


q-value 4.39–6.66 years before diagnosis. Enrichment analysis of miRNAs showed that

signaling pathways Fc epsilon RI, prolactin, toll-like receptor, and VEGF had the stron-

gest associations.

K E YWORD S

cell-free nucleic acids, endometrial neoplasms, RNA, RNA-sequencing

What's new?

While endometrial cancer (EC) is common among postmenopausal women, early detection is

lacking, owing to an absence of effective screening strategies. Here, the authors explored circu-

lating microRNAs (miRNAs) and changes in their abundance as markers for early EC detection.

Analyses of blood samples collected prior to EC diagnosis reveal distinct changes in circulating

miRNAs in females who eventually developed EC. Relationships between EC and miRNAs were

modified by body mass index, physical activity, and smoking status. The findings indicate that

circulating miRNAs are susceptible to alterations and temporal fluctuations prior to EC onset,

with implications for disease detection and progression.

1 | INTRODUCTION

Uterine corpus cancer, generally known as endometrial cancer (EC), is

the sixth most prevalent cancer in women worldwide and is the most

common gynecological cancer in countries with a high or very high

development index.1,2 EC occurs predominantly in postmenopausal

women. There has been an increase in the global incidence of EC,

also among premenopausal women, which has been attributed to

increased obesity in the population, together with changes in other

reproductive and lifestyle exposures (e.g., parity, exogenous hor-

mone use).3 There is sufficient evidence to suggest that the absence

of excess body fat prevents EC.4 Traditionally, EC is classified into

type I and II. Type I is more frequent (80%–90% of EC cases), more

prevalent in European populations, metastasis is rare and prognosis

is favorable.5 Routine screening for EC is not currently practiced,

except for women with Lynch syndrome who are at substantially

increased risk of EC but could be facilitated by integration of rele-

vant molecular and imaging data.6

Non-coding RNAs (ncRNAs) affect cancer progression through

proliferation, migration, metastasis, and apoptosis.7 Extracellular

RNAs refer to RNAs that are present elsewhere than the cell

involved in its transcription. The origin of extracellular RNAs is both

blood cells and tissue. The latter is released due to passive leakage,

and active secretion independent or dependent on microvesicles.8

Circulating ncRNAs have potential as early diagnostic and prognos-

tic cancer biomarkers.7,9,10 Some ncRNAs such as transfer RNAs

(tRNAs), small nuclear RNAs (snRNAs), and small nucleolar RNAs

(snoRNAs) have mainly structural roles, whereas others regulate

gene expression at the transcriptional and post-transcriptional

level, such as microRNAs (miRNAs), Piwi-interacting RNAs (piR-

NAs), and long non-coding RNAs (lncRNAs).11 miRNAs have an

average length of 22 nucleotides and exert their regulatory influ-

ence by mRNA degradation and translation inhibition.12 miRNAs

are known to be associated with all hallmarks of cancer.13

Several studies have reported differentially abundant (DA) circulat-

ing RNAs for EC.14–16 Most of the literature on ncRNAs and EC have

focused on disease-associated miRNAs which is based on both tumor

tissue and bodily fluid samples collected at or after diagnosis. Far less is

known about the abundance profiles of miRNAs and other RNA classes

in samples collected prior to diagnosis from EC patients which are more

relevant for discovery of potential early detection cancer biomarkers.

The aim of the study was to discover DA RNAs in females who subse-

quently developed EC and had samples collected 1–11 years prior to

diagnosis, compared to matched cancer-free female controls. For DA

miRNAs, we did two subsequent analyses: (a) enrichment analysis to

further elucidate their biological context; and (b) network analyses to

investigate their relationship to genes in molecular interaction path-

ways. We also aimed to investigate the effect of body mass index

(BMI), smoking, and physical activity on RNA levels and EC.

