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Simple Summary: Glioblastoma (GBM) poses a formidable challenge as a central nervous system

tumor with extremely limited responsiveness to conventional treatments. While immunotherapeutic

approaches have shown success in treating other solid tumors, their effectiveness against GBM is

limited. Our review systematically addresses the intrinsic features of GBM that hinder the success

of both standard therapies and immunotherapies. Furthermore, we comprehensively analyze all

the immune-based approaches currently undergoing clinical evaluation for GBM, both as standalone

treatments and in combination with standard therapy or other immunotherapies.

Abstract: Despite decades of research and the best up-to-date treatments, grade 4 Glioblastoma (GBM)

remains uniformly fatal with a patient median overall survival of less than 2 years. Recent advances in

immunotherapy have reignited interest in utilizing immunological approaches to fight cancer. How-

ever, current immunotherapies have so far not met the anticipated expectations, achieving modest

results in their journey from bench to bedside for the treatment of GBM. Understanding the intrinsic

features of GBM is of crucial importance for the development of effective antitumoral strategies to

improve patient life expectancy and conditions. In this review, we provide a comprehensive overview

of the distinctive characteristics of GBM that significantly influence current conventional therapies

and immune-based approaches. Moreover, we present an overview of the immunotherapeutic

strategies currently undergoing clinical evaluation for GBM treatment, with a specific emphasis

on those advancing to phase 3 clinical studies. These encompass immune checkpoint inhibitors,

adoptive T cell therapies, vaccination strategies (i.e., RNA-, DNA-, and peptide-based vaccines),

and virus-based approaches. Finally, we explore novel innovative strategies and future prospects in

the field of immunotherapy for GBM.

Keywords: GBM; GBM immunosuppressive tumor microenvironment; immunotherapy; immune

checkpoint therapy; adoptive cell therapy; vaccination therapy; DNA/RNA vaccines; CAR-T cell

therapy; oncolytic virotherapy

1. Introduction

Glioblastoma (GBM) is the most aggressive primary brain tumor, accounting for nearly
50% of all the primary central nervous system malignancies [1,2]. GBMs develop sponta-
neously within the brain (de novo) and typically infiltrate nearby brain tissues without
spreading to distant organs [3]. Its incidence is 3.23 per 100,000 persons in the United States,
with a slightly higher occurrence in males compared to females [4]. It is a fast-growing
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tumor occurring in patients with an average age at diagnosis of 65 years and a median
overall survival (OS) of only 15 to 16 months after tumor diagnosis [4]. Long-term sur-
vival is uncommon, with fewer than 5% of patients on average surviving for five years
or more after being diagnosed (source: Central Brain Tumor Registry of the United State
from 2014 to 2018) [4].

Based on the new guidelines released in 2021 by the World Health Organization
(WHO), GBM is classified as a grade 4 adult-type diffuse glioma based on its molecular
and histopathological features. From a molecular point of view, GBM can be distinguished
from other types of diffuse gliomas, such as astrocytomas and oligodendrogliomas, by
its isocitrate dehydrogenase (IDH) wild-type status, intact chromosome arms 1p and 19q,
retained expression of nuclear Alpha thalassemia/mental retardation X-linked syndrome
(ATRX), and the absence of mutations in histone H3 genes. Furthermore, GBM is commonly
characterized by histological features such as microvascular proliferation and necrosis,
along with key molecular alterations, including the telomerase reverse transcriptase (TERT)
promoter mutation, epidermal growth factor receptor (EGFR) amplification, and the +7/−10
cytogenetic signature [1].

In this review, we present a detailed overview of the current treatment options for
patients with GBM, alongside an exploration of the underlying factors contributing to the
failure of many anti-GBM therapies (both conventional and immune-based approaches).
Furthermore, we provide an in-depth examination of the most promising immunotherapies
targeting GBM, with a special emphasis on those that have already advanced to phase
3 clinical trials.

2. Standard of Care for GBM Patients

The established gold standard of care (SOC) for patients with newly diagnosed GBM
is known as the “Stupp protocol” and comprises surgical resection, radiotherapy, and con-
comitant and adjuvant chemotherapy with the alkylating agent temozolomide (TMZ) [5].
If feasible, GBM interventions begin with maximal surgical resection, which eliminates
most of the tumor. Surgical resection or biopsies also provide indispensable tumor ma-
terial for a correct histological diagnosis and molecular testing. The extent of the tu-
mor removed during surgery is a prognostic indicator, and according to the 2021 EANO
guidelines, it should be evaluated using MRI within the first 24–48 h after the proce-
dure [6]. Surgical resection is followed by six weeks of radiotherapy (60 Gray [Gy] in
2-Gy fractions) and concomitant daily TMZ (75 mg/m2), followed by six cycles of adju-
vant TMZ (150–200 mg/m2) [5,6]. TMZ induces base methylations (i.e., N7-methylguanine,
N3-methyladenine and O6-methylguanine) that, in the absence of an effective DNA dam-
age repair system, ultimately lead to tumor cell death [7]. Of note, TMZ treatment is
mostly beneficial in patients with a hypermethylated, and therefore epigenetically silent,
O6-methylguanine-DNA methyltransferase (MGMT) gene. The enzyme MGMT is involved in
DNA repair by removing the O6-methyl group from DNA and, if absent, enables effective
chemotherapy and confers a survival advantage [5,8,9].

The Stupp protocol has remained unchanged over the last 18 years and typically
provides an overall survival of less than two years to the patients. Thus, many clinical
trials have been launched with the goal of finding new treatments to expand the life of
individuals with GBM. Among various treatments, the use of tumor-treating fields (TTFs),
namely low-intensity alternating electric fields delivered to the scalp of GBM individuals
to induce tumor cell mitosis, has emerged as a novel modality able to ameliorate patient
survival [10–12]. Despite the efficacy shown in a phase 3 clinical trial [11] and FDA approval,
TTFs have not been yet incorporated into GBM SOC due to concerns about the unblinded
nature of TTF clinical trials, as well as questions related to high cost, skin toxicity, and
patient compliance [13,14].

Despite these first-line treatments, GBM virtually always recurs (median OS at recur-
rence = 2–9 months; median PFS at recurrence = 1.5–6 months) [15–17]. Once the tumor
relapses, treatment options are very limited and, depending on the patient’s conditions,
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include second surgery, chemo-radiotherapy, and experimental treatments. As recently
reviewed by Vaz-Salgato et al. (2023) [18], various second-line chemotherapeutics have
been tested for the treatment of GBM, including anti-vascular endothelial growth factor
(VEGF) [19–21], anti-transforming growth factor β (TGFβ)-receptor-I [22], anti-receptor
tyrosine kinase [23], anti-protein kinase C [24], anti-EGFR [25], and anti-tyrosine kinase [26].
Although showing great promise at the preclinical level, these drugs failed to significantly
improve the overall survival of GBM patients when tested in randomized clinical trials.

3. Therapeutic Challenges for GBM Therapies

The development of effective treatments targeting GBM could plausibly be ham-
pered by GBM’s unique traits, including its challenging anatomical location protected
by the blood–brain barrier (BBB), its invasiveness, the complexity of tumor variations
within and between patients, and the immunosuppressive nature of the tumor microenvi-
ronment (TME) (Figure 1).

Figure 1. Therapeutic challenges for the cure of GBM. Abbreviations: APC, antigen-presenting cell;

bFGF, basic fibroblast growth factor; ECM, extracellular matrix; GBM, glioblastoma; IL, interleukin;

LAG-3, lymphocyte-activation gene 3; MDSC, myeloid-derived suppressor cells; PD-1, programmed

cell death protein 1; PGE2, prostaglandin E2; TAM, tumor-associated microglia and macrophages;

TGF-β, transforming growth factor-β; TIM-3, T-cell immunoglobulin and mucin domain; TME,

tumor microenvironment; Treg, regulatory T cell; WHO, the World Health Organization. The figure

illustrates the distinctive characteristics of GBM (WHO grade 4) that are understood to hinder the de-

velopment of effective anti-tumor therapies. These include (1) an anatomical location shielded by the

blood–brain barrier, (2) intra- and inter-patient tumor heterogeneity, (3) infiltrative behavior, and (4)

a highly immunosuppressive TME. The latter showcases the presence of GBM-driven cytokines with

immunosuppressive and tumor-promoting properties, along with immunosuppressive cell popula-

tions such as Tregs and M1-like TAMs, accompanied by upregulated exhaustion markers. Addition-

ally, GBMs strategically downregulate antigen-processing and presentation molecules to effectively

evade T cell activation. The image was created using BioRender (https://www.biorender.com/,

accessed on 18 December 2023).
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3.1. Anatomical Location

The brain is an essential organ of the human body’s governing motility, senses, emo-
tions, cognition, memory, and survival instincts—in essence, many of the fundamental
processes that regulate our body and mind. Surgical resection is therefore applicable only
when GBM lies within non-critical regions of the brain that do not affect movement, speech,
vision, or memory. As stated in the 2021 EANO guidelines [6], surgeons need to prior-
itize patients’ quality of life over extent of resection to prevent permanent neurological
deficits. As recently reviewed in Bonosi et al. (2023) [27,28], there are multiple pre-operative
(i.e., functional MRI imaging, magnetoencephalography, navigated transcranial magnetic
stimulation, and diffusion tensor imaging) and intra-operative (i.e., ultrasonography, elec-
trostimulation, cerebral perfusion measurements, and 5-aminolevulinic [5-ALA] tumor
labeling) techniques that facilitate surgery and minimize the damages to the healthy brain
tissue. As an example, patients operated with 5-ALA fluorescence-guided surgery showed
a 6-month increase in progression-free survival (PFS) compared to patients operated via
classical method [29,30].

3.2. Presence of the Blood–Brain Barrier

The brain is a highly vascularized organ and, to ensure proper neuronal function-
ing, needs to tightly control the trafficking of cells, molecules, and ions to and from
the blood [31]. The blood–brain barrier (BBB) represents the most selective barrier of
the human body, as it protects the brain from potentially harmful blood-borne agents
and exogenous compounds (i.e., drugs, neurotoxins) that might damage the CNS [32,33].
It is constituted by endothelial cells of the capillaries located in the brain parenchyma,
surrounded by pericytes and astrocytic endfeet, thereby isolating the brain from the blood-
stream [32,34–37]. The BBB represents a major physical obstacle for the delivery of GBM
therapeutics to the tumor, therefore limiting their clinical success. Indeed, a great amount
of systemically administered chemotherapeutic agents failed to increase patient OS mainly
due to their poor BBB penetration. An analysis of over 7000 chemotherapeutics found
that only 1% of them could effectively cross the BBB and be active in the CNS [38,39].
In case of brain malignancies, including GBM, the BBB is partially disrupted leading to
increased permeability, forming the so-called brain–tumor barrier (BTB). The disruption of
the BBB in glioma exhibits heterogeneity, primarily manifesting within the tumor’s core
while keeping its structure at the tumor rim, where invasive cells are located. The BTB
stems from VEGF over-expression and increased angiogenesis in hypoxic zones, as well
as the release of cytokines and chemical mediators, inducing the development of more
immature and permeable vessels within the tumor [40–44]. Tumor-induced BBB leakage
may enhance therapeutic delivery to the tumor core, yet the intact BBB beyond it can
impede drug distribution. As outlined in a recent review by [45], brain drug delivery can
be enhanced through surgical interventions such as intrathecal drug administration and
convection-enhanced delivery (CED) and/or with the use of implantable pharmaceutical
formulations, including biodegradable wafers or gels. Alternatively, researchers are focus-
ing on improving drug penetration into the brain by enhancing drug liposolubility (e.g.,
using liposomes) or by modulating the BBB (e.g., through the modulation of efflux pumps,
tight junctions, or the use of receptor agonists) [45]. Promising in terms of safety, these
approaches require randomized clinical trials to thoroughly evaluate their effectiveness.

3.3. Tumor Heterogeneity and Plasticity

Another key GBM feature that can contribute to treatment failure is the high hetero-
geneity among (inter-tumoral) and within (intra-tumoral) tumors. Even when histologically
similar, GBM tumors can differentially respond to treatments depending on their molecular
profile. There are multiple signaling pathways that can be dysregulated in GBM, including
p53, retinoblastoma (RB), and phosphoinositide 3-kinase (PI3K) signaling pathways [46,47].
The Cancer Genome Atlas network and subsequent studies tried to identify prognostically
relevant GBM molecular subtypes based on large-scale genetic and epigenetic profiling. To
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date, three molecular subtypes have been proposed based on molecular analysis: proneural,
mesenchymal, and classical [48,49]. They are meant to help clinicians diagnose and stratify
GBM patients for potential personalized medicine [50]. However, to date, they have limited
clinical relevance [51]. Moreover, researchers have recently focused on the identification
of GBM subtypes by considering the characteristics and composition of the GBM tumor
microenvironment. This classification system holds the potential to facilitate the implemen-
tation of precision immunotherapy approaches [52].

Inter-patient variability is further reinforced by intratumoral heterogeneity and plastic-
ity. Within the tumor mass of an individual patient, there exists a complex, heterogeneous,
and dynamic architecture of tumor cells that vary at the epigenetic, transcriptomic, protein,
and metabolic levels [51,53]. Additionally, therapeutic approaches actively contribute to
the phenotypic heterogeneity of GBM by modifying its tumor landscape [54]. This provides
survival advantages to the tumor cells and may explain why drugs targeting the entire tu-
mor may ultimately prove futile due to the rapid emergence of cell clones that are resistant
to the specific treatment.

3.4. Infiltrative Nature

As with other malignant gliomas, GBM is characterized by a high invasive capacity that
is associated with treatment resistance, recurrence, and poor OS. Brain tumor cells modify
and degrade the extracellular matrix (ECM), enabling their invasive behavior through
processes involving glutamate release and Ca2+ signaling pathways [55]. Within a GBM
tumor, there are various levels of invasiveness reflecting the intratumoral heterogeneity
of this cancer type. While tumor core cells have a higher tendency to proliferate, cells
at the periphery of the tumor tend to be more invasive, allowing them to penetrate into
the surrounding normal brain tissue [56]. Invasive GBM cells can move as individual
cells [57] or in groups [58,59] and preferentially migrate along preexisting structures such us
the brain parenchyma, white matter tracts, blood vessels, and subarachnoid spaces [60,61].
GBM cells can move along the brain tissue by remodeling the extracellular matrix and
their own cytoskeleton, as well as their energy metabolism [61–63]. Differently from other
cancer types, GBM cells rarely enter into circulation and thus do not normally metastasize
to distant organs/tissues [64–66]. GBM cells’ invasive nature hinders complete surgical
resection, and the remaining resistant clones lead to tumor recurrence [67]. As outlined in
a recent review by [55], researchers have explored various approaches to inhibit invasion,
including blocking Ca2+ channels (Mibefradil) [68], α V integrins (Cilengitide) [69], matrix
metalloproteinases (MMP) [70,71], AMPA receptors (Talampanel) [72,73], and the PI3K/Akt
pathway [74]. Overall, these interventions have had limited success in GBM patients.

