic tumor sample and the BT21 cell line; the cell line’s additional

Melan A (Mart1) - FITC

mutations may be the result of tumor heterogeneity or arose during the process
of adaptation to cell culture conditions. Full SNV data in *.vcf format are included
inSource Datal. The error bands represent standard error of residuals. d: Flow
cytometric analysis confirms expression of the tumor associated antigen MART1
in the BT21 cell line as found in 90% of primary cutaneous melanomas®’. The
commonly used MeWo melanoma cell line is shown for comparison.
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Extended Data Fig. 2| BT21 cell line is suitable for immune testing. a: BT21 cell
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HLA-B  B*15:01:01/B*07:02:01 2.71% 5064
HLA-C  C*03:03:01/C*07:02:01 4.22% 7973

line expresses strong levels of MHC I after two days of stimulation with 300 IU/
mLIFNy. b: insilico HLA typing using arcasHLA* confirms that the BT21 tumor
celllineis derived from primary tumor, and that HLA-A, -B and -C genes are

expressed in the absence of stimulation. The ‘Abundance’ metric expresses the
percentage of RNAseq reads mapping to HLA alleles, and gives a relative measure
of expression between HLA loci. The ‘Read Count’ expresses the absolute number

of RNAseq reads mapping to the alleles.
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Extended Data Fig. 3| TIL derived TCR testing data using cell line BT21.
a: Gating strategy for TCR testing. It was gated for lymphocytes, singlet

followed by live cells, then CD3* for T Cell, mnTCRb*
subsequently CD107a for reactivity. b: Exemplary fl

the quantification of CD107a of the most reactive BT21 TCR with and without

for transgenic T cells then
ow cytometry datashowing

co-culture with BT21 cell line. After co-culture, 34.5% of cells were positive for

CD107a. c: No significant difference in membrane expression of tumor-reactive
and nonreactive TCR clonotypes. The centre line represents median, the lower
and upper hinges corresponds to the first and third quantiles, and the upper
whisker extends to maxima and lower whisker extends to minima (n = 26 for
nonreactive TCR, n =46 for reactive TCR).
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Extended Data Fig. 4| Evaluation of the performance of different machine learning frameworks for TCR tumor-reactivity prediction. Allmodels were
implemented using the scikit-learn package, with the exception of XGBoost from xgboost package. The AUC represents model performance without further
hyperparameter tuning. Models were trained using the data from 50 BT21 TCRs.
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Extended DataFig. 5| Selected BT21 TIL derived TCRs can kill the BT21 cell
linein co-culture assays. a: xCELLigence assay showing healthy donor PBMCs
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with BT21 cells (Fig. 1d) cankill BT21 cells in a co-culture assay. b: Additional
co-culture experiment testing killing capacity of BT21 derived TCRs, including
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TCRs that predicTCR50 designated as tumor-reactive. Assay was performed
using PBMCs from the same healthy donor asina. Lines are the average of
replicates. Statistical analysis was performed as a one-way ANOVA on endpoint
normalized cellindex with a post-hoc Dunnett test comparison to the Mock. The
predicTCR50 score for each TCR clonotype was calculated and added to the plot.
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Extended Data Fig. 6 | Single cell analysis of killing capacity of TCRs identified
by predicTCR. a: Micrograph of the CC-Array microfluidic chip measured by

the VivaCyteTM platform. b: Each lane of the CC-Array device comprises a lower
microfluidic channel where the hydrogel is loaded, an upper microfluidic channel
where cells and reagents are delivered and an array of microwells opened to both
the upper and lower channels. Once the cells are loaded in the upper channel,
they settle at the interface with the gel; random loading results in a distribution
of effector:tumor cell ratios across each microfluidic channel. c: Fluorescence
images of a subset of microwells containing a co-culture of PBMCs expressing a
transgenic TCR and BT21 target cells at three timepoints (each timepoint shows 4

100% cr—=mmmmm 0% Target Cell Killing

microwells drawn from 900 replicate microwells). The increase of Pl signal (red)
on CMA-stained cells (blue) over time reflects killing of the BT21 target cells by
the transgenic effector T cells. d: Each well is quantified by the VivaCyte software
to produce an overview of the killing activity of each TCR. e: Quantification of
results for four different TCRs recapitulates the xCELLigence data (Extended
DataFig. 5b), with TCR52 performing more efficient target killing than TCR 27
after 12 hours co-culture. predicTCR reactivity scores for each TCR shown in
parenthesis. Data are presented as mean values + SEM for a single experimental
run, with each mean representing the average of 20 fields of view (FOV), with each
FOV consisting of an average of 45 microwells.
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Extended Data Fig. 7 | Evaluation of overall performance of gene signature-
based TCR tumor-reactivity predictions on BT21 derived TCRs. The left panel
in each row shows the distribution of mean tumor-reactivity prediction scores
for TIL derived TCR clonotypes from BT21, with agrey shaded density plot on the
right. Coloured points show TCR clonotypes in the BT21 validation set (n =22).
TCRs are coloured by experimentally validated reactivity, with the size of each
pointreflecting the frequency of that TCR clonotype in the TILs. The grey dotted
lineindicates the sample-specific natural break threshold calculated to separate
tumor-reactive from nonreactive clonotypes, while the red and blue dotted
lines represent the 95th-percentile and 5th-percentile of tumor-reactivity scores
respectively in panel (a). The central panel plots per-cell predictions onto the
UMAP plotasin Fig. 1b. The right panel shows the ROC curve and AUC value for