2 | MATERIALS AND METHODS

2.1 | Study design and participants

We used a nested case–control design within the Janus Serum

Bank (JSB), a population-based cancer biobank with serum samples

from 318,628 individuals donated between 1972 and 2004.17 The

cases were identified by linking the JSB to the Cancer Registry of

Norway (CRN) using the unique Norwegian national identity num-

ber, with follow-up time until December 31, 2020. Since 1952,

CRN has systematically collected mandatory notifications on can-

cer occurrence in the Norwegian population. The registration is

close to complete.18 Information on BMI and other lifestyle vari-

ables was obtained from health examination surveys at the Norwe-

gian Institute of Public Health and represents baseline variables at

the time of blood collection.19 An overview of data source linkages

is provided in Figure S1.
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A flowchart of the case–control selections is provided in Figure 1

showing that a total of 2735 incident EC cases were identified in JSB

during the follow-up period 1953–2020. Cases who donated samples

outside the 1–11 year range prior to the EC diagnosis were excluded.

Only type I EC was selected as cases.

To ensure that the distribution of key baseline variables was compara-

ble between cases and controls, we used a 1:1 matched case–control

design, where the matching criteria were participant's age at blood sam-

pling, year of blood sampling (±2 years), and county of residence at blood

sampling. The CALIPMATCH Stata module (distribution date:

20170511)20 was used for the matching. All controls were alive and resid-

ing in Norway at the year of EC diagnosis in the matched cases. In addi-

tion, controls were cancer-free (except non-melanoma skin cancer) up to

11 years after they donated the blood sample. We included 320 cases

and 320 matched controls for sequencing. Finally, we excluded four case-

control pairs because one or both samples failed in sequencing/QC steps.

The final study sample included 316 cases and 316 controls.

Due to comparatively lower proportions of samples in the under-

weight and obese groups, we combined WHO levels underweight and

normal weight into “low BMI” category, and overweight and obese

into “high BMI” category. Similarly, for physical activity, we defined

“active” as participants who reported low, medium, or high physical

activity versus those who reported being inactive. For smoking status,

we combined current and former smokers into a category of ever

smokers (Table 1).

2.2 | Lab protocols

As previously described,21 RNA was extracted from 400 μL serum

using phenol-chloroform phase separation and the miRNeasy Serum/

Plasma kit (Cat. no 1071073, Qiagen). Small RNA-seq libraries were

prepared using NEBNext Multiplex Small RNA Library Prep Set for

Illumina (Cat. No E7300, New England Biolabs Inc.). RNA fragments

F IGURE 1 Selection of endometrial cancer (EC) cases (type I) with samples collected up to 11 years prior to diagnosis and matched controls.
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with length 17–47 nucleotides were selected using Pippin Prep auto-

mated size selection (Labgene Scientific SA), and the samples were

sequenced on a NovaSeq 6000 platform (Illumina Inc.).

2.3 | Small RNA-seq processing pipeline

The mean sequencing depth was 22.9 million reads. The sequencing cov-

erage and quality statistics are summarized in Figure S2. Pre-processing

of RNA was performed using two pipelines:

1. sncRNA workflow, as described previously.21 Briefly, the pipeline

specifications are: trimming of adapters with AdapterRemoval

v2,22 mapping reads to the human genome (hg38) with Bowtie2.23

2. smrnaseq nf-core pipeline.24 We used two databases for miRNA,

miRBase and MirGeneDB.25,26 We used miRBase annotation for

miRNA for both pre-processing pipelines (sncRNA, and smrnaseq)

but additionally used MirGeneDB annotation only for smrnaseq.

2.4 | Differential abundance analysis

JSB samples were collected over three time periods: 1972–1978

(group 1), 1979–1986 (group 2), and 1987–2004 (group 3). The serum

processing methods were different between groups (with iodoacetate

added, no additives, and separating gel tubes, for groups 1–3, respec-

tively). This has been shown to be a source of sample batch variation,

as described previously.27 We observed differences in abundance pat-

terns of miRNAs based on the serum sample collection period and

processing (Figure S3). Prefiltering of RNAs with low levels was per-

formed using the edgeR package (version 3.30.0)28 based on the

design matrix case–control status and the default minimum count

(10). Differential abundance (DA) analysis was performed using

Limma-voom (Limma 3.44.1)29 based on a linear mixed effects model

with sample batch groups (3 levels) as a random effect. (voom) and

(duplicateCorrelation) functions in Limma were used to compute the

correlation between sample batch groups. Using the (makeContrasts)

function in Limma, we constructed the contrast matrix based on

coefficients from the linear model fit and evaluated DA miRNAs for

EC case–control status across the levels of BMI, smoking status, and

physical activity groups in Models 1–3, respectively. We also evalu-

ated overall DA miRNAs for EC in the three Models, as well as the

interaction term, that is, miRNAs that showed a difference in DA for

EC between BMI, smoking status, and physical activity groups in

Models 1–3, respectively (detailed script available, see Data Availabil-

ity Statement).