3.5. Systemic and Local Immunosuppression

While historically considered “immune privileged”, the brain may be now better
described as “immunologically distinct”, meaning with unique immune characteristics
compared to other body parts. The brain possesses a specialized lymphatic drainage system
called the “glymphatic system”, which plays a role in immunosurveillance, as it drains
the cerebrospinal fluid (CSF), carrying immune cells and solutes, from the CNS into deep
cervical lymph nodes [75,76]. While classical antigen presenting cells (APCs) are normally
not detected in the healthy brain parenchyma, they can be found in adjacent vascular-rich
tissues such as the choroid plexus and meninges [77]. They have access to the CSF and can
detect brain parenchymal antigens. Moreover, in inflammatory conditions, APCs rapidly
migrate towards the brain parenchyma through afferent lymphatics or endothelial venules
to survey for antigens [77]. They then leave the brain and reach the deep cervical lymph
nodes, where they can present brain-derived antigens and prime T and B lymphocytes,
promoting adaptive immune responses [76,78]. T cells have also been observed in the brain
parenchyma and CSF of healthy individuals, albeit in very low numbers, carrying out
immune surveillance of the CNS and deep cervical lymph nodes [79].
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As outlined in Zhang et al. (2022) [80], GBM patients often experience pronounced im-
munosuppression, affecting both their overall immune system (systemic) and the immune
responses within the tumor environment (local). GBM patients have smaller secondary
lymphoid organs and lower MHC-II expression levels in peripheral blood monocytes
and are characterized by T cell lymphopenia compared to healthy individuals [81–83].
The decline in size and function of the thymus gland, known as thymic involution, results
in decreased T cell production and, therefore, in reduced T cell availability for anti-GBM
immunity [84]. T cells are majorly sequestered in the BM, due to the loss of surface
sphingosine-1-phosphate receptor 1 (S1P1). S1P1 is responsible for the egress of T cells from
the thymus and secondary lymphoid organs [85], but in GBM patients, the missing S1P1
receptor prevents T cells from leaving the bone marrow and entering the bloodstream [83].
Interestingly, in vitro studies revealed that serum isolated from GBM tumor-bearing mice
impairs immune cell activation [86]. Circulating cytokines produced by the tumor as well
as immunosuppressive treatment with corticosteroids and TMZ may further contribute to
the systemic immunosuppression observed in GBM patients [81,87].

This systemic immunosuppression is further reinforced locally. In GBM, the BBB is
disrupted and displays increased permeability, allowing for the influx of immune cells that
are normally scarce in the brain parenchyma [88,89]. The GBM TME is highly heteroge-
neous and consists of various components, including GBM cancer cells, various signaling
molecules, the extracellular matrix, vasculature, brain-resident non-immune cells (such as
astrocytes and neurons), and lymphoid and myeloid immune cells. Despite the potential of
immune responses to eliminate neoplastic cells or hinder their growth, GBM cancer cells
have developed multiple mechanisms to evade immune surveillance and to shape the TME
in their favor to allow for tumor development and progression. The communication be-
tween GBM cells and the TME occurs via cell-to-cell contact, soluble molecules [90–92],
and via extracellular vesicles [93,94].

(i) Soluble molecules: Secreted by various cellular players of the GBM microenvironment,
the TME contains various growth factors and cytokines, such as (i) tumor-promoting
cytokines, including interleukin (IL)-1, and basic fibroblast growth factor (bFGF)
and (ii) immunosuppressive chemical mediators, including TGF-β, IL-10, IL-6 and
prostaglandin E-2 (PGE2) [95,96]. While IL-1 and bFGF promote tumorigenesis, TGF-
β, IL-10, IL-6, and PGE2 generally shift the immune response from an inflammatory
response to a pro-tumoral and wound-healing one. This alteration leads to a reduced
ability of immune cells to efficiently eliminate tumor cells. Moreover, the GBM TME
is characterized by high levels of CC Chemokine Ligand 2 (CCL2), a very potent
chemoattractant essential for the recruitment of regulatory T cells (Tregs) and myeloid
cells [97].

(ii) Extracellular matrix (ECM): In GBM, ECM composition is altered due to an over-
expression and increased secretion of laminin, collagen, and fibronectin, and this
physically results in elevated overall density and tumor stiffness [98]. This contributes
to limiting the ability of chemotherapeutic drugs to diffuse and penetrate the tumor,
reducing their effectiveness. Moreover, high levels of fibronectin and hyaluronic
acid, along with surrounding ECM degradation via metalloproteinases, increases
the mobility and invasiveness of glioma cells [99].

(iii) Vasculature: The GBM TME is characterized by abnormal vasculature, and the central
areas of the tumor experience poor blood flow, leading to a decrease in oxygen
delivery [100]. This hypoxic microenvironment increases the expression of hypoxia-
inducible factor 1-α, promoting angiogenesis and tumor cell invasion [100]. HIF1-α
upregulates immunomodulatory surface ligands such as cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) and programmed death-ligand 1 (PD-L1), inhibiting
efficient anti-tumor immune responses [101].

(iv) Healthy brain cells: In response to CNS injury, astrocytes normally secrete growth
factors and cytokines to facilitate tissue repair in a process known as astrogliosis [102].
However, in GBM, this process is exploited to promote tumor growth. In particular,
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the TME promotes crosstalk between astrocytes and neighboring microglia, resulting
in the activation of the JAK/STAT and PD-L1 pathways within astrocytes. This activa-
tion triggers an elevated production of anti-inflammatory cytokines like IL-10, TGF-β,
and STAT3, thereby fostering an immunosuppressive milieu [103]. Moreover, neurons
play a role in facilitating GBM tumor progression by upregulating neuroligin-3. This
leads to the activation of the PI3K signaling pathway, promoting the proliferative
activity of glioma cells [104].

(v) Tumor-associated myeloid cells: Tumor-associated microglia and macrophages (TAMs)
are the main infiltrating population in GBM, attracted towards the tumors in response
to high concentrations of various chemoattractants secreted by glioma cells, includ-
ing CCL2 [105–107]. Within the TME, they adopt immunosuppressive and tumor-
supportive phenotypes [108]. Activation of the mTOR signaling pathway leads to
increased STAT3 phosphorylation and suppression of the NF-κB pathway, resulting in
the upregulation of anti-inflammatory cytokines such as IL-6, and IL-10 [109]. TAMs
exhibit a decreased expression of surface MHC class II molecules and costimulatory
molecules (CD40, CD80, and CD86), impairing antigen presentation and activation
of T cells [110–112]. Myeloid-derived suppressor cells (MDSCs) suppress the im-
mune system through multiple mechanisms. They express arginase, which reduces
L-arginine levels necessary for TCR expression and function. They also secrete nitric
oxide and reactive oxygen species, further inhibiting T cell activity. Additionally,
MDSCs express PD-L1, promoting T cell exhaustion [113,114].

(vi) Tumor-infiltrating lymphocytes (TILs): In GBM, TILs often exhibit dysfunction and
exhaustion caused by factors released by glioma and microenvironmental cells, in-
cluding TGF-β, IL-10, and CCL2, which recruit Tregs, MDSCs, and TAMs to the tumor
site [115]. In response to TGF-β, CD4+ T cells upregulate FoxP3 and differentiate
into Tregs. They account for 25% of TILs and are associated with a poor prognosis in
GBM [116]. Through IL-10 and TGF-β signaling, Tregs promote the transition of other
T cells into regulatory ones, exert an immunosuppressive function over natural killer
(NK) and CD8+ T cells, help to generate MDSCs, and impair the antigen presentation
capability of DCs [117]. TGF-β1 leads to a reduction in the expression of the activating
receptor natural killer group 2 (NKG2D) on the surface of both CD8+ T cells and NK
cells, thereby hindering their cytotoxic effects on GBM cells [118]. Moreover, Tregs
highly express immune checkpoint molecules such as PD-1 and CTLA-4 that, via inter-
action with their respective receptors on the surface of T cells, suppress their effector
functions [119]. Glioma cells further suppress lymphocyte activity through molecules
such as FasL, PD-L1, PD-L2, CD70, and ganglioside [120–122]. The scarcity of TILs
and accumulation of exhausted T cells in the tumor microenvironment contribute to
immunotherapy resistance and relapse.

4. Immunotherapeutic Strategies for the Treatment of GBM

Immunotherapy has revolutionized the field of oncology by aiming to re-activate
the cells of the immune system to react against the tumor, rather than directly targeting
the cancer cells. Immune-based approaches have shown sustained clinical benefit and, in
some instances, full remission of solid tumors, thus becoming part of their standard of
care [123]. However, immune-based treatments have a different impact on each cancer
type depending on tumor intrinsic features and level of immunosuppression. Regarding
GBM tumors, current investigations into immunotherapeutic strategies encompass immune
checkpoint inhibitors, adoptive T cell therapies, vaccination approaches, and virus-based
therapies (Figure 2).
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Figure 2. Overview of the main immunotherapeutic modalities against GBM.

Figure 2 depicts the main immunotherapeutic strategies currently under evaluation in
clinical trials for the treatment of GBM. These include (i) vaccination therapy, which aims
to activate the patient’s adaptive immune system via the use of tumor-specific or tumor-
associated antigens, delivered in the form of nucleic acids, peptides, or packaged into
DCs; (ii) adoptive T cell therapy, involving the infusion of genetically modified (chimeric
antigen receptor T cells [CAR-T cells]) or activated (tumor-infiltrating lymphocytes) au-
tologous T cells to enhance their anti-GBM activity; (iii) immune checkpoint therapy,
utilizing monoclonal antibodies to remove the “brakes” on the immune system’s response
to GBM; and (iv) virus-based therapy, which explores the use of viruses either to selec-
tively target and destroy GBM cells (oncolytic viruses) or to deliver therapeutic transgenes
to the tumor (cancer gene therapy). Research on combining various immunotherapies
holds great promise for the treatment of GBM. The image was created with BioRender
(https://www.biorender.com/, accessed on 28 February 2024).

4.1. Immune Checkpoint Therapy

During prolonged antigenic exposure or tumor-T cell interaction, the effector T cells
might gradually lose their tumor reactivity and become “exhausted”, a hypo-responsive
state characterized by high levels of co-inhibitory molecules, also known as immune
checkpoints (ICMs), decreased cytotoxicity, and reduced proliferation capacity [124]. ICMs
are potent regulators of the immune system exploited by the TME to suppress immune
responses towards malignant GBM cells. Over the last decades, several ICMs have been
identified, including programmed cell death protein 1 (PD-1) and its ligand PD-L1, CTLA-4,
Lymphocyte Activation Gene-3 (LAG-3), T cell immunoreceptor with immunoglobulin and
ITIM domain (TIGIT), T cell immunoglobulin and mucin domain 3 (TIM-3), V-domain Ig
suppressor of T cell activation (VISTA), and indoleamine 2,3-dioxygenase (IDO).

Being surface receptors, immune checkpoints can be inhibited by blocking monoclonal
antibodies, known as immune checkpoint inhibitors (ICIs). The blockade of the PD-1/PD-
L1 axis or CTLA-4 have shown remarkable success in the treatment of various solid tumors,
including colorectal cancer, gastric cancer, hepatocellular carcinoma, melanoma, classic
Hodgkin’s lymphoma, and non-small-cell lung carcinoma [125–129]. However, generally,
minimal clinical benefit has been observed thus far for the treatment of GBM using these
modalities, whether applied individually or in combination (Table 1).
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Table 1. List of clinical trials involving ICIs in adult GBM patients. The table includes concluded or terminated studies, as well as those currently underway or

preparing to enroll participants. Data were sourced from Clinicaltrials.Gov, retrieved on 13 December 2023.

Inhibitor
NCT
Number

Phase
Study
Status

Tumor Target Intervention Outcome

Anti-CTLA-4
(Ipilimumab)

NCT05074992 2 Terminated ndGBM Ipi

Anti-IDO1
(Indoximod)

NCT02052648 [130] 1/2 Completed Malignant Brain Tumors

IND + TMZ

IND + TMZ + Bev

IND + TMZ + Stereotactic RT

Anti-PD-1
(Nivolumab)

NCT02648633 1 Terminated rGBM Valproate + Stereotactic RT + Nivo

NCT02550249 [131] 2 Completed GBM Neoadjuvant Nivo
mOS: 7.3 months (95% CI, 5.4–7.9), mPFS:
4.1 months (95% CI, 2.8–5.5)

NCT02335918 [132] 2 Completed Advanced Solid Tumors Nivo + Varlilumab OS-12: 40.9%

NCT03890952 [133] 2 Active Not Recruiting rGBM
Nivo + Bev + Surgery

Nivo + Bev

NCT04195139 [134] 2 Active Not Recruiting ndGBM
RT + TMZ + Nivo mOS: 11.8 months, PFS-6: 64%

RT + TMZ mOS: 12.0 months, PFS-6: 49%

NCT03743662 2 Active Not Recruiting rGBM (MGMT-M)
RT + Bev + Nivo

RT + Bev + Nivo + Surgery

NCT03452579 [135,136] 2 Active Not Recruiting rGBM

Nivo + Bev (10 mg/Kg)
OS-12: 41.1%, OS-12 (age > 60 year): 46.2%,
OS-12 (age ≤ 60 years): 35.6%.

Nivo + Bev (3 mg/Kg)
OS-12: 37.7%, OS-12 (age > 60 year): 23.8%,
OS-12 (age ≤ 60 years): 56.4%.

NCT04704154 2 Active Not Recruiting Recurrent or Metastatic Tumors Nivo + Regorafenib

NCT05909618 2 Not Yet Recruiting
GBM and Brain Metastases
(MGMT-UN)

Crizanlizumab

Crizanlizumab + Nivo

NCT02617589 [137] 3 Completed ndGBM (MGMT-UN)

Nivo + RT
mPFS: 6.0 months (95% CI, 5.7–6.2), mOS:
13.4 months (95% CI, 12.6–14.3)

TMZ + RT
mPFS: 6.2 months (95% CI, 5.9–6.7), mOS:
14.9 months (95% CI, 13.3–16.1)
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Table 1. Cont.

Inhibitor
NCT
Number

Phase
Study
Status

Tumor Target Intervention Outcome

NCT02667587 [138] 3 Active Not Recruiting ndGBM (MGMT-M)

RT + TMZ + Nivo
mPFS: 10.64 months (95% CI, 8.90–11.79),
mOS: 28.91 months (95% CI, 24.38–31.57),

RT + TMZ + Placebo
mPFS: 10.32 months (95% CI, 9.69–12.45),
mOS: 32.07 months (95% CI, 29.37–33.77),

Anti-PD-1
(Pembrolizumab)

NCT02852655 1 Completed rGBM Pembro

NCT02054806 [139] 1 Completed Advanced Solid Tumors Pembro
rGBM = mPFS: 2.8 months (95% CI,
1.9–8.1), mOS: 13.1 months (95% CI,
8.0–26.6)

NCT05700955 1 Recruiting rGBM Pembro + TMZ

NCT02530502 1 Terminated ndGBM Pembro + TMZ + RT

NCT03722342 [140] 1 Active Not Recruiting rGBM Pembro + Olinvacimab

NCT03426891 [141] 1 Completed ndGBM Pembro + Vorinostat + TMZ + RT

NCT02311582 [142,143] 1/2 Active Not Recruiting Recurrent Malignant Gliomas
Pembro + LITT mPFS: 10.5 months, mOS: 11.4 months

Pembro mPFS: 2.1 months, mOS: 5.2 months

NCT03277638 [144] 1/2 Recruiting rGBM

Pembro (7 days before LITT)

Pembro (14 days after LITT)

Pembro (35 days after LITT)

NCT04977375 1/2 Recruiting rGBM Pembro + Stereotactic RT + Surgery

NCT02430363 1/2 Unknown
GBM or
Gliosarcoma

Pembro

Pictilisib

NCT05053880 1/2 Unknown rGBM
Pembro

Pembro + ACT001

NCT04121455 [145,146] 1/2 Active Not Recruiting ndGBM (MGMT-UN)

NOX-A12 (200 mg) + RT

NOX-A12 (400 mg) + RT

NOX-A12 (600 mg) + RT

NOX-A12 (600 mg) + RT + Bev

NOX-A12 (600 mg) + RT

NOX-A12 (600 mg) + RT + Pembro
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Table 1. Cont.