each classifier, for details see Table 1. a: performance of predicTCR50, showing a
clear bimodal distribution of scores that correctly predicts the reactivity of 20 of
the 22 validation set TCRs. Note that the false positive prediction (blue dot near
top of plot) lies below the 95% threshold line. b: Performance of NeoTCRS8 from
Lowery et al. showing poor prediction of tumor-reactivity for the 22 TCR test set.
c: Performance of signature developed by Hanada et. al. showing a high false-
positive detection rate; note prediction of tumor-reactive T cells in the top left
cluster (regulatory T cells, see Fig. 1b). d: Performance of signature developed by
Caushi et al., also showing a similarly high false positive rate on BT21 TILs.

e: Performance of signature TR30 from Meng et al. showing higher false positive
rate than predicTCRS0.
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Extended Data Fig. 8 | UMAP showing performance of predicTCR and same patient; inset panel shows a magnified view of a cluster containing T cells
NeoTCRS on PBMCs from a patient (PP4) with a severely symptomatic (n=130, 2% of total cells) called to be tumor-reactive. PBMC data was obtained
COVID-19 infection. a: Performance of predicTCR on PBMCs from patient PP4, from Yoshida et al.?.

with no cells predicted to be tumor-reactive. b: Performance of NeoTCR8 on
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CXCL13

Extended Data Fig. 9 | UMAP showing that expression of CXCL13 does not
always determine adefined cluster of TILs, but is similar to predicTCR
predictions. a: T cells expressing CXCL13 in MDO1-005 patient do not forma
distinct cluster following dimension reduction; this reinforces the difficulty of

predicTCR
2

obtaining accurate results from cluster-based gene set enrichment analyses.

b: predicTCR tumor-reactivity predictions (which also rely in part on CXCL13)
are not limited to asingle cluster, and include (but are not limited to) the CXCL13
expressing cells.

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article https://doi.org/10.1038/s41587-024-02161-y

High
CXCL13 I | sie
AC243829.4 | JUTT SR
LINC02099 | oo o . o  cmm
FYB1 l o r—
S
ANXA1 F odo amsw S
e
ACTG2 | q — 2
Q
w
FOXP3 ',—.. ” .
MESD l
IL7R ko ase =
TPT1 '-—-1
T T T T T T T Low
-1.0 -0.5 0.0 0.5 1.0 1.5 20 25
SHAP value (impact on model output)
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Software and code

Policy information about availability of computer code

Data collection  Single Cell Sequencing: 10X Chromium Single Cell V(D)J Reagent Kits (v1.1), sequenced on Novaseq 6000 (lllumina)
Flow Cytomery: Samples were acquired using BD FACSLyrics device and BD FACS Suite (v1.5)

Data analysis Flow Cytometry: FlowJo v10.6.2
Single Cell Sequencing: Alignment with cellranger v6.1.2, data normalization and transformation using SCTransform from Seurat (v4.3.0)
General data analysis were done in R (v4.2.3) or Python (v3.9.16), with tidyverse (v2.0.0) or numpy (v1.24.3) or pandas (v2.0.2).
All additional softwares and packages used are detailed in the Methods sections including: arcasHLA (v0.5.0), TRUST4 (v1.0.9), scikit-learn
(v1.2.2), scikit-optimize (v0.9.0), shap (v0.41.0), GSVA (v1.46.0), pROC(1.18.2), caret (v6.0-94), xgboost (v1.7.4)
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Single cell sequencing data for BT21 have been deposited in NCBI BioProject with accession code PRINA985415. External datasets were obtained from GSE123139,
GSE173351 and phs002748.v1.p1.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender The BT21 cell line was derived from a male patient. The sex of patients from external datasets is reported in each respective

paper.
Population characteristics 62 year old male patient with a brain metastasis of a previously diagnosed with melanoma.
Recruitment The patient was recruited in University Hospital Mannheim and provided written consent. We were able to able to obtain

very fresh resection material which contributed to our successful establishment of the BT21 cell line.

Ethics oversight Study was approved by the institutional review board (Ethikkommission 2019-643N)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. The most frequent TCRs were chosen for model training, and the number of TCRs tested for a
single sample is of a similar size or larger than in previous studies. The validation sample size was based on data availability of publicly
available datasets.

Data exclusions  Low quality single cells are excluded from further analysis as described in Methods for failing to meet quality control thresholds. External
datasets where no TCR validation done were excluded and patients with either only reactive or non-reactive TCR were omitted.