Table 2 summarizes the variables used in the three Models to

evaluate DA of RNAs. Given the importance of age in RNA levels, all

Models included age at the time of sample collection as a continuous

variable (centered and scaled using scale (base) function in R). Simi-

larly, given the importance of BMI in EC and some associations to

RNAs,30 we included BMI in all Models either as a categorical/binary

variable (Model 1), or continuous (centered and scaled) variable

(Models 2 and 3). There is less knowledge about the association of

smoking status and physical activity with EC. By including BMI in

Models 2 and 3, we wanted to ensure that the association of EC with

smoking status (Model 2), and physical activity (Model 3) on RNA

levels were not influenced by BMI.

Benjamini–Hochberg's method was used to control the False Dis-

covery Rate (FDR), and RNAs with q-value <0.05 were the main focus

of the DA analyses. Note that for the interpretation of top DA signals,

we relied our focus mainly on q-values rather than fold changes. This

is because Limma does not use ordinary t-tests and it favors large fold

changes over small fold changes.

EC cases were not equally distributed in sample collection time in

the 1–11 year period prior to diagnosis and the median was 6.7 years

(interquartile range: 4.3 years) (Figure S4). To evaluate the temporal

dynamics of DA patterns, we split the sampling time period prior to

TABLE 1 Baseline characteristics of the study participants.a

Characteristics

EC pre-diagnosis

samples (n = 316)

Matched

controls (n = 316)

Age at sample donation
(mean ± SD)

47.4 (8.4) 47.3 (8.4)

BMIb (mean ± SD) 26.3 (5.9) 24.8 (4.1)

BMI category,b,c n (%)

Low 163 (51.6) 192 (60.7)

High 153 (48.4) 124 (39.3)

Physical activity,d n (%)

Inactive 73 (23.5) 71 (22.6)

Active 238 (76.5) 243 (77.4)

Smoking, n (%)

Never 161 (50.9) 145 (45.9)

Ever 155 (49.1) 171 (54.1)

aTotal cholesterol, triglycerides, and systolic and diastolic blood pressure
were comparable between cases and controls and are not reported in this
table.
bBaseline characteristics were compared between cases and controls using
Student's t test, and the Chi-square test. At P-value threshold .05, only

BMI was different between cases and controls. Note that BMI was not a
criterion for matching between cases and controls and it is associated
with EC.
cWHO BMI levels were recoded to represent “low BMI” (underweight and

normal weight) and “high BMI” (overweight and obese).
d
“Active” physical activity represents participants who reported to have
low, medium, or high physical activity. Seven individuals had missing data
on physical activity.

TABLE 2 Models evaluating differential abundance of RNAs for
endometrial cancer (EC).

Models Variables

Model 1 Case–control status, BMI level, age at sample
collection, sample batch group

Model 2 Case–control status, smoking status, age at sample
collection, BMI, sample batch group

Model 3 Case–control status, physical activity, age at sample
collection, BMI, sample batch group
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diagnosis into quartiles (79 pairs per quartile, Time Frame 1 (1.16-4.39],

Time Frame 2 (4.39-6.66], Time Frame 3 (6.66-8.67], and Time Frame 4

(8.67-11] years).

2.5 | Enrichment and network analysis

The miRNA Enrichment Analysis and Annotation Tool (miEAA 2.0)31

was used for miRNAs with P-value <.05 in the DA analysis, with the

following specifications: over-representation analysis (ORA), cate-

gory: pathways (KEGG), P-value adjustment method: FDR adjust-

ment, P-value adjustment scope: adjust P-values for each category

independently, significance level: 0.1, minimum required hits per

subcategory: 1.