Inhibitor
NCT
Number

Phase
Study
Status

Tumor Target Intervention Outcome

NCT05973903 1/2 Not Yet Recruiting rGBM Lenvatinib + Pembro + TTF

NCT02628067 [147] 2 Recruiting Advanced Solid Tumors Pembro
Glioma = mPFS: 1.4 (95% CI, 1.0–2.1),
mOS: 5.6 months (95% CI, 2.6–16.2)

NCT02337491 [148,149] 2 Completed rGBM

Pembro + Bev
PFS-6: 26% (95% CI, 16.3–41.5), mOS:
8.8 months (95% CI, 7.7–14.2)

Pembro
PFS-6: 6.7% (95% CI, 1.7–25.4), mOS:
10.3 months (95% CI, 8.5–12.5)

NCT03661723 [150] 2 Active Not Recruiting rGBM

Pembro + RT (lead-in)
ORR: 3.3%, OS-6: 83.3 (95% CI, 6.5–92.7),
OS-12: 40.0 (95% CI, 22.8–56.6)

Pembro + Bev + RT (lead-in)
ORR: 10.0%, OS-6: 56.7 (95% CI, 37.3–72.1),
OS-12: 16.6 (95% CI, 6.0–31.7)

Pembro + RT

Pembro + Bev + RT

NCT05463848 2 Recruiting rGBM

Pembro + Olaparib + TMZ (Safety
Lead In)

Pembro + Olaparib + TMZ
(Surgical Cohort)

Pembro (Surgical Cohort)

NCT03347617 2 Active Not Recruiting ndGBM Ferumoxytol MRI + Pembro

NCT03197506 2 Suspended ndGBM
Pembro + Surgery + TMZ + RT

Pembro + TMZ + RT

NCT05879120 2 Not Yet Recruiting rGBM

MRgFUS + Neoadjuvant Pembro +
Adjuvant Pembro

Neoadjuvant Pembro + Adjuvant Pembro

NCT03405792 [151] 2 Active Not Recruiting ndGBM

TTF + TMZ + Pembro
mPFS: 12.0 months, PFS-12: 50.0%, mOS:
24.8 months, OS-24: 52.4%

TTF + TMZ
mPFS: 5.8 months, PFS-12: 28.2%, mOS:
14.7 months, OS-24: 12%

NCT02337686 [152] 2 Active Not Recruiting rGBM Pembro + Surgery
mPFS: 4.5 months (95% CI, 2.27–6.83),
PFS-6: 40%, mOS: 20 months, estimated
OS-12: 63%
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Table 1. Cont.

Inhibitor
NCT
Number

Phase
Study
Status

Tumor Target Intervention Outcome

NCT05465954 [153] 2 Recruiting rGBM Pembro + Efineptakin alfa

NCT03797326 [154] 2 Active Not Recruiting Solid Tumors
Pembro + Lenvatinib

Lenvatinib

NCT05235737 4 Recruiting ndGBM

Neoadjuvant Pembro + Adjuvant Pembro
+ SOC

Neoadjuvant Pembro + SOC

SOC

Anti-PD-L1
(Avelumab)

NCT03047473 [155] 2 Completed ndGBM Avelumab
ORR: 23.3%, mPFS: 9.7 months (95% CI,
8.2–15.5), mOS: 15.3 months (95% CI,
10.7–21.5)

Anti-PD-L1
(Atezolizumab)

NCT05423210 1 Active Not Recruiting ndGBM Atezo + Fractionated Stereotactic RT

NCT04160494 1 Active Not Recruiting Recurrent Gliomas
D2C7-IT (6.92 µg/mL) + Atezo

D2C7-IT (4.61 µg/mL) + Atezo

NCT03158389 1/2 Completed ndGBM (MGMT-UN)

APG101 + RT

Alectinib + RT

Idasanutlin + RT

Atezo + RT

Vismodegib + RT

Temsirolimus + RT

Palbociclib + RT

NCT03673787 [156] 1/2 Recruiting Advanced Solid Tumors Atezo + Ipatasertib

NCT03174197 [157] 1/2 Active Not Recruiting ndGBM Atezo + TMZ + RT

mOS: 17.1 months (95% CI, 13.9-N/A),
mPFS: 9.7 months (95% CI, 7.6–15), mPFS
(MGMT-M): 16.7 months (95% CI,
7.85-N/A), mPFS (MGMT-UN):
7.9 months (95% CI, 6.70–12.4)

NCT05039281 1/2 Recruiting rGBM Atezo + Cabozantinib

NCT06069726 2 Not Yet Recruiting rGBM Pre-Surgery Atezo

NCT04729959 2 Suspended rGBM

Atezo + Tocilizumab + Stereotactic RT

Atezo + Tocilizumab + Stereotactic RT
+ Surgery
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Table 1. Cont.

Inhibitor
NCT
Number

Phase
Study
Status

Tumor Target Intervention Outcome

Anti-PD-L1
(Durvalumab)

NCT02336165 [158] 2 Completed GBM

ndGBM = Durva + RT OS-12: 60% (90% CI, 46.1–71.4)

Bev-Naïve rGBM = Durva PFS-6: 19.4% (90% CI, 9.3–32.1)

Bev-Naïve rGBM = Durva + Bev
(10 mg/Kg)

PFS-6: 15.2% (90% CI, 6.7–26.8)

Bev-Naïve rGBM = Durva + Bev
(3 mg/Kg)

PFS-6: 17.2% (90% CI, 7.7–29.7)

Bev-Resistant rGBM = Durva + Bev OS-6: 36.4% (80% CI, 23.5–49.3)

Anti-PD-1 +
Anti-CTLA-4

NCT02311920 [159] 1 Completed
ndGBM
or
Gliosarcoma

TMZ + Ipi

TMZ + Nivo

TMZ + Ipi + Nivo

NCT04606316 1 Recruiting rGBM

Nivo + Ipi

Nivo + Placebo

Placebo

NCT03233152 [160] 1 Active Not Recruiting rGBM Nivo + Ipi
mPFS: 11.7 weeks (2–152), mOS: 38 weeks
(95% CI, 27–49),

NCT06097975 1 Not Yet Recruiting rGBM Nivo + Ipi

NCT03367715 2 Completed ndGBM (MGMT-UN) Nivo + Ipi + Short-Course RT
OS-12: 80%, mOS: 16.85 months (4.5–32.9),
mPFS: 5.92 months (1.5–13.9)

NCT03430791 2 Terminated rGBM
TTF + Nivo

TTF + Nivo + Ipi

NCT04817254 2 Recruiting ndGBM
Nivo + Ipi (1 mg/Kg) + TMZ

Nivo + Ipi (3 mg/Kg) + TMZ

NCT04145115 2 Recruiting rGBM Nivo + Ipi

NCT04396860 2/3 Active, not recruiting ndGBM (MGMT-UN)
RT + TMZ

RT + Nivo + Ipi

NCT02017717 [161,162] 3 Active, not recruiting rGBM
Nivo

OS-12: 41.8% (95% CI, 34.7–48.8), mOS:
9.8 months (95% CI, 8.2–11.8), mPFS:
1.51 months (95% CI, 1.48–1.61)

Nivo + Ipi
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Table 1. Cont.

Inhibitor
NCT
Number

Phase
Study
Status

Tumor Target Intervention Outcome

Bev
OS-12: 42.4% (95% CI, 34.9–49.6), mOS:
10.05 months (95% CI, 9–11.99), mPFS:
3.61 months (95% CI, 2.99–4.6)

Anti-PD-1 +
Anti-GITR

NCT04225039 [163] 2 Active, not recruiting rGBM

Retifanlimab + INCAGN01876 +
Stereotactic RT

mPFS: 3.9 months (95% CI, 2.1–6.2), mOS:
9.4 months (95% CI, 8.2–10.6)

Retifanlimab + INCAGN01876 +
Stereotactic RT prior to Surgery

mPFS: 11.7 months, mOS: 20.1 months

Retifanlimab + INCAGN01876 prior
to Surgery

mPFS: 2.0 months, mOS: 9.4 months

Anti-PD-1 +
Anti-IDO1

NCT04047706 [164] 1 Active, not recruiting ndGBM
RT + TMZ + Nivo + BMS-986205

RT + Nivo + BMS-986205

NCT02327078 [165] 1/2 Completed Advanced Tumors Nivo + Epacadostat

Anti-PD-1 +
Anti-LAG-3

NCT03493932 [166] 1 Completed GBM Nivo + Relatlimab

NCT02658981 [167] 1 Completed rGBM
BMS-986016

BMS-986016 + Nivo

Anti-PD-1 +
Anti-TIGIT

NCT04656535 0/1 Recruiting GBM

Domvanalimab + Placebo

Zimberelimab + Placebo

Domvanalimab + Zimberelimab

Placebo

NCT04826393 1 Active Not Recruiting Recurrent Gliomas Cemiplimab + ASP8374

Anti-PD-1 +
Anti-TIM-3

NCT03961971 1 Active Not Recruiting rGBM
Spartalizumab + Sabatolimab +
Stereotactic RT

Anti-PD-1 +
Anti-GITR or
Anti-IDO1 or
Anti-CTLA-4

NCT03707457 1 Terminated rGBM

Nivo + MK-4166

Nivo + Epacadostat

Nivo + Ipi

Anti-PD-L1 +
Anti-CTLA-4

NCT02794883 2 Completed Recurrent Malignant Gliomas

Surgery + Durva
mOS: 11.71 (95% CI, 8.332–32.71), mPFS:
4.356 (95% CI, 2.941–32.74)

Surgery + Tremelimumab
mOS: 7.246 (95% CI, 2.746–16.32), mPFS:
2.746 (95% CI, 2.68–8.727)

Surgery + Durva + Tremelimumab
mOS: 7.703 (95% CI, 7.41–40.14), mPFS:
4.913 (95% CI, 2.905–120.4)
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Table 1. Cont.

Inhibitor
NCT
Number

Phase
Study
Status

Tumor Target Intervention Outcome

Various NCT06047379 1/2 Not Yet Recruiting
Malignant Gliomas
or
Brain Metastases

NEO212 + Ipi

NEO212 + Pembro

NEO212 + Nivo

NEO212 + Regorafenib

NEO212 + CarbolaUn + Paclitaxel

NEO212 + FOLFIRI + Bev

NEO212

NEO212 + SOC

Atezo, Atezolizumab; Bev, Bevacizumab; CI, confidence interval; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; Durva, Durvalumab; GITR, glucocorticoid-induced TNFR-related

protein; IDO1, Indoleamine 2,3-dioxygenase 1; IND, Indoximod; Ipi, Ipilimumab; LAG-3, Lymphocyte-Activation Gene 3; mOS, median overall survival; mPFS, median progression-free

survival; MRgFUS, MRI-guided focused ultrasound; ndGBM, newly diagnosed GBM; Nivo, Nivolumab; ORR, objective response rate; OS-12, overall survival at 12 months; OS-24,

overall survival at 24 months; Pembro, Pembrolizumab; PFS-6, progression-free survival at 6 months; PD-1, Programmed Cell Death-Protein 1; PD-L1, programmed Death-Ligand 1;

rGBM, recurrent GBM; RT, radiotherapy; SOC, standard of care; TIGIT, T Cell immunoreceptor with Ig and ITIM domains; TIM-3, T cell immunoglobulin and mucin domain-containing

protein 3; TMZ, Temozolomide; TTF, tumor-treating fields.
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Promising preclinical results [168,169] sparked three phase 3 clinical trials testing
the efficacy of the anti-PD1 antibody Nivolumab for the treatment of GBM. The first study,
checkmate 143 [161], evaluated the efficacy of Nivolumab and Ipilimumab in patients
with recurrent GBM. Other studies, checkmate 548 [138,170] and 498 [137], instead tested
Nivolumab in addition to radiation on MGMT methylated and unmethylated newly diag-
nosed GBM patients, respectively. All three studies failed to achieve the primary goal of
ameliorating patient survival in comparison to standard treatments. Likewise, the anti-PD1
antibody Pembrolizumab, both as a monotherapy or in combination with bevacizumab,
showed limited clinical benefit for recurrent GBM patients in phase 1 [139] and 2 clini-
cal studies [149,152,171]. It is worth noting that neoadjuvant treatment with anti-PD-1
has shown promising outcomes in selected recurrent GBM patients during window-of-
opportunity trials [131,172]. Another example of immune checkpoint therapy is Durval-
umab, a human IgG1 monoclonal Ab against PD-L1. PD-L1 is expressed on the surface of
nearly 90% of GBM cells [173]. Radiation-induced cell death may potentiate anti-PD1 and
-PD-L1 therapies by releasing tumor antigens. A phase 2 multi-center study evaluating
the combination of Durvalumab and standard radiotherapy in patients with unmethylated
newly diagnosed GBM demonstrated favorable tolerability and potential efficacy, with one
patient achieving a remarkable OS of 86 weeks [158].

As for the FDA-approved anti-CTLA4 antibody Ipilimumab, there are currently no
published clinical data available of its use as a single therapy for GBM. As GBMs can
rapidly adapt to ICI therapy by increasing the expression of alternative checkpoints
following treatment [174], concluded and ongoing clinical studies rather focused on
the combination of Ipilimumab with other agents, including anti-PD1 blocking antibodies
(NCT02311920, NCT04606316, NCT03233152, NCT04817254, NCT04145115, NCT04396860),
VEGF inhibitors [175], tumor-treating fields (NCT03430791), TMZ, and radiotherapy
(NCT03367715). Unlike in melanoma [176,177], combining Ipilimumab and Nivolumab
in GBM yielded no added benefit and actually increased immune toxicity compared to
Nivolumab alone [178].

In addition to “classical” immune checkpoints, LAG-3, TIM-3, TIGIT, and IDO1 rep-
resent novel targets that are currently under investigation in GBM. NCT02658981 and
NCT03493932 phase 1 studies investigated LAG-3 blockade (Relatlimab) either as a single
agent or combined with anti-PD-1 therapy in patients with recurrent GBM or newly
diagnosed GBM, respectively [166,179]. Results of the treatment efficacy are awaited.
NCT03961971 is currently testing the inhibition of TIM-3 (Sabatolimab) and PD-1 (Spartal-
izumab) together with stereotactic radiosurgery in recurrent GBM. NCT04656535 phase
0/1 study is currently recruiting recurrent GBM patients for testing the combination of
Domvanalimab (targeting TIGIT) and Zimberelimab (targeting PD-1). Instead, IDO is
currently under investigation in combination with other therapies (i.e., radiotherapy, TMZ)
in newly diagnosed GBM patients (NCT04047706, NCT02052648) [130,164].