Replication The microwell data in Extended Data Figures 5 and 6 replicates the reactivity testing data in Fig.1, confirming reactivity of these TCRs against
the BT21 cell line.

Randomization  Random train/test set splits were used when training models in order to evaluate them, as common practice.

Blinding The investigators performing the experimental TCR testing analyses (FACS, Cellply) were blinded as to the expected reactivity of TCRs tested.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,

quantitative experimental, mixed-methods case study).
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Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Describe the data collection procedure, including who recorded the data and how.

Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
the data are taken

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your studly.

Did the study involve field work? |:| Yes |:| No

Field work, collection and transport

Field conditions

Location

Access & import/export

Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
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Access & import/export [ compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
X Antibodies X[ ] chip-seq
Eukaryotic cell lines |:| |Z Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms

Clinical data

XXX X [
OOoOodX

Dual use research of concern

Antibodies

Antibodies used anti-CD3-BV510 (BD, cat 564713, clone HIT3A), anti-mTCRbeta-PE (BioLegend UK, cat 109208, clone H57-597), anti-CD107a-APC-H7
(BD, cat 561343, clone H4A3), anti-TNF-alpha-BV711 (Biolegend, cat 502940, clone MAb11), anti-Melan A-FITC (Santa Cruz
Technology, cat sc-20032, clone A103)

Validation All antibodies were used according to manufacturer's instruction or titrated prior to use (dilutions listed in paper methods section).
anti-CD3-BV510: Manufacturer’s quality tested for flow cytometry
anti-mTCRbeta-PE: Manufacturer’s quality tested for flow cytometry
anti-CD107a-APC-H7: Manufacturer’s quality tested for intracellular flow cytometry staining
anti-TNF-alpha-BV711: Manufacturer’s quality tested for intracellular flow cytometry staining

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) BT21: a cell line derived in-house from a male patient
Authentication Exome-sequencing was done tumor material and the BT21 cell line material
Mycoplasma contamination All cell lines tested negative for mycoplasma contamination

Commonly misidentified lines  No commonly misidentified cell lines were used in this study
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.
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Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area
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Experiments of concern
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Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents
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ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to

(e.g.UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.
Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot

number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.
Methodology
Sample preparation TCR-encoding RNA was electroporated into expanded healthy donor PBMCs using the Lonza 4D nucleofector (program
EO-115, solution P3 supplemented according to the manufacturer’s recommendations), which were plated into 48-well

plates containing TexMACS media (Miltenyi 130-097-196) supplemented with 2% human AB serum.

18-24 hours after electroporation, cells were harvested and 50 IU/mL benzonase (Speed BioSystems YCP1200-50KU) were




added to avoid cell clumping. TCR expression levels were measured via flow cytometry with markers including fixable viability
dye (AF700, BD), CD3 (clone HIT3A, BV510, BD), CD4 (clone SK3, BV786, BD), CD8 (clone RPA-T8, PerCP-Cy5.5, Invitrogen) and
mTCRb (clone H57-597, PE, Biolegend).

To assess TCR reactivity, a total of 150,000 T cells and 75,000 cells of the patient-autologous tumor cell line were co-cultured
in U-bottom 96-well plates in a total volume of 200 pL. Wells with only T cells, or T cells and TransAct beads (Miltenyi
130-111-160), were used as negative and positive controls, respectively. 5 puL of CD107a FACS antibody (BD, REF 561343) was
added per well. After one hour of co-culture, GolgiPlug and GolgiStop (BD 555029 and 554724) were added to reach a 1:1000
dilution, and after four additional hours of co-culture cells were used for flow cytometry analysis.

Markers included fixable viability dye (AF700, eBioscience), CD3 (clone HIT3A, BV510, BD), CD4 (clone SK3, APC, BD), CD8
(clone RPA-TS8, PerCP-Cy5.5, Invitrogen), mTCRb (clone H57-597, PE, Biolegend) and TNFa (clone MAb11, BV711, Biolegend).
Samples were acquired on a FACS Lyric device, flow cytometry data was analysed using FlowJo software, v10.6.2 (FlowJo LLC).

Instrument BD FACSLyrics, ZES Cell Analyzer

Software BD FACS Suite (v1.5), FlowJo (v10.6.2)
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Population abundance varies by TCR tested: the maximum amount of reactive (CD107a+) cells is 33%, ranging down to 0% for
non-reactive TCRs. See example in Extended Data Figure 3b.

Cell population abundance

Gated on lymphocytes based on size and granularity (FSC vs SSC) -> singlet -> live cells (negative on LIVE/DEAD) -> CD3+ ->
mTCRb+ -> CD107a+ (Extended Data Figure 3a)

Gating strategy

|Z Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type

Design specifications

Behavioral performance measures

Acquisition
Imaging type(s)
Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI

[ ] used

Preprocessing

Preprocessing software

Indicate task or resting state; event-related or block design.

Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).

Specify: functional, structural, diffusion, perfusion.
Specify in Tesla

Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

[ ] Not used

Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,

segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for

transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.qg.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Normalization template

Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Noise and artifact removal

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Model type and settings




Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis
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Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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