In addition, RBiomirGS, a logistic regression method, was used for

gene set enrichment analysis.32 The method depends on mapping

miRNAs to mRNAs. Gene set analysis was evaluated for three GSEA

gene sets—H: Hallmark gene sets, C7: immunologic signature gene

sets, and C8: cell type signature gene sets.

For miRNA regulatory network analysis, we used miRNet 2.0,33 a

weighted network analysis, without specifying tissue type, based

on genes (miRTARBASE v8.0),34 and we included all DA miRNAs with

q-value <0.05.

3 | RESULTS

Table 1 summarizes the baseline characteristics of the study partici-

pants. Age at EC diagnosis ranged from 36 to 79 years, with a median

52 and a mean 54 years (Figure S5).

3.1 | Differential abundance of miRNA

Analyses based on sncRNA preprocessing, miRNA with miRBase

annotation, and removal of very low abundant miRNAs resulted in

256 miRNAs as the input to the Models (Table 3).

In Model 1 (Table 2), we evaluated DA miRNAs for EC case-

control status across the levels of BMI. Overall, 18 miRNAs were DA

for EC. We identified 35 DA miRNAs in the low BMI level, and 35 DA

miRNAs in the high BMI level. In the interaction analysis, 47 miRNAs

were DA between the low and high BMI levels (Figure 2A–D,M,

Tables 3, Table S1).

In Model 2 (Table 2), we evaluated DA miRNAs for EC case–

control status across the levels of smoking. Overall, 19 miRNAs were

DA for EC. We identified 24 and 31 DA miRNAs in the ever smoker

and never smoker groups, respectively. In the interaction analysis,

41 miRNAs were DA between ever smoker and never smoker groups

(Figure 2E–H,N, Table S2).

In Model 3 (Table 2), we evaluated DA miRNAs for EC case–

control status across the levels of physical activity. Overall, 18 miRNAs

were DA for EC. We identified 35 and 21 DA miRNAs in the inactive

and active physical activity groups, respectively. In the interaction

analysis, 32 miRNAs were DA between inactive and active physical

activity groups (Figure 2I–L,O, Table S3). Eleven DA miRNAs for EC

were overlapping between all three Models (Figure 2C,G,K,P).

We did a sensitivity analysis, removing samples that showed the

most noticeable sample batch effect (Group 1; Figure S3). Based on

Model 1 (Table 2), we noticed that no miRNAs remained with q-value

<0.05 which is likely due to reduced statistical power. However, all

18 DA miRNAs in Model 1 for EC (Figure 2C) were present in the top

37 miRNAs sorted by the lowest q-value (Tables S1 and S7). These are

indicated by red highlight for Model 1 in Table S7. There was high cor-

relation for logFC of these 18 DA miRNAs between the analysis with all

samples and the sensitivity analysis (Spearman's correlation of 0.98).

For Model 2, 19 DA miRNAs for EC in the analysis with all samples

appeared in the top 26 miRNAs in the sensitivity analysis. miR-200b-3p

remained DA even in the sensitivity analysis (Tables S2 and S7). For

Model 3, 18 DA miRNAs for EC in the analysis with all samples

appeared in the top 35 miRNAs in the sensitivity analysis (Tables S3

and S7). Four miRNAs (miR-4488, miR-200b-3p, miR-150-3p, and miR-

181d-5p) remained DA even in the sensitivity analysis.

We wanted to ensure that the DA miRNAs for EC were robust

when raw counts were produced by different small RNAs pre-

TABLE 3 Number of DA RNA classes for EC with q-value <0.05 based on Model 1 in Table 2.