As recently reviewed by Arrieta et al. (2023) [180], the failure of ICI treatment in
GBM can be attributed to various factors, including the low mutational burden of GBM,
elevated tumor heterogeneity, limited T cell infiltration, intratumoral downregulation
of MHC-I/MHC-II molecules, and insufficient drug penetration across the blood–brain
barrier [112,181]. Researchers are currently focusing on combining laser interstitial ther-
mal therapy (LITT) with ICIs, which may benefit recurrent GBM patients, as LITT ab-
lates tumor tissue and has been shown to enhance drug penetration through the BBB
breakdown [142,182,183]. Understanding of the safety and efficacy of this approach will
be gained from the active ongoing NCT02311582 phase 1/2 clinical trial and from the
recruiting NCT03277638 phase 1/2 clinical trial.

4.2. Vaccination Therapy

Cancer vaccines represent a form of active immunotherapy that seeks to activate
the patient’s adaptive immune system in response to specific antigens. These vaccines are
designed to incorporate either tumor-specific antigens (TSA), also known as neoantigens,



Cancers 2024, 16, 1276 17 of 58

meaning mutated proteins found exclusively on tumor cells, or tumor-associated antigens
(TAA), which are found to be highly expressed in the tumor but also, to a lesser extent, in
normal tissues and are mostly derived from the overexpression of self-antigens [184]. Once
administered, antigens are presented by APCs in the lymph nodes to naive or memory
T cells. Primed T cells then migrate to the tumor site, initiating an immune response against
the GBM. The objective is to trigger tumor regression and elicit durable memory responses,
thereby reducing the risk of tumor recurrence. Currently, various vaccination strategies
are under investigation for the treatment of GBM, employing peptides, DNA, or RNA as
sources of antigens. These vaccines are packaged into various vehicles, including DCs
and heat shock proteins, and are administered via intravenous, intranodal, intradermal,
or intramuscular routes [184] (Table 2). To enhance vaccine effectiveness, adjuvants like
tetanus toxoid, granulocyte-macrophage colony-stimulating factor (GM-CSF), and poly-
ICLC (polyinosinic–polycytidylic acid stabilized with polylysine and carboxymethylcellu-
lose) are combined with the vaccine formulation. They either promote antigen presentation,
induce the expression of co-stimulatory molecules, or favor the release of cytokines [185].

A major challenge in vaccination strategies targeting GBM antigens is the highly het-
erogeneous expression of antigens within and among GBM tumors, which limits treatment
response and is compounded by antigen instability and loss over time. To overcome this,
the concept of a single vaccine targeting multiple antigens has been proposed to generate
more robust and durable anti-tumor immune responses and reduce the risk of tumor
immune evasion. However, the limited availability of neoantigens, attributed to the low
mutational burden in GBM, presents a challenge in pursuing this approach [181].
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Table 2. List of clinical trials involving vaccination strategies in adult GBM patients. The table includes concluded or terminated studies, as well as those currently

underway or preparing to enroll participants. Data were sourced from ClinicalTrials.gov, retrieved on 13 December 2023.

Antigen Vaccine/
Delivery

NCT
Number Phase Study Status Tumor Target Intervention Outcome

CD133 DC vaccine NCT02049489
[186] 1 Completed rGBM ICT-121

CMV-pp65

Peptide Vaccine NCT01854099 1 Withdrawn ndGBM

TMZ (5 Day) + PEP-CMV (Day 6–8)

TMZ (5 Day) + PEP-CMV (day 22–24)

TMZ (21 Day) + PEP-CMV (day 22–24)

Peptide Vaccine NCT02864368 1 Terminated ndGBM

Td + TMZ (5 Day) + PEP-CMV (Component A
+ Component B) + Td

Td + TMZ (21 Day) + PEP-CMV
(Component A + Component B) + Td

Td + TMZ (5 Day) + PEP-CMV (Safety Cohort)
+ Td

Td + TMZ (5 Day) + PEP-CMV
(Component A) + Td

Td + TMZ (21 Day) + PEP-CMV
(Component A) + Td

DC vaccine NCT04963413 1 Active, not recruiting ndGBM CMV-DC + GM-CSF

DC vaccine
NCT00693095
[187] 1 Completed ndGBM

CMV-ALT + CMV-DC

CMV-ALT

DC vaccine NCT00626483
[188] 1 Completed ndGBM CMV-DC + GM-CSF + Basiliximab mOS: 5.6 months (95% CI, 3.6–9.9), mPFS: 7.7 months

(95% CI, 3.4–13.8)

DC vaccine NCT04741984 1 Withdrawn ndGBM (MGMT-UN)
Monocyte loaded with mRNA encoding for
CMV-pp65 (MT-201)

DC vaccine
NCT00639639
[189,190] 1 Completed ndGBM

CMV-ALT + CMV-DC + Unpulsed DCs (or Td)

CMV-DC + Unpulsed DCs (or Td)

CMV-DC + GM-CSF + Unpulsed DCs (or Td)

DC vaccine
NCT02465268
[191] 2 Active, not recruiting ndGBM

Td + TMZ + Short-Length CMV-DC + GM-CSF

Td + TMZ + Full-Length CMV-DC + GM-CSF

Unpulsed PBMCs

DC vaccine
NCT02366728
[192,193] 2 Completed ndGBM

CMV-DC mOS: 16 months (95% CI, 12.8–25.5), mPFS:
6.5 months (95% CI, 4.4–12.1)

CMV-DC + Td mOS: 20 months (95% CI, 16.7–25.6), mPFS:
6.7 months (95% CI, 4.6–15.2)

CMV-DC + Td + Basiliximab mOS: 19 months (95% CI, 10.2-N/A), mPFS:
7.1 months (95% CI, 6-N/A)

Liposome NCT04573140 1 Recruiting ndGBM (MGMT-UN)
Liposome loaded with mRNA encoding for
CMV-pp65 (RNA-LP)
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Table 2. Cont.

Antigen Vaccine/
Delivery

NCT
Number Phase Study Status Tumor Target Intervention Outcome

EGFRvIII

Peptide Vaccine NCT00626015 [194] 1 Completed ndGBM (EGFRvIII+)

Rindopepimut + TMZ + Daclizumab

Rindopepimut + TMZ + Placebo

Rindopepimut + Basiliximab

Peptide Vaccine NCT01498328
[195] 2 Completed rGBM (EGFRvIII+)

Bev-Naïve = Bev + Rindopepimut + GM-CSF PFS-6: 28%, ORR: 30%, mDOR: 7.8 months (95% CI,
3.5–22.2)

Bev-Naïve = Bev + KLH PFS-6: 16%, ORR: 18%, mDOR: 5.6 months (95% CI,
3.7–7.4)

Bev-Resistant = Bev + Rindopepimut +
GM-CSF

Peptide Vaccine NCT00458601 [196] 2 Completed ndGBM (EGFRvIII+) Rindopepimut + GM-CSF + TMZ mOS: 21.8 months, OS-36: 26%

Peptide Vaccine NCT00643097
[197–199] 2 Completed ndGBM (EGFRvIII+)

Rindopepimut + GM-CSF mPFS: 14.2 (95% CI, 9.9–17.6)

Rindopepimut + GM-CSF + TMZ (5 Day,

200 mg/m2)
mPFS: 12.1 (95% CI, 10.5–23.7)

Rindopepimut + GM-CSF + TMZ (21 Day,

100 mg/m2)
mPFS: 11.6 (95% CI, 8.1–12.7)

Peptide Vaccine NCT01480479
[200] 3 Completed ndGBM (EGFRvIII+)

Rindopepimut + GM-CSF + TMZ mOS: 20.1 months (95% CI, 18.5–22.1)

KLH + TMZ mOS: 20.0 months (95% CI, 18.1–21.9)

HSPPC-96

Peptide Vaccine
NCT00293423
[201,202] 1/2 Completed Recurrent Gliomas HSPPC-96 Vaccine OS-12: 29.3% (95% CI, 16.6–45.7), mOS: 42.6 weeks

(95% CI, 34.7–50.5)

Peptide Vaccine
NCT00905060
[203] 2 Completed ndGBM HSPPC-96 Vaccine + TMZ mOS: 23.8 months (95% CI, 9.8–30.2), mPFS: 18

(95% CI, 12.4–21.8)

Peptide Vaccine NCT01814813
[204] 2 Terminated rGBM

HSPPC-96 Vaccine + Concomitant Bev mOS: 6.6 months (95% CI, 5.4–10.4),
mPFS: 3.7 months (95% CI, 2.9–5.4)

HSPPC-96 Vaccine + Bev At Progression mOS: 9.2 months (95% CI, 5.7–11.6), mPFS:
2.5 months (95% CI, 2.0–3.5)

Bev mOS: 10.7 months (95% CI, 8.8–17.2), mPFS:
5.3 months (95% CI, 3.7–8.0)

hTERT

Peptide Vaccine NCT00069940 1 Completed Sarcoma and Brain
Tumors (HLA-A2+) 540–548 hTERT Vaccine + GM-CSF

Peptide Vaccine NCT04280848
[205] 2 Active, not recruiting ndGBM (MGMT-UN)

MGMT-UN = UCPVax
mPFS: 8.9 months (95% CI, 7.6–10.6), mOS:
17.9 months (95% CI, 16–23), OS-24: 26%MGMT-UN or MGMT m = UCPVax + TMZ

Survivin

Peptide Vaccine
NCT01250470
[206] 1 Completed

Recurrent Malignant
Gliomas

SurVaxM/Montanide ISA-51 + GM-CSF mPFS: 17.6 weeks, mOS: 86.6 weeks

Peptide Vaccine NCT05163080 [207] 2 Recruiting ndGBM

SurVaxM/Montanide ISA-51 + GM-CSF
+ TMZ

Placebo/Montanide ISA-51 + GM-CSF + TMZ

Peptide Vaccine NCT02455557 [208] 2 Active, not recruiting ndGBM SurVaxM/Montanide ISA-51 + GM-CSF
+ TMZ

PFS-6: 95% (95% CI, 86–98), mPFS: 11.4 months, mOS:
25.8 months (95% CI, 19.5–43.5)
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Table 2. Cont.

Antigen Vaccine/
Delivery

NCT
Number Phase Study Status Tumor Target Intervention Outcome

AIM-2, MAGE-1,
HER2/neu,
TRP-2, gp100,
and IL-13Rα2

DC vaccine

NCT01280552
[209] 2 Completed ndGBM

ICT-107 mOS: 18.3 months (95% CI, 14.9–21.2), mPFS:
11.2 months (95% CI, 8.2–13.0)

Unpulsed DCs mOS: 16.7 months (95% CI, 12.3–23.0), mPFS:
9.0 months (95% CI, 5.5–10.3)

NCT02546102 3 Suspended ndGBM
ICT-107 + TMZ

Placebo + TMZ

EGFRvIII,
IL-13Rα2, EphA2,
HER2/neu,
YKL-40

Peptide Vaccine NCT02754362 2 Withdrawn rGBM Bev + Multipeptide Vaccine + Poly-ICLC

EphA2,
CMV-pp65,
and Survivin

Peptide Vaccine NCT05283109 1 Recruiting ndGBM (MGMT-UN) P30-EPS + Poly-ICLC

BCAN, CSPG4,
FABP7, IGF2BP3,
NLGN4X,
NRCAM, PTPRZ1
(2 peptides),
and TNC

Peptide Vaccine NCT01403285 1 Terminated GBM (HLA-A2+)
IMA950 + GM-CSF + Imiquimod
+ Cyclophosphamide

Peptide Vaccine NCT01222221
[210] 1 Completed ndGBM (HLA-A2+)

IMA950 + GM-CSF + Chemoradiotherapy
(Vaccine before TMZ)

mOS: 14.4 months

IMA950 + GM-CSF + Chemoradiotherapy
(Vaccine after TMZ)

mOS: 15.7 months

Peptide Vaccine
NCT01920191
[211,212] 1/2 Completed ndGBM (HLA-A2+) IMA950 + Poly-ICLC mOS: 19 months (95% CI: 17.25–27.87), PFS-6: 81%,

mPFS: 9.5 months

WT-1, PSMA,
hTERT, IL-2

Electroporation NCT03491683
[213] 1/2 Active, not recruiting ndGBM

MGMT-UN = INO-5401 + INO-9012 +
Cemiplimab + RT + TMZ mOS: 17.9 months (95% CI, 14.5–19.8)

MGMT m = INO-5401 + INO-9012 +
Cemiplimab + RT + TMZ mOS: 32.5 months (95% CI, 18.4-N/A)

Tumor Lysate

DC vaccine NCT01171469
[214] 1 Completed

Recurrent or Progressive
Malignant Gliomas

DCs pulsed with Tumor Lysate (from BTSCs)
+ Imiquimod

DC vaccine NCT00068510
[215] 1 Completed Malignant Gliomas DCs pulsed with Tumor Lysate

DC vaccine NCT01808820 1 Completed Malignant Gliomas DCs pulsed with Tumor Lysate + Imiquimod

DC vaccine
NCT02010606
[216] 1 Completed GBM

ndGBM = DCs pulsed with Tumor Lysate
(from Allogeneic Stem-like Cells) + RT + TMZ

mPFS: 8.75 months, mOS: 20.36 months

rGBM = DCs pulsed with Tumor Lysate (from
Allogeneic Stem-like Cells) + Bev (optional)

mPFS: 3.23 months, PFS-6: 24%, mOS: 11.97 months

DC vaccine
NCT01213407
[217] 2 Completed Malignant Gliomas

SOC + DCs pulsed with Tumor Lysate (Trivax)

SOC

DC vaccine NCT01006044
[218] 2 Completed GBM DCs pulsed with Tumor Lysate mPFS: 12.7 months (95% CI, 7–16), mOS: 23.4 months

(95% CI, 16–33.1)

DC vaccine NCT00323115
[219] 2 Completed ndGBM DCs pulsed with Tumor Lysate + RT + TMZ PFS-6: 90%, mPFS: 9.5 months, mOS: 28 months



Cancers 2024, 16, 1276 21 of 58

Table 2. Cont.

Antigen Vaccine/
Delivery

NCT
Number Phase Study Status Tumor Target Intervention Outcome

DC vaccine
NCT00045968
[220,221] 3 Active, not recruiting GBM

DCs pulsed with Tumor Lysate (DCVax-L) ndGBM = mOS: 19.3 months (95% CI, 17.5–21.3)
rGBM = mOS: 13.2 months (95% CI, 9.7–16.8)

Unpulsed PBMCs ndGBM = mOS: 16.5 months (95% CI, 16.0–17.5)
rGBM = mOS: 7.8 months (95% CI, 7.2–8.2)

Personalized

Peptide Vaccine
NCT02149225
[222,223] 1 Completed ndGBM APVAC1/APVAC2 + Poly-ICLC + GM-CSF

+ TMZ mPFS: 14.2 months, mOS: 29 months

Peptide Vaccine NCT02510950 1 Terminated ndGBM Personalized Peptide Vaccine + Poly-ICLC
+ TMZ

Peptide Vaccine
NCT03223103
[224] 1 Active, not recruiting ndGBM

Mutation-derived Tumor Antigen Vaccine +
Poly-ICLC + TTF

Estimated PFS-12: 62.5%, estimated OS-12: 83.3%

Peptide Vaccine NCT05557240 1 Recruiting ndGBM
NPVAC1 + Poly-ICLC + TMZ

NPVAC2 + Poly-ICLC + TMZ

Electroporation NCT04015700 1 Active, not recruiting ndGBM (MGMT-UN) Personalized DNA Vaccine (GNOS-PV01)
+ INO-9012

Peptide Vaccine [225] 3 Concluded rGBM (HLA-A24+)
Personalized Peptide Vaccine mOS: 8.4 months (95% CI, 6.6–10.6)

Placebo mOS: 8.0 months (95% CI, 4.8–12.9)

N/A

Peptide Vaccine NCT04842513 1 Recruiting ndGBM (HLA-A2+,
MGMT-M)

Multipeptide Vaccine + XS15 + Montanide
ISA-51

DC vaccine NCT04968366 1 Recruiting ndGBM DCs pulsed with Multiple Neopeptides + TMZ

DC vaccine NCT00612001
[215] 1 Completed Malignant Gliomas

DCs pulsed with Multiple
Glioma-associated Peptides

DC vaccine NCT00890032
[226] 1 Completed rGBM DCs pulsed with mRNA from BTSCs mPFS: 3.2 months (95.0% CI, 1.8–7.2), mOS: 11

months (95.0% CI, 8.2–14.8)

DC vaccine NCT02820584 1 Completed rGBM
DCs pulsed with mRNA from Glioma
Stem Cells

DC vaccine NCT00846456
[227] 1/2 Completed GBM

DCs pulsed with mRNA from Glioma
Stem Cells

mOS (treated group): 759 days, mOS (control group):
585 days

DC vaccine NCT00576641
[228] 1 Completed Brain Stem Glioma and

GBM DCs pulsed with Tumor Peptides

Bev, Bevacizumab; BTSC, brain tumor stem cell; CAR-T, chimeric antigen receptor T cell; CI, confidence interval; CMV-ALT, CMV-autologous lymphocyte transfer; DC, dendritic

cell; GM-CSF, granulocyte-macrophage colony-stimulating factor; KLH, Keyhole Limpet Haemocyanin; mDOR, median duration of response; mOS, median overall survival; mPFS,

median progression-free survival; ndGBM, newly diagnosed GBM; NPVAC, NeoPep vaccine; ORR, objective response rate; OS-12, overall survival at 12 months; OS-24, overall survival

at 24 months; PBMC, peripheral blood mononuclear cell; Poly-ICLC, polyinosinic–polycytidylic acid stabilized with polylysine and carboxymethylcellulose; PFS-12, progression-

free survival at 12 months; PFS-6, progression-free survival at 6 months; rGBM, recurrent GBM; RT, radiotherapy; SOC, standard of care; Td, tetanus and diphtheria toxoid;

TMZ, Temozolomide.
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4.2.1. DNA/RNA Vaccines

The pioneering and extensive research by the Nobel Prize-winning Dr. Drew Weiss-
man and Dr. Katalin Karikó on messenger RNA (mRNA) has played a pivotal role in
the remarkable and swift development of mRNA-based vaccines for COVID-19. Deployed
in at least 164 countries, these vaccines have been a lifeline, saving millions of lives dur-
ing the global pandemic crisis, bringing considerable focus to nucleic acid vaccines in
the context of cancer treatment. A notable benefit of nucleic acids is their applicability
across all human HLA genotypes, enabling presentation on both MHC-I and MHC-II
molecules for the activation of both CD8+ and CD4+ T cell responses [229,230].

DNA vaccines can be easily engineered, allowing for cost-effective production and
purification. They also demonstrate remarkable stability and are considered safe for use.
Moreover, the plasmids employed in DNA vaccines serve as potent “danger signals”,
activating various DNA-sensing innate immune receptors that facilitate the development of
effective adaptive immune responses [229]. However, DNA vaccines have shown a limited
response in clinical trials, partly due to low in vivo transfection efficiency. By contrast,
RNA vaccines provide even more advantages in terms of safety, such as the absence of
risk for insertional mutagenesis, inability to self-replicate, and rapid degradation through
proteases [230]. The main drawback of RNA-based therapies lies in the RNA inherent
instability and limited ability to effectively penetrate cells. To increase their preservation
and facilitate their delivery, RNA molecules are loaded within cells, virus-like capsid, or
nanoparticles [230]. Conclusive results on the effectiveness of DNA and RNA vaccines
for GBM treatment are still pending, as these vaccines have not yet undergone phase
3 clinical trials. The ongoing NCT03491683 phase 1/2 trial is investigating the combi-
nation of two DNA vaccines with a PD-1 inhibitor in newly diagnosed GBM patients.
The first vaccine, named INO-5401, encodes for Wilms Tumor-1 (WT1), prostate-specific
membrane antigen (PSMA), and hTERT. The second vaccine, named INO-9012, encodes
for IL-12. Both vaccines are administered intramuscularly with subsequent electropora-
tion. The latter is used as a delivery system, applying high-intensity electricity to increase
membrane permeability [231]. Interim analysis shows promising results in terms of safety,
immunological effectiveness, and potential survival advantage [213,232]. A phase 1 study
(NCT04015700) is in progress to evaluate the efficacy of INO-9012 together with a personal-
ized DNA vaccine, and electroporation delivery. As for RNA vaccines, a phase 1/2 study
(NCT04573140) is currently investigating the intravenous administration of autologous
tumor messenger RNA (mRNA) in GBM patients using lipid particles.

4.2.2. Peptide Vaccines

Peptide-based vaccines use short synthetic peptides mimicking antigenic epitopes
that can trigger potent and highly targeted responses. Peptide vaccines have been shown
to predominantly induce humoral immunity but can also trigger cell-mediated immunity
against the desired antigen [233]. So far, peptide vaccines have not demonstrated significant
clinical benefit in the cure of GBM patients. This is partially due to the inherent instability
and limited immunogenicity of peptides. As reviewed by Frederico et al. (2021), five main
GBM-targeting peptide vaccines are currently under investigation: rindopepimut, Sur-
VaxM, IMA950, heat shock protein–peptide complexes 96 (HSPPC-96)-specific vaccine, and
personalized neoantigens vaccines [184]. Rindopepimut is a 13 aa peptide vaccine based
on EGFRvIII. Despite promising results in phase 2 clinical trials [196–198], rindopepimut
plus standard chemotherapy failed to improve the OS of newly diagnosed GBM patients in
a randomized phase 3 clinical study (ACT-IV) [200]. However, trial data demonstrated in-
creased humoral immune responses in the treatment arm compared to the control arm [200].
More than half of the trial patients, regardless of receiving rindopepimut, experienced a loss
of EGFRvIII expression at relapse. This antigenic loss (~50% loss rate at relapse) reduces
the number of eligible patients who can benefit from rindopepimut. Biopsy confirmation
of EGFRvIII expression is therefore a crucial factor for clinical trial enrollment.
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The SurVaxM vaccine specifically targets survivin, an anti-apoptotic protein that
exhibits high expression in GBM while being undetectable in normal brain tissue [206,234].
Currently, a phase 2 study (NCT02455557) is actively investigating the efficacy of TMZ and
the SurVaxM vaccine in treating newly diagnosed GBM patients [207,208]. Preliminary
results have demonstrated the safety and tolerability of the vaccine, along with elevated
levels of survivin antibodies and CD8+ T cells post-vaccination, leading to improved PFS
and OS compared to historical controls [207,208].

The multi-peptide treatment IMA950, consisting of 11 TAAs commonly found in
GBM tumors, has shown promising results in phase 1 and 2 clinical trials. Administered
intradermally to newly diagnosed GBM patients treated with radiochemotherapy, IMA950
elicited CD8+ T cell responses to both single and multiple antigens [210,211]. Of note,
adjuvant choice might be important for patient outcome, as the IMA950/poly-ICLC treat-
ment [211] showed increased OS and PFS rates compared to IMA950/GM-CSF [210]. How-
ever, IMA950/poly-ICLC vaccination had no benefit in patients with recurrent GBM [212].
Phase 3 clinical trials are awaited to confirm vaccine efficacy.

Differently from IMA950, HSPPC-96 vaccine targets multiple tumor neoantigens.
HSPPC-96 consists of gp96, a 96 kilodalton (kDa) heat shock protein (HSP), and its associ-
ated cellular neopeptides. As a chaperone of the ER, HSPPC-96 can be internalized into
APCs for efficient antigen presentation [235,236]. Promising phase 1 and 2 results [201,202]
sparked numerous clinical trials, some of which still ongoing (i.e., NCT03018288 and
NCT01814813). Of note, checkpoint inhibitors may significantly impact vaccine efficacy,
as an elevated PD-L1 expression translated into systemic immunosuppression and less
response to vaccination [203], warranting further clinical studies on combination therapies
of peptide vaccine with ICIs. Recently, researchers utilized whole-exome sequencing data
to develop personalized peptide vaccines that consider the patient’s specific neoantigen
expression. Phase 1 trials, including the European GAPVAC trial [223] and the American
NEOVAX trial [237], have been conducted to assess the efficacy of this approach in newly
diagnosed GBM patients. In both trials, the treatments stimulated robust circulating T cell
responses against at least one immunizing peptide, involving CD8+ and CD4+ T cells with
a memory phenotype. However, a randomized phase 3 trial evaluating personalized pep-
tide vaccines in recurrent GBM patients did not meet the primary nor secondary endpoint
for the enrolled participants [225].

4.2.3. Dendritic Cell Vaccines

Another potential immunotherapeutic approach is to exploit the intrinsic antigen presen-
tation ability of DCs to activate adaptive immune responses. Autologous DCs are typically
harvested, ex vivo sensitized with antigens and then re-infused into the patient [238,239].
Autologous DCs can be directly isolated from the peripheral blood or differentiated in vitro
from monocytes or CD34+ hematopoietic stem cells via IL-4 or GM-CSF [240]. DCs may be
“educated” via several forms of antigens ranging from DNA/RNA to peptides and tumor
lysates. Peptides loaded on DCs are more efficiently delivered to the target tissue compared
to peptide treatments alone. Although the initial clinical results appear promising, there
is currently a scarcity of robust evidence regarding the efficacy of DC vaccines in GBM.
The outcome of DC vaccines against GBM tumors is variable, reflecting inter-individual
heterogeneity and ranging from minimal or no clinical response to significant response.
Additionally, without the aid of adjuvants, DCs face challenges in migrating to the lymph
nodes, with less than 5% of injected DCs successfully reaching their target destination [241].

CMV proteins are highly expressed in over 90% of GBM tumors but are rarely found
in healthy brain tissue [242]. mRNA encoding for the CMV phosphoprotein 65 (pp65) can
be loaded into DCs to stimulate CMV-specific T cell immunity able to kill GBM cells [243].
Two phase 1 studies [189,190] demonstrated that, despite the cold microenvironment of
GBM, CMV-pp65 RNA-pulsed DCs (also known as CMV-DCs) triggered antigen-specific
T cell responses, warranting further follow-up (NCT02771301, NCT02465268). The pre-
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conditioning of patients with tetanus/diphtheria toxoid actively increased the homing of
pp65-specific DCs to the lymph nodes [189].

To date, only two DC vaccines reached randomized phase 3 clinical trials: ICT-107
and DCVax-L. In ICT-107, DCs are pulsed with multiple MHC-I-restricted TAAs highly
expressed on GBM: AIM-2, MAGE-1, HER2/neu, TRP-2, gp100, and IL-13Rα2 [244,245].
A phase 2 study demonstrated the safety and immunogenicity of the treatment, as well
as an improvement in patients’ PFS compared to the control group [209]. The phase 3
trial (NCT02546102) testing the intradermal administration of ICT-107 in newly diagnosed
GBM patients was prematurely suspended because the company was unable to financially
support its completion.

For DCVax-L, DCs are pulsed ex vivo with a tumor lysate. In a randomized phase 3
clinical trial, the effectiveness of DCVax-L and standard radiochemotherapy was evalu-
ated in patients with newly diagnosed and recurrent GBM. The addition of DCVax-L to
the standard therapy was found to be safe [220]. The multicentric study (NCT00045968)
started in 2007 over a period of eight years and included two arms of GBM patients. In
addition to standard radiochemotherapy, the first arm was treated with placebo, while
the second arm received DCVax-L. The primary endpoint of the trial was PFS. However,
in the initial report detailing the trial results, there was no mention of PFS data. Instead,
the authors declared an increase in OS [220]. After four years, a second report retro-
spectively compared the OS of DCVax-L-treated patients with that of an external control
population of patients obtained from selected published randomized clinical trials [221].
The data suggested that MGMT-methylated patients show increased survival compared to
non-methylated individuals, pointing to a possible cooperative effect of TMZ and DCVax-L.
Notably, the treatment led to an extension of median OS for both newly diagnosed GBM
(19.3 months vs. 16.5 months) and recurrent GBM (13.2 months vs. 7.8 months) patients
compared to external controls receiving standard of care alone [221]. However, concerns
were raised regarding the interpretation of the results, emphasizing the necessity to ap-
proach the findings with caution. Various design issues, such as a shift in the primary
endpoint from PFS to OS based on arguments related to pseudo-progression, an extended
duration of the enrollment period, and an inappropriate selection of the control arm,
contribute to these concerns [246–251].

4.3. Adoptive T Cell Therapy

Adoptive T cell therapy is an immunotherapy technique in which the patient’s T cells
are expanded outside the body (ex vivo) and then reinfused back into the patient to
target tumors. A few days before T cell reinfusion, patients undergo a lymphodepleting
preparative regimen, which involves the use of lymphocyte-directed chemotherapy. This
regimen aims to create a favorable environment that prolongs the persistence of infused
cells and enhances the effectiveness of the treatment [252]. Currently, adoptive T cell
therapy in the context of GBM primarily involves the use of patient-isolated infiltrating
T cells (TIL therapy) or patient-isolated T cells genetically engineered ex vivo to regain
cancer-fighting properties, such as chimeric antigen receptor T cells (CAR-T cells) (Table 3).
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Table 3. List of clinical trials involving adoptive T cell therapies in adult GBM patients. The table includes concluded or terminated studies, as well as those currently

underway or preparing to enroll participants. Data were sourced from ClinicalTrials.gov, retrieved on 13 December 2023.