RNA type Input RNA number

DA EC for low BMI

and high BMI

DA EC different between

low BMI and high BMI DA EC low BMI DA EC high BMI

miRNA 256 (of 2653) 18 47 35 35

isomiR 1040 (of 59,302) 94 146 71 140

miscRNA 83 (of 1279) 1 0 3 2

tRNA 415 (of 649) 1 0 0 1

tRF 353 (of 34,324) 0 0 0 3

scaRNA 5 (of 48) 1 1 1 1

snRNA 174 (of 1836) 2 15 21 6

snoRNA 29 (of 793) 0 1 1 0

piRNA 404 (of 32,235) 1 4 1 3

lncRNA 609 (of 16,850) 0 1 0 0

mRNA 3366 (of 19,928) 0 0 0 0

950 ROSTAMI ET AL.
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F IGURE 2 Volcano plots, based on Log2 fold change and �log10 q-value, representing differential abundance of miRNAs for endometrial
cancer (EC) cases with samples collected prior to diagnosis and matched controls across the levels of BMI (Model 1), smoking status (Model 2),
and physical activity (Model 3). The upper panel shows Model 1: (A) Differential abundance for EC in the low BMI level, (B) Differential
abundance for EC in the high BMI level, (C) Differential abundance for EC for low BMI and high BMI, (D) interaction: difference in differential
abundance for EC between low BMI and high BMI levels. The middle panel shows Model 2: (E) Differential abundance for EC in never smokers,
(F) Differential abundance for EC in ever smoker, (G) Differential abundance for EC for never and ever smoker, (H) interaction: difference in
differential abundance for EC between never and ever smoker. The lower panel shows Model 3: (I) Differential abundance for EC in inactive
physical activity, (J) Differential abundance for EC in active physical activity, (K) Differential abundance for EC for inactive and active physical
activity, (L) interaction: difference in differential abundance for EC between inactive and active physical activity. Venn diagrams (M), (N), and
(O) summarize the number of DA miRNAs that were overlapping between the four contrasts for EC in Models 1–3, respectively. Venn diagram
(P) summarizes DA miRNAs for EC that were overlapping between Models 1–3 (Figure 2C, G, K). Differential abundance Models were based on a
mixed model with sample batch group as random effect, and included age at sample collection (scaled and centered). For Models 2 and 3, BMI
was included as a scaled and centered variable. For Model 1, WHO BMI levels were recoded to represent “low BMI” (underweight and normal
weight) and “high BMI” (overweight and obese). For Model 3, we defined “active' physical activity” as participants who reported to have low,
medium, or high physical activity. In a sensitivity analysis, in addition to the q-values produced by Limma, we also used qvalue Bioconductor
package (github.com/StoreyLab/qvalue) to calculate q-values at different lambda for DA miRNAs for EC in Model 1 (Figure 2C). At lambda 0.01,
similar to the number of DA miRNAs in Figure 2C, 18 had q-value <0.05, whereas at 0.1, we saw 22 DA miRNAs. Given that there were only four
more DA hits at this threshold, we concluded that the results are not changed considerably. Therefore, we only reported q-values calculated by
the Limma package. In a sensitivity analysis (Figure S10), we evaluated the Spearman's correlation of 11 DA miRNAs shared for EC in Models 1–3
(Figure 2P, and Tables S1–S3), BMI, and age at sample collection. There was no strong correlation between BMI and age at sample collection with
any of the 11 miRNAs. In a sensitivity analysis (Figure S11), we evaluated hierarchical clustering heatmap with samples labelled for EC case–
control status, BMI levels, smoking levels, and physical activity levels. We presented heatmaps for 11 DA miRNAs shared for EC in Models 1, 2,
and 3 (Figure 2P, and Tables S1–S3). Overall, there was no specific pattern for sample clustering. In a sensitivity analysis (Figure S12), we
evaluated the Spearman's correlation of 11 DA miRNAs shared for EC in Models 1–3 (Figure 2P, and Tables S1–S3), and sample collection year
prior to diagnosis for EC cases. There was no strong correlation between year before diagnosis and any of the 11 miRNAs. In a sensitivity
analysis, we evaluated the Spearman's correlation of logFC between 11 miRNAs that were shared for EC in Models 1–3 (Figure 2P, and
Tables S1–S3). The Spearman's correlation between Model 1 and Model 2 was 0.99, and for that of Model 1 and Model 3 was 0.88.
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processing pipelines. This provided a certain level of reliability of DA

miRNAs despite that the sncRNA and smrnaseq pipelines have differ-

ent specifications, for instance in mapping with Bowtie. Differential

abundance of miRNA for Model 1 (Table 2) based on pre-processing

of RNAs with smrnaseq pipeline24 are presented in Figure S6 and

Table S4. Among the top 18 DA miRNAs for EC, which were based on

pre-processing with the sncRNA pipeline,21 8 were also DA based on

pre-processing with the smrnaseq pipeline (miRBase annotation)24

(Tables S1 and S4, Figures 2C and S6C). Results for Models 2 and

3 based on miRNA counts from smrnaseq pipeline (miRBase and Mir-

GeneDB annotations) are listed in Table S4.