Antigen
NCT
Number

Phase
Study
Status

Tumor
Target

Intervention Outcome

Monovalent CAR-T

B7-H3

NCT05241392 1 Recruiting rGBM B7-H3 CAR-T

NCT05366179 1 Recruiting rGBM B7-H3 CAR-T

NCT05474378 1 Recruiting rGBM B7-H3 CAR-T

NCT04385173 1 Recruiting rGBM or Refractory GBM B7-H3 CAR-T + TMZ

NCT04077866 1/2 Recruiting rGBM or Refractory GBM
TMZ

TMZ + B7-H3 CAR-T

CD70 NCT05353530 1 Recruiting ndGBM (MGMT-UN, CD70+) CD70 CAR-T

EGFRvIII

NCT05802693 1 Not yet recruiting rGBM (EGFRvIII+) EGFRvIII CAR-T

NCT02209376 [253–255] 1 Terminated rGBM EGFRvIII CAR-T mOS: 251 days

NCT02664363 [256] 1 Terminated ndGBM (EGFRvIII+) EGFRvIII CAR-T

NCT02844062 1 Unknown rGBM (EGFRvIII+) EGFRvIII CAR-T

NCT03283631 1 Terminated rGBM EGFRvIII CAR-T

NCT05063682 1 Unknown
Leptomeningeal GBM
(EGFRvIII+)

EGFRvIII CAR-T

NCT05660369 1 Recruiting GBM
EGFRvIII BiTE-secreting
CAR-T

NCT05024175 Observational Not yet recruiting GBM /

NCT01454596 [257] 1/2 Completed Malignant Gliomas (EGFRvIII+) EGFRvIII CAR-T mOS: 6.9 months (2.8–10)

NCT03941626 1/2 Unknown Solid Tumors (EGFRvIII+) EGFRvIII CAR-T

NCT03638206 1/2 Unknown Solid Tumors (EGFRvIII+) EGFRvIII CAR-T

EMMPRIN NCT04045847 1 Unknown
Recurrent Malignant
Gliomas (CD147+)

EMMPRIN CAR-T

GD2 NCT03170141 [258] 1 Enrolling by invitation rGBM (GD2+) GD2 CAR-T mOS = 10 months (3–24)

HER2/neu

NCT01109095 [259] 1 Completed GBM HER2 CAR-T

NCT03389230 1 Active, not recruiting
Recurrent or Refractory
Malignant Gliomas

HER2 CAR-T
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Table 3. Cont.

Antigen
NCT
Number

Phase
Study
Status

Tumor
Target

Intervention Outcome

IL-13Rα2

NCT02208362 [260] 1 Active, not Recruiting Recurrent Malignant
Gliomas

IL-13Rα2 CAR-T
(intratumoral)

IL-13Rα2 CAR-T
(intracavitary)

IL-13Rα2 CAR-T
(intraventricular)

IL-13Rα2 CAR-T (intratu-
moral/intraventricular)

NCT04661384 1 Recruiting
Leptomeningeal GBM,
Ependymoma, or
Medulloblastoma

IL-13Rα2 CAR-T

NCT05540873 1 Recruiting
Recurrent or Refractory
Malignant Gliomas

IL-13Rα2 CAR-T

NCT00730613 [261] 1 Completed
Recurrent or Refractory
Malignant Gliomas

IL-13Rα2 CTLs

MMP2
(Chlorotoxin)

NCT04214392 1 Recruiting rGBM (MMP2+)

MMP2 CAR-T
(intratumoral)

MMP2 CAR-T (intratu-
moral/intraventricular)

NCT05627323 [262] 1 Recruiting rGBM (MMP2+) MMP2 CAR-T

NKG2D

NCT04270461 1 Withdrawn
Recurrent Solid Tumors
(NKG2DL+)

NKG2D CAR-T

NCT05131763 1 Recruiting
Recurrent Solid Tumors
(NKG2DL+)

NKG2D CAR-T

NCT04717999 N/A Not yet recruiting rGBM NKG2D CAR-T

NCT04550663 1 Unknown
Relapsed or Refractory Solid
Tumors (NKG2DL+)

NKG2D CAR-T

PD-L1 NCT02937844 1 Unknown rGBM PD-L1 CAR-T

SNC-109 NCT05868083 1 Recruiting rGBM SNC-109 CAR-T
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Table 3. Cont.

Antigen
NCT
Number

Phase
Study
Status

Tumor
Target

Intervention Outcome

Polyvalent CAR-T

IL-7Ra, CD44
and CD133

NCT05577091 1 Not yet recruiting rGBM Tris-CAR-T

EGFRvIII,
IL-13Rα2,
HER2/neu,
EphA2,
CD133, GD2

NCT03423992 [263] 1 Unknown
Recurrent Malignant
Gliomas

Personalized CAR-T
mOS (EphA2-specific CAR-T)
= 86–181 days

TILs

NCT05333588 1 Recruiting GBM TILs

NCT03347097 [264] 1 Unknown rGBM
TILs mOS: 16.1 months

PD-1-TILs mOS: 11.2 months

NCT04943913 1 Recruiting Gliomas TILs

BiTE, bispecific T-cell engager; CAR-T, chimeric antigen receptor T cell; MGMT-unmethylated, MGMT-UN; mOS, median overall survival; ndGBM, newly diagnosed GBM; rGBM,

recurrent GBM; TIL, tumor-infiltrating lymphocyte.



Cancers 2024, 16, 1276 28 of 58

4.3.1. TIL Therapy

The preparation of autologous TILs is a time-consuming process with a low success
rate. It involves culturing a resected tumor specimen in a high concentration of recombinant
IL-2, along with IL-15 and IL-21 if necessary. The TILs are then selected, expanded, and
transferred to the patient. A pilot study demonstrated that the delivery of autologous
TILs and IL-2 had limited anti-tumor effects in the context of malignant gliomas [265]. As
a potential explanation, patient-isolated TILs are heterogeneous in terms of TCR and level
of exhaustion and would therefore react differently against the tumor cells [83,266]. The use
of ICIs may therefore promote the anti-tumor efficacy of TIL therapy. Two phase 1 clinical
trials (NCT05333588, NCT04943913) are currently recruiting GBM patients to investigate
safety of TIL therapy, with results expected for 2024–2025.

4.3.2. CAR-T Cell Therapy

A promising T-cell-based approach involves the genetic engineering of autologous
T cells to express a chimeric antigen receptor (CAR) designed to target tumor-specific
antigens. CAR is a recombinant receptor that, in its latest generations, consists of four
main components: (i) an extracellular antigen-recognition domain, (ii) a spacer region,
(iii) a transmembrane domain that anchors CAR to the cell membrane, and (iv) intracellular
signaling domains that provide co-stimulation and initiate the signaling cascade [267].
The major advantage of CAR-T cell therapy is that CAR recognizes a tumor antigen
independently of MHC-restriction, therefore bypassing antigen presentation. Once bound
to a specific antigen, the CAR signaling domains send the signals to the T cell to kill
the target cell.

Driven by the success of CAR-T therapies in hematological cancers [268], researchers
are currently focusing their efforts on the development of GBM-specific CAR-T therapies.
So far, CAR-T cell clinical trials for GBM are still in the early stages, primarily in phase
1/2 trials. While some CAR-T cells have shown promise, they still need to demonstrate
clinical benefits conclusively. The interpatient variability in surface antigen expression
along with the problem of antigen escape represent major obstacles of this approach. Other
barriers to the clinical efficacy of CAR-T cells are T cell engraftment and expansion in vivo
and the inhibitory TME, which becomes even more immunosuppressive after CAR-T
therapy [269]. Combining lymphodepleting preconditioning and ICIs may address these
obstacles. Moreover, the high cost of CAR-T cell manufacturing can affect healthcare ex-
penditures and limit access to this therapy. As reviewed by Luksik et al. (2023), EGFRvIII,
IL-13Rα2, and HER2/neu are among the main target antigens of CAR-T cell therapy evalu-
ated in clinics in the last decade [270]. B7-Homolog 3 (B7-H3), the ECM metalloproteinase
inducer (EMMPRIN), disialoganglioside (GD2), matrix metalloproteinase 2 (MMP2), and
NKGD2 ligands are instead novel targets currently under investigation in ongoing clinical
trials [271].

EGFRvIII-directed CAR-T cells were tested in a phase 1 study for the treatment
of EGFRvIII+ recurrent GBM, showing safety and feasibility without cross-reactivity to
wild-type EGFR. However, the therapy resulted in EGFRvIII antigen escape and adaptive
resistance [253]. A subsequent phase 1/2 trial did not yield clinical benefits in recurrent
GBM patients [257].

IL-13Rα2 is a potential target found in many human cancers, including GBM (>75%) [272].
Different versions of IL-13Rα2-targeted CARs have been developed so far, with modifica-
tions in genetic elements and costimulatory molecules [260,261,273,274]. 13Rα2-targeted
CAR-T cells showed promising results in a recurrent GBM patient, with tumor regression,
increased cytokine levels, and no therapy-associated toxicity. The clinical response lasted
for 7.5 months after treatment [260]. The newest version of IL-13Rα2-targeted CAR-T cells
was genetically modified to induce a permanent disruption of the glucocorticoid receptor.
In a phase 1 trial, the intracranial administration of the therapy in recurrent GBM patients
was well tolerated, with indications of transient tumor reduction and/or tumor necrosis at
the site of T cell infusion [274].
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HER2/neu, being overexpressed in 80% of GBM, is another common antigenic target
used in CAR-T therapies [275]. Despite its expression in both tumor and healthy brain
tissue, no off-target toxicity has been observed in GBM patients systemically infused
with HER2/neu-specific CAR-T cells [276]. Hedge and colleagues designed and created
bivalent HER2/neu- and IL-13Rα2-targeting CAR-T cells that, in preclinical GBM mouse
models, reduced antigen escape, enhanced T cell effector functions, and improved animal
survival [277]. Trivalent CAR molecules specific for the glioma antigens HER2/neu, IL-
13Rα2, and ephrin-A2 (EphA2) have the potential to capture nearly the totality of tumor
cells. In preclinical models, these CAR-T cells inhibited tumor growth and extended animal
survival compared to monospecific or bispecific CAR-T cells [278]. Clinical trials are still
awaited to confirm treatment efficacy in humans.

4.4. Virus-Based Therapy

Virus-based treatments employed for the treatment of GBM can be either gene delivery
systems or oncolytic viruses (OVs) (Figure 3, Table 4). Viral vectors are non-lytic and
typically deliver pro-inflammatory and anti-angiogenic molecules, tumor suppressor genes,
TAAs, ICIs, small interfering RNAs, cancer stroma-degrading enzymes, and cytotoxic
convertases [279]. OVs are instead replication-competent viruses that selectively replicate
in cancer cells inducing their lysiswhile sparing the heathy counterparts. They can either
have inherent oncolytic properties by naturally infecting tumor cells or acquire selective
tropism through genetic modifications [280]. Due to their replicative nature, OVs induce
cell lysis, which in turn elicits secondary immune responses by releasing viral PAMPs,
DAMPs, and TAAs. The infection of tumor cells with OVs has the effect of “warming
up” the immunosuppressive TME, resulting in the inhibition of tumor progression and
an enhanced suitability of the TME for other therapeutic interventions [280].

Figure 3. Past and ongoing clinical trials in virus-based therapies for GBM. This figure provides

a comprehensive overview of the clinical studies investigating oncolytic virus (OV) or non-lytic

viral vectors for the treatment of GBM. A check mark under the “OV” section signifies the virus is

oncolytic, while a cross mark indicates its use as a non-lytic viral vector. The image was created with

BioRender (https://www.biorender.com/, accessed on 18 December 2023).
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Table 4. List of clinical trials involving virus-based therapies in adult GBM patients. The table includes concluded or terminated studies, as well as those currently

underway or preparing to enroll participants. Data were sourced from ClinicalTrials.gov, retrieved on 13 December 2023.

Virus Name Virus Type
NCT

Number
Phase

Study
Status

Tumor
Target

Intervention Outcome

Adenovirus

OV

CRAd-S-pk7

NCT05139056 1 Recruiting Recurrent Malignant Gliomas NSC-expressing CRAd-S-pk7

NCT03072134 [281] 1 Completed
Newly Diagnosed Malignant
Gliomas

NSC-expressing CRAd-S-pk7
mPFS: 9.1 months (95% CI,
8.5–36), mOS: 18.4 months
(95% CI, 6.5–36)

DNX-2401

NCT03896568 [282] 1 Recruiting Recurrent Malignant Gliomas
BM-hMSCs loaded with
DNX-2401

NCT02197169 [283] 1 Completed rGBM or Gliosarcoma
DNX-2401

DNX-2401 + IFN-γ

NCT01956734 [284] 1 Completed rGBM DNX-2401 + TMZ

NCT01582516 1/2 Completed rGBM DNX-2401

NCT00805376 [283] 1 Completed Recurrent Malignant Gliomas
DNX-2401 mOS: 9.5 months

DNX-2401 + Surgery mOS: 13 months

DNX-2440 NCT03714334 1 Terminated rGBM DNX-2440

ONYX-015 [285] 1 Completed Recurrent Malignant Gliomas ONYX-015
mOS (all patients):
6.2 months (1.3–28.0), mOS
(GBM patients): 4.9 months

Non-Lytic

AdV-ECRT-122T NCT06102525 1/2
Not yet
recruiting

GBM (hTERT+)
AdV-ECRT-122T +
Valganciclovir

AdV-HSV-TK

NCT00002824 1 Completed Primary Brain Tumors AdV-HSV-TK + Ganciclovir

NCT01811992 [286] 1 Completed Malignant Gliomas
AdV-HSV-TK + AdV-Flt3L +
Valacyclovir

mOS: 21.3 months (95% CI,
11.1–26.1)

NCT00751270 [287] 1 Completed Malignant Gliomas

Resectable Gliomas =
AdV-HSV-TK +
Valacyclovir + RT

Unresectable Gliomas =
AdV-HSV-TK +
Valacyclovir + RT

NCT03596086 1/2 Recruiting rGBM
AdV-HSV-TK + Valacyclovir +
Radiochemotherapy

NCT03603405 1/2 Recruiting ndGBM
AdV-HSV-TK + Valacyclovir +
Radiochemotherapy
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Table 4. Cont.