3.2 | Differential abundance of other RNA

Other RNA types (isomiR, miscRNA, tRNA, tRF, scaRNA, snRNA, snoRNA,

piRNA, lncRNA, and mRNA) and their DA for EC were evaluated (Table 3).

For Model 1, a summary of the RNA type, input RNA number in the

Model (after pre-filtering of low abundant RNAs), and the number of DA

RNAs is provided. Generally, for all three Models, DA RNAs for EC were

mainly found for miRNAs, isomiRs, and snRNAs (Tables 3 and

Tables S1–S3).

3.3 | Temporal dynamics of miRNA differential

abundance

Using RNA counts for miRNA from the sncRNA pipeline, Model 1 in

Table 2 was constructed and the DA for EC was evaluated at 4 Time

Frames prior to diagnosis. Figure S7 shows that the DA miRNAs for EC

was dynamic in time. No miRNAs were DA. However, the DA signals had

the lowest q-value in the Time Frame 2 (4.39-6.66 years] (Figure S7).

Among the top 10 DA miRNAs in each Time Frame (labeled), only miR-

3180-3p and miR-3180 were present in more than one Time Frame (twice

in Time Frames 3 (6.66–8.67] and 4 (8.67–11] years (Figure S7 and

Table S5)). Among the 11 DA miRNAs for EC shared between Models

1, 2, and 3 (Figure 2P), there was a stronger correlation for logFC

(Spearman's correlation of 0.93) between Time Frame 4 and the analysis

with all samples (Figure S13). The hierarchical clustering heat map for

these 11 DA miRNAs did not show specific clustering patterns for differ-

ent Time Frames prior to diagnosis (Figure S14). One miRNA was DA for

EC in Model 2 in Time Frame 4 (miR-10527-5p). For Model 2, among the

top 10 DA miRNAs for EC in each Time Frame, only miR-939-5p was pre-

sent in more than one Time Frame (Time Frames 2, and 3), and had oppo-

site directions of abundance for EC, that is, higher and lower abundance in

EC cases in Time Frame 2 and 3, respectively (Table S5). For Model

3, among the top 10 DA miRNAs for EC in each Time Frame, miR-

10527-5p, miR-3180, and miR-3180-3p were present in more than one

Time Frame, although with inconsistent directions of abundance: miR-

10527-5p was lower in cases in Time Frame 1, but was higher in cases in

Time Frame 4; miR-3180 was lower in cases in Time Frame 3, but was

higher in cases in Time Frame 4; and miR-3180-3p was lower in cases in

Time Frame 3, but was higher in cases in Time Frame 4 (Table S5). We did

a sensitivity analyses and included all controls in all Time Frames

(Figure S7 and Table S6).

3.4 | Enrichment and network analysis

We evaluated functional aspects of DA miRNAs for EC by focusing on

biological pathways. As input to miEAA 2.0, we selected 53 miRNAs

with DA P-value <.05 for the EC (Model 1 in Table 2 and Figure 2C).

The miRNA to category heatmap for the top 100 by P-value is shown.

The top signaling pathways are Fc epsilon RI, prolactin, toll-like recep-

tor, and VEGF (Figure S8).

For RBiomirGS gene set analysis, the input was logFC and P-value

of all 256 miRNAs for EC using Model 1 (Table 2, Figure 2C). Among

the top signals for hallmark gene sets were signaling pathways

including TNFA, TGF-B, and Notch (Figure S9A). We also evaluated

RBiomirGS for C7: immunologic signature gene sets, and C8: cell type

signature gene sets (Figure S9B,C). The top signals for cell type signa-

ture gene sets included pancreas