Virus Name Virus Type
NCT

Number
Phase

Study
Status

Tumor
Target

Intervention Outcome

NCT00870181 [288] 2 Completed Recurrent Malignant Gliomas

AdV-HSV-TK + Ganciclovir
PFS-6: 71.4%, mPFS:
34.9 weeks (9.0–238.4), mOS:
45.7 weeks (9.0–238.4)

SOC
PFS-6: 5.6%, mPFS: 7.4 weeks
(1.1–35.3), mOS: 8.6 weeks
(1.1–45.0)

NCT00589875 [289] 2 Completed Malignant Gliomas

AdV-HSV-TK +
Valacyclovir + RT

mOS: 17.1 months

SOC mOS: 13.5 months

Ad-RTS-IL-12
NCT02026271
[290]

1 Completed Malignant Gliomas Ad-RTS-IL-12 + Veledimex

AdV-IFN-β
NCT05914935 1 Recruiting rGBM AdV-IFN-β

NCT00031083 1 Completed Malignant Gliomas AdV-IFN-β

AdV-p53
NCT00004041 1 Completed Recurrent Malignant Gliomas AdV-p53

NCT00004080 1 Completed
Recurrent or Progressive Brain
Tumors

AdV-p53

VB-111

NCT01260506 [291] 1/2 Completed rGBM

VB-111 until progression mOS: 223 days, OS-12: 18%

VB-111 upon progression + Bev
(primed combination)

mOS: 414 days, OS-12: 57%

VB-111 + Bev
(unprimed combination)

mOS: 141.5 days, OS-12: 10%

NCT02511405 [292] 3 Completed rGBM

VB-111 + Bev
mOS: 6.8 months,
ORR: 27.3%

Bev
mOS: 7.9 months,
ORR: 21.9%

Herpes Simplex
Virus

OV

C134 NCT03657576 1 Recruiting rGBM C134

C5252 NCT05095441 1
Not yet
recruiting

rGBM or Progressive GBM C5252

HSV-1716

NCT02031965 1 Terminated Recurrent Malignant Gliomas HSV-1716

[293] 1 Completed Recurrent Malignant Gliomas HSV-1716

[294] 1 Completed Malignant Gliomas HSV-1716

[295] 1 Completed Malignant Gliomas HSV-1716
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Virus Name Virus Type
NCT

Number
Phase

Study
Status

Tumor
Target

Intervention Outcome

G207

NCT00157703 [296] 1 Completed Malignant Gliomas G207 + RT
mOS: 7.5 months (95% CI,
3.0–12.7)

NCT00028158 [297] 1/2 Completed Recurrent Brain Tumors G207

NCT00036699 [298] 1/2 Completed Recurrent Brain Tumors G207

G47∆
UMIN000002661
[299]

1/2 Completed rGBM or Progressive GBM G47∆ mOS: 30.5 (95% CI, 19.2–52.7)

M032 NCT02062827 1
Active, not
recruiting

Recurrent Malignant Gliomas M032 (NSC 733972)

rQnestin34.5v.2
NCT03152318
[300,301]

1 Recruiting Recurrent Malignant Gliomas

rQNestin34.5v.2

rQNestin34.5v.2 +
Cyclophosphamide

rQNestin34.5v.2 (Multiple
doses)

Retrovirus Non-Lytic

RV-HSV-TK [302] 3 Completed ndGBM

SOC
mOS: 354 days (95% CI,
315–372), OS-12: 55%

SOC + RV-HSV-TK +
Ganciclovir

mOS: 365 days (95% CI,
334–416), OS-12: 50%

Toca 511

NCT01985256 [303] 1 Completed Recurrent Brain Tumors Toca 511 + 5-FC

NCT02576665 [304] 1 Terminated Solid Tumors or Lymphomas Toca 511 + 5-FC

NCT01470794
[305,306]

1 Completed
Recurrent Malignant Brain
Tumors

Toca 511 + 5-FC

NCT01156584 [307] 1 Completed Recurrent Malignant Gliomas Toca 511 + 5-FC

NCT04327011 1 Terminated /
Toca 511 + 5-FC (Long term
safety follow-up)

NCT02414165 [308] 2/3 Terminated Recurrent Malignant Gliomas
Toca 511 + 5-FC mOS: 11.10 months

Lomustine, TMZ or Bev mOS: 12.22 months

NCT04105374 [309] 2/3 Withdrawn ndGBM
SOC
SOC + Toca 511 + 5-FC
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Virus Name Virus Type
NCT

Number
Phase

Study
Status

Tumor
Target

Intervention Outcome

Measles Virus OV MV-CEA NCT00390299 1 Completed rGBM

MV-CEA (Intracavitary)
PFS-6: 22.2% (95% CI,
6.6–75.4), mOS: 11.8 months
(95% CI, 4.4-N/A)

MV CEA
(Intratumoral/Intracavitary)

PFS-6: 23.1% (95% CI,
8.6–62.3), mOS: 11.4 months
(95% CI, 4.3-N/A)

Newcastle Disease
Virus

OV
NDV-HUJ NCT01174537 [310] 1/2 Withdrawn

rGBM, Sarcoma or
Neuroblastoma

NDV (HUJ strain)

NDV-MTH-68/H [311] / / Malignant Gliomas NDV (MTH-68/H strain)

Parvovirus OV H-1PV
NCT01301430
[312,313]

1/2 Completed rGBM or Progressive GBM H-1PV

Poliovirus OV PVSRIPO

NCT01491893 [314] 1 Completed rGBM PVSRIPO

mOS (PVSRIPO):
12.5 months (95% CI,
9.9–15.2), mOS (historical
controls): 11.3 months (95%
CI, 9.8–12.5)

NCT02986178 2
Active, not
recruiting

Recurrent Malignant Gliomas PVSRIPO

Reovirus OV Reolysin

NCT00528684 1 Completed Malignant Gliomas Reolysin

[315] 1 Completed Recurrent Malignant Gliomas Reolysin mOS: 21 weeks (6 to 234)

[316] 1 Completed Recurrent Malignant Gliomas Reolysin mOS: 140 days (97 to 989)

[317] 1 Completed
Malignant Gliomas and Brain
Metastases

Reolysin mOS: 469 days (118 to 1079)

Vaccinia Virus OV TG6002 NCT03294486 1/2 Completed rGBM TG6002 + 5-FC

5-FC, 5-FluoroCytosine; AdV, Adenovirus; Bev, Bevacizumab; BM-hMSCs, allogeneic bone marrow-derived human mesenchymal stem cells; CI, confidence interval; HSV, herpes simplex

virus; MGMT-methylated, MGMT-M; MGMT-unmethylated, MGMT-UN; mOS, median overall survival; OV, oncolytic virus; mPFS, median progression-free survival; MV, measles virus;

ndGBM, newly diagnosed GBM; NDV, Newcastle disease virus; NSC, neural stem cells; ORR, objective response rate; OS-12, overall survival at 12 months; PFS-6, progression-free

survival at 6 months; rGBM, recurrent GBM; RT, radiotherapy; RV, retrovirus; SOC, standard of care; TMZ, Temozolomide.
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4.4.1. Adenovirus (AdV)

In the context of GBM, researchers have primarily focused on the AdV delivery of the
herpes simplex virus (HSV) Thymidine kinase (TK) gene, the TP53 tumor suppressor gene,
the IL-12-encoding gene, and a transgene encoding for a chimeric death receptor (VB-111).

When administered alongside ganciclovir or valacyclovir, HSV-TK converts them into cyto-
toxic products that accumulate and selectively eliminate the transduced cancer cells. The various
clinical trials testing HSV-TK/ganciclovir gene therapy differed in the promoter used to control
TK gene expression: (i) Rous sarcoma virus (RSV) promoter [288,318,319] and (ii) CMV pro-
moter [320–322]. AdV-mediated gene therapy was safe and well tolerated [318–320]. A phase
2 trial testing the infusion of the suicide gene therapy into the arteries in patients with recur-
rent GBM revealed an improvement of PFS (29.6 vs. 8.4 weeks) and OS (45.4 vs. 14.3 weeks)
compared to standard treatments alone [288]. In a phase 3 randomized, controlled study
by Immonen et al. (newly diagnosed GBM and recurrent GBM patients), HSV-TK showed
little to moderate improvement in survival rates and moderate tolerability [321,322].
The substitution of ganciclovir with valacyclovir was found to be safe [287] and resulted in
improved median OS (17.1 vs. 13.5 months) for newly diagnosed GBM patients compared
to standard treatments alone, as observed in a phase 2 study [289].

A second genetic approach used for GBM treatment consists of the upregulation of
the TP53 tumor suppressor gene [323]. Restoration of a functionally active p53 protein was
achieved via the use of a TP53-armed AdV (INGN 201; ADVEXIN) constructed through
cDNA of the wild-type TP53 in place of the AdV E1 region [324]. The virus showed
minimal cytotoxicity in vivo but, when intratumorally injected, failed to distribute widely
in the tumor tissue, reaching only 5 mm from the injection site. Most notably, one GBM
patient enrolled in the clinical study survived nearly 3.5 years after Ad-TP53 treatment
without evidence of recurrence [325]. The p53-armed AdV was also investigated in another
phase 1 clinical trial (NCT00004080), but the results are not yet available.

Researchers investigated the effects of the proinflammatory cytokine IL-12 on GBM tu-
mors using an engineered AdV-based vector called Ad-RTS-IL-12 [326]. This vector allows
for the inducible expression of IL-12, activated via oral administration of veledimex. Pre-
clinical studies showed reduced tumor mass and increased lymphocyte infiltration [326]. In
human application, Ad-RTS-IL-12 is injected into the resection cavity of recurrent GBM pa-
tients, accompanied by veledimex administration, showing limited toxicity and promising
anti-tumor immune responses [290].

Lastly, VB-111 is an AdV-based cancer gene therapy that specifically targets angio-
genic endothelial cells with a transgene encoding a chimeric death receptor, linking Fas to
human TNF-R. When activated, this receptor induces Fas-mediated apoptosis and vascular
disruption, leading to tumor starvation. In a phase 2 study, the combination of VB-111
and bevacizumab doubled the survival of patients with recurrent GBM compared to beva-
cizumab monotherapy [291]. However, a randomized controlled phase 3 study (GLOBE),
testing VB-111 and bevacizumab failed to replicate the phase 2 results in recurrent GBM
patients [292].

Alternatively, researchers have tested oncolytic AdVs, also known as conditionally
replicative adenoviruses (CRAds), to target GBM tumors. These viruses acquire their
tumor specificity via either (i) deletion of genes encoding for cell cycle regulatory proteins,
(ii) natural overexpression of virus receptors on the surface of tumor cells, or (iii) use of
tumor-specific promoters to control viral replication [327]. In the case of GBM, four main
CRAds have reached clinical testing: ONYX-015, DNX-2401, DNX-2440, and CRAd-S-pk7.

ONYX-015 contains a deletion of the E1B gene. The virus preferentially replicates
in cancer cells through various, not yet fully characterized mechanisms [328,329]. At
the preclinical level, ONYX-015 achieved promising results in terms of tumor cell killing
and reduction of tumor mass [330]. In a phase 1 study, ONYX-015 proved to be safe and
well tolerated even at the highest dose (1010 viral particles) in all enrolled patients, among
which recurrent GBM cases were included [285]. However, no tendency of anti-tumor
efficacy could be observed in this study [285].
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DNX-2401, previously known as delta-24-RGD (∆24RGD) or Tasadenoturev, features
a 24 bp deletion of the E1A gene that abrogates the binding and inhibition of E1A to the Rb
protein and a fiber knob RGD modification to retarget virus entry via cell surface integrins
that are typically enriched in glioma cells. These modifications were initially believed
to enable selective targeting and replication of the virus to cancer cells with aberrant Rb
pathways [331,332]. However, other research groups have been unable to replicate these
initial findings [333]. Both as a single agent or in combination with other treatments (i.e.,
IFN-γ and anti-PD1), DNX-2401 did not raise any safety concerns [283,334–336]. Although
the 12-month survival objective was achieved, the combination of DNX-2401 with TMZ
and pembrolizumab did not meet the primary endpoint of objective response in a phase 2
clinical trial [337]. A new clinical trial (NCT03896568) is actively recruiting recurrent GBM
patients to test DNX-2401 oncolytic virus delivered by allogenic bone marrow-derived
human mesenchymal stem cells.

DNX-2401 has been recently modified to express the human OX40 co-stimulatory
ligand (OX40L), aiming to enhance the antigen presentation in tumor cells. Compared
to DNX-2401, this new version exhibited more potent and specific anti-glioma activity,
attributed to superior T cell activation and proliferation [338]. Although a phase 1 clinical
trial (NCT03714334) was underway to evaluate this modified virus for recurrent GBM
treatment, it was terminated due to a stock shortage.

Lastly, Ulasov and colleagues generated a glioma-specific recombinant AdV, called
CRAd-S-pk7, by modifying the Ad5 fiber with pk7s and by regulating the expression of
the E1A gene via the human survivin promoter [339]. Building on encouraging preclini-
cal results [340,341], CRAd-S-pk7 virus loaded onto neural stem cells was administered
during surgery in newly diagnosed GBM patients, along with chemo-radiotherapy [281].
The treatment proved to be safe and well tolerated [281]. Although not the primary ob-
jective of the study, the presence of promising survival outcomes provides support for
conducting further investigations of CRAd-S-pk7 in phase 2/3 clinical trials.

4.4.2. Retrovirus

In the context of GBM, researchers have primarily focused on the retrovirus deliv-
ery of the HSV-TK gene, or of the yeast cytosine deaminase gene (Toca 511). A phase 3
study that tested HSV-TK gene delivery along with intravenous ganciclovir administration
demonstrated no significant differences in median OS between treatment and control pa-
tients [302]. Toca 511, also known as Vocimagene Amiretrorepvec, is a replication-deficient
engineered murine leukemia virus armed with the yeast cytosine deaminase gene [342].
When administered in combination with the prodrug 5-fluorocytosine (Toca FC or 5-FC),
the virus-delivered cytosine deaminase converts it into its toxic form 5-Fluorouracil (5-
FU) that eventually kills the cancer cells and nearby immunosuppressive cells [343]. Of
note, 5-FU can induce so-called “bystander effects”, as it can passively diffuse through
cell membranes, therefore not only affecting directly infected cancer cells but also nearby
cancer cells [344]. Despite encouraging observations in a phase 1 study [306], similarly to
the case of ICIs, Toca 511/5-FC failed to meet the primary endpoint of improve patient
survival compared to standard of care when tested in a randomized open label phase
2/3 study [308].

4.4.3. Herpes Simplex Virus (HSV)

The neurotropic HSV-1 belongs to the Herpesviridae family, and it is an enveloped icosa-
hedral virus with a dsDNA genome. To date, three genetically engineered versions of it have
been evaluated in completed clinical trials: HSV-1716 [345], G207 [298,346], and G47∆ [347].
First-generation HSV-1716 contains a deletion of γ134.5 genetic loci, which counteracts
the normal antiviral response of cells and allows viral protein translation to proceed [345].
Three UK phase 1 clinical trials demonstrated the safety of intratumoral injection of it, either
alone or following surgical resection, in glioma patients [293–295]. The second-generation
G207, which includes an additional insertion of the UL39 gene preventing viral replication
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in non-dividing cells [298,346], also demonstrated safety [296–298]. The third-generation
G47∆ (Teserpaturev, DELY-TACT) differs from the G207 backbone for a α47 gene deletion
that enhances viral replication and triggers anti-tumor immune-mediated responses via
upregulation of MHC-I molecules [347]. Of note, the G47∆ bears the same genetic mu-
tations (γ134.5 and α47) of the first FDA- and EMA-approved oncolytic virus, namely
T-VEC (Talimogene Laherparepvec; IMLYGIC®; formerly called OncoVEXGM-CSF) [348].
However, via additional deletion of UL39, G47∆ was more attenuated than T-VEC and
therefore safer. At the University of Tokyo, a phase 1/2 study demonstrated the safety of
G47∆ when intratumorally injected in recurrent GBM patients [299]. Accordingly, they
started the subsequent phase 2 study to test the efficacy of multiple intratumoral G47∆

injections (1 × 109 viral particles; max of six injections) in patients with recurrent GBM [299].
Based on outstanding clinical results, G47∆ received a conditional time-limited approval
by the Pharmaceuticals and Medical Devices Agency of Japan (PMDA) for the treatment of
brain tumors.

4.4.4. Poliovirus

Polioviruses are positive single-stranded RNA (ssRNA) viruses belonging to
the Picornaviridae family. PVSRIPO, or Lerapolturev, is a non-pathogenic poliovirus/rhinovirus
chimeric virus with anti-neoplastic activity [349]. PVSRIPO specifically targets tumor
cells by utilizing the poliovirus receptor CD155 [350]. In a phase 1 trial, intratumoral
treatment with PVSRIPO in recurrent GBM patients demonstrated an improved overall
survival compared to historical controls [314]. Ongoing clinical studies include a phase 2 trial
(NCT02986178) investigating PVSRIPO as monotherapy, as well as phase 1/2 (NCT03973879)
and phase 2 (NCT04479241) trials exploring the combination of PVSRIPO with either anti-
PD-L1 atezolizumab or anti-PD1 pembrolizumab, respectively.

4.4.5. Respiratory Enteric Orphan Virus (Reovirus)

Reoviruses are naturally occurring double-stranded RNA viruses that belong to the
Reoviridae family. They are non-pathogenic and selectively replicate within cancer cells by
taking advantage of the Ras pathway that is commonly upregulated in neoplastic cells [351].
They underwent four phase 1 clinical trials for GBM treatment, with each study exploring
a different administration route: intratumoral [315,316] or systemic [317] injection. In all
trials, Reolysin proved to be safe. Of note, treatment causes an in vivo upregulation of
IFN-regulated genes and PD-1/PDL-1 axis, as well as an increase in T cell infiltration [317].
This makes Reolysin particularly interesting for combination therapies.

4.4.6. Measles Virus (MeV)

MEVs belong to the Paramixoviridae family and contain a negative sense ssRNA
genome. They were originally chosen to treat malignancies, as a case report linked their
infection to tumor remission [352]. The virus used for GBM treatment is a live attenuated
strain called MV-CEA that preferentially enters and replicates within malignant cells, in-
cluding GBM [353]. MV-CEA demonstrated to be safe in an early phase 1 trial testing
the injection of the virus in the tumor resection cavity of recurrent GBM (NCT00390299).

4.4.7. Newcastle Disease Virus (NDV)

NDV is an avian paramyxovirus with intrinsic oncolytic potential [354]. It is a negative-
sense ssRNA virus that preferentially replicates within type I IFN-deficient cancer cells [355].
The HUJ [310] and MTH-68/H [311] strains of NDV have been the subject of clinical
studies in patients with recurrent GBM. A phase 1/2 study of systemic application of
NDV-HUJ revealed minimal toxicity and encouraging anti-tumor responses, with one
patient achieving complete tumor remission during maintenance dosing [310]. However,
the complete response was not durable.
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4.4.8. H-1 Parvovirus (H-1PV)

Another promising strategy in the fight against GBM is the use of the oncolytic H-1PV.
It is a rat protoparvovirus of the Parvoviridae family characterized by an ssDNA genome.
It is not pathogenic for humans and naturally possesses oncolytic and oncosuppressive
properties as demonstrated in various in vitro and in vivo models [356,357]. Wild-type
H-1PV treatment was successful in a phase 1/2 clinical trial for recurrent or progressive
GBM, where patients received initial H-1PV administration via intravenous or intratu-
moral injection, followed by surgical resection and virus re-injection into the resection
cavity [312]. Results show that the treatment is safe, well tolerated, and associated with
surrogate evidence of efficacy, including immune conversion of the TME and extended
patient median OS in comparison with historical controls [312,313]. Compassionate use pro-
grams explored the combination of H-1PV with different agents, particularly bevacizumab,
an anti-angiogenic agent with immunomodulating properties [358], the PD-1 inhibitor
Nivolumab, and alongside Valproic acid, owing to encouraging preclinical results [359].
This multimodal therapeutic approach led to partial or complete objective responses in
seven out of nine cases [360,361].

4.4.9. Vaccinia Virus (VACV)

Enveloped dsDNA vaccinia viruses belong to the Poxviridae family and, in most of
cases, harbor inactivating mutations of the TK-encoding J2R gene (∆J2R VACV). ∆J2R VACV
therefore depends on host cells for TK protein, which is overexpressed in tumor cells [362].
Researchers developed the virus TG6002 by engineering a ∆J2R VACV Copenhagen strain to
express the yeast suicide gene FCU1 [363]. When combined with 5-FC, TG6002 activates the
prodrug, leading to tumor cell death by inhibiting DNA and protein synthesis. A concluded
Phase 1 trial (NCT03294486; ONCOVIRAC) tested the safety and efficacy of TG6002/5-FC
in recurrent GBM patients; however, the results are not yet posted.

5. Combination Therapy

It has become increasingly evident that a singular treatment approach is insufficient
for effectively addressing tumors, especially when dealing with a complex and hetero-
geneous entity like GBM. Researchers are now directing their attention toward combi-
nation therapies, seeking not only to combine immunotherapeutics with conventional
treatments but also to explore synergies among different immune-based approaches (Ta-
ble 5). Immune checkpoint inhibitors are currently being tested in combination with CAR-
T cells therapies (NCT03726515, NCT04003649), vaccination approaches (NCT03422094,
NCT02287428, NCT04013672, NCT03014804, NCT04201873), and with oncolytic viruses
such as AdVs (NCT03576612, NCT03636477), HSV (NCT05084430, NCT02798406), and
PVSRIPO (NCT04479241, NCT03973879).
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Table 5. List of clinical trials combining immunotherapeutic strategies in adult GBM patients. The table includes concluded or terminated studies, as well as those

currently underway or preparing to enroll participants. Data were sourced from ClinicalTrials.gov, retrieved on 13 December 2023.

Combination
NCT
Number

Phase
Study
Status

Tumor
Target

Intervention Outcome

ICT
+
ACT

Anti-PD-1 + CAR-T

NCT03726515 1 Completed ndGBM (MGMT-UN) EGFRvIII CAR-T + Pembro

NCT04003649 1 Recruiting
rGBM or
Refractory GBM

Nivo + IL-13Rα2 CAR-T + Ipi

Nivo + IL-13Rα2 CAR-T

IL-13Rα2 CAR-T

ICT
+
Vaccine

Anti-PD-1 + CMV-DC NCT02529072 1 Completed Recurrent Brain Tumors

Nivo + Surgery + Nivo&CMV-DC

Nivo&CMV-DC + Surgery +
Nivo&CMV-DC

Anti-PD-1 + HSPPC-96 NCT03018288 2 Completed ndGBM (MGMT-UN)

RT + TMZ

RT + TMZ + Pembro

RT + TMZ + Pembro +
HSPPC-96 Vaccine

RT + TMZ + Pembro + Placebo

Anti-PD-1 + IMA950 NCT03665545 [364] 1/2 Active, not recruiting rGBM
IMA950 + Poly-ICLC

IMA950 + Poly-ICLC + Pembro

Anti-PD-1 or
Anti-CTLA-4
+ NeoVax

NCT03422094 1 Terminated ndGBM (MGMT-UN)

NeoVax + Nivo (start at time of
progression)

NeoVax + Nivo (start with Cycle 1)

NeoVax + Nivo (start with Cycle 2)

NeoVax + Ipi + Nivo (start with
Cycle 3)

NeoVax + Ipi + Nivo (day 1&15
each cycle)

NCT02287428 [237,365] 1 Recruiting ndGBM

RT + NeoVax

mPFS: 7.6 months (90% CI,
6.2–9.5), mOS: 16.8 months
(90% CI, 9.6–21.3)

RT + Pembro followed by NeoVax
+ Pembro

RT followed by NeoVax + Pembro

RT + 1 dose Pembro followed by
NeoVax + Pembro
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Table 5. Cont.

Combination
NCT
Number

Phase
Study
Status

Tumor
Target

Intervention Outcome

MGMT m = RT + TMZ Followed
by TMZ + NeoVax + Pembro

Anti-PD-1 + SurVaxM NCT04013672 [366] Phase 2 Active, not recruiting rGBM

Pembro + SurVaxM/Montanide
ISA-51 + GM-CSF (no
prior immunotherapy)

Pembro + SurVaxM/Montanide
ISA-51 + GM-CSF (prior
failed immunotherapy)

Anti-PD-1 +
DC-Tumor Lysate

NCT03014804 2 Withdrawn rGBM
DCVax-L

DCVax-L + Nivo

NCT04201873 1 Recruiting rGBM
Pembro + ATL-DC + Poly-ICLC

Placebo + ATL-DC + Poly-ICLC

ICT
+
Virus

Anti-PD-1 + AdV

NCT03576612 1 Active, not recruiting
Newly Diagnosed
Malignant Gliomas

MGMT-UN =
AdV-HSV-TK/Valacyclovir + RT +
TMZ + Nivo

MGMT m and undetermined =
AdV-HSV-TK/Valacyclovir + RT +
TMZ + Nivo

NCT03636477 [367]

1 Completed rGBM or Progressive
GBM

Ad-RTS-IL-12 + Veledimex + Nivo mOS: 16.9 months

Nivo mOS: 9.8 months

Anti-PD-1 + HSV

NCT05084430 1/2 Recruiting Recurrent Malignant
Gliomas

rGBM = Pembro + M032

ndGBM = Pembro + M032

NCT02798406 [337] 2 Completed rGBM or Gliosarcoma DNX-2401 + Pembro
ORR: 10.4% (90% CI, 4.2–20.7),
OS-12: 52.7% (95% CI, 40.1–69.2),
mOS: 12.5 months (10.7–13.5)

Anti-PD-1 + Poliovirus NCT04479241 [368] 2 Active, not recruiting rGBM PVSRIPO + Pembro

Anti-PD-L1 + Poliovirus NCT03973879 1/2 Withdrawn
Recurrent Malignant
Gliomas

PVSRIPO + Atezo

ACT, adoptive cell therapy; AdV, Adenovirus; Atezo, Atezolizumab; CAR-T, chimeric antigen receptor T cells; CI, confidence interval; DC, dendritic cell; HSV, herpes simplex virus;

ICT, immune checkpoint therapy; Ipi, Ipilimumab; MGMT-methylated, MGMT-M; MGMT-unmethylated, MGMT-UN; mOS, median overall survival; mPFS, median progression-free

survival; ndGBM, newly diagnosed GBM; ORR, objective response rate; Nivo, Nivolumab; OS-12, overall survival at 12 months; Pembro, Pembrolizumab; rGBM, recurrent GBM; RT,

radiotherapy; TMZ, temozolomide.
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In addition to exploring immunotherapeutic strategies, it is crucial to consider
the integration of radiation therapy into the treatment landscape for GBM. Being a first-
line treatment and integral component of the Stupp protocol, combining radiation with
immunotherapy is a logical approach. However, this combination introduces both oppor-
tunities and challenges. On the one hand, radiotherapy, with its tumor-targeting ionizing
radiations, induces molecular lesions, including DNA breaks (single- and double-stranded)
and base modifications triggering immunogenic cell death [369]. As extensively reviewed
in De Martino et al. (2021) [370], radiotherapy has the potential to enhance GBM sensitiv-
ity to immune-based approaches by actively recruiting effector T cells to the tumor site,
an essential requirement for successful immunotherapy. However, the intricate interplay
between radiation and immune therapies demands careful consideration, as certain aspects
of radiation might counteract immunotherapeutic mechanisms [369]. For instance, B cells,
T cells, and NK cells are among the most radiosensitive cells of the TME, while immunosup-
pressive Tregs and MDSCs are quite resistant to radiation. The combination of radiotherapy
with various forms of immunotherapy is an active area of research, with experiments in an-
imal models demonstrating its potential efficacy and benefits. Building on these promising
preclinical data, some clinical trials are strategically combining specific types of radiation
therapy with immunotherapeutic to harness potential synergies [369]. Understanding
the nuances of how radiation influences the immune response is essential for optimizing
treatment outcomes and advancing the development of effective combination therapies
for GBM.

6. Conclusions and Future Directions

GBM patients’ poor prognoses underscore the urgent need for novel treatments to
enhance both the quality of life and overall survival for patients. While immunothera-
peutic approaches have demonstrated significant efficacy in treating solid tumors, their
effectiveness in addressing GBM remains limited. Despite promising results at the preclini-
cal level, anti-GBM immunotherapeutics, whether tested individually or in combination
with standard treatments, have so far failed to yield clinically meaningful outcomes when
examined in phase 3 clinical trials. This high failure rate highlights the pressing need
for more reliable preclinical models and early-stage clinical studies. Moreover, a better
understanding of GBM tumor biology, in terms of local TME immunosuppression and
systemic T cell dysfunction, is essential in the development of more targeted therapies.
Recent advances in patient-derived GBM xenografts in humanized and immunotolerant
murine models, as well as in ex vivo 3-D systems and microfluidics, can assist researchers
in studying the intricate relationship between GBM and immune cells, leading to the dis-
covery of new ways to efficiently modulate it [371]. Furthermore, these models serve as
excellent preclinical settings for the high-throughput screening of therapeutic agents in
a time-efficient and cost-effective manner. Artificial intelligence and machine learning can
enhance preclinical models, supporting research efforts, and accelerating relevant discov-
eries. On the clinical side, the majority of phase 2 GBM studies are currently conducted
in single-center settings with single-arm designs. A shift towards randomized, controlled,
and adequately powered clinical studies can significantly contribute to the development of
more robust therapies, preventing the wastage of valuable patient and financial resources
and maximizing the reproducibility of results. Clinical trials should also consider including
immune-predictive biomarkers and genomic characterization of tumors. This information
could provide the key towards more personalized therapies addressing specific tumor
signatures and are active areas of intense research.

Standard chemoradiotherapy is well-known for inducing immunosuppression and
lymphopenia in GBM patients, posing a significant obstacle to GBM immune-based
approaches. Essential changes in current standard treatments are required to increase
the success of immunotherapies [372]. Moreover, failed clinical trials have taught us that
targeting a single axis, such as a single antigen or immune checkpoint molecule, may not
lead to success. Antigens exhibit heterogeneous spatial and temporal expression within
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tumors, influenced by the tumor microenvironment, treatment, tumor progression, and
environmental factors. Consequently, CAR-T therapies are now simultaneously target-
ing three (trivalent) or more (polyvalent) antigenic targets, and peptide/DC vaccines
increasingly utilize the entire tumor lysate rather than a single tumor antigen. Moreover,
bispecific T cell engagers (BiTEs), which physically brings T cells in close proximity to
tumor cells, have been proposed as a possible solution to overcome antigen escape mech-
anisms [373]. In addition, various personalized immune-based treatments, customized
to individual patient profiles, are currently undergoing clinical evaluation and may hold
the key to addressing the challenges posed by GBM. Neoantigen-based personalized vac-
cines demonstrate significant immunogenicity and safety in GBM, generating robust CD8+
and CD4+ T cell infiltration into the tumor. Alongside the personalization aspect is the con-
sideration of combination therapy; it is crucial to comprehend which therapies synergize
effectively and, notably, to determine the optimal timing for their administration to achieve
maximum results.

The high costs associated with immunotherapies for GBM, especially in the realm of
combination therapies, underscore the pressing need for sustainability in their pricing. To
achieve this, stakeholders should focus on increasing research funding, fostering collab-
orative efforts, implementing regulatory incentives, and promoting value-based pricing.
Additionally, encouraging global health partnerships, supporting insurance and health
system reforms, and establishing patient assistance programs are crucial steps towards
making these treatments more accessible and averting potential healthcare system collapses.
By addressing these challenges, we can also work towards mitigating inequalities in access
to GBM treatments, ensuring that all patients, regardless of their financial status, have
equitable access to life-saving therapies.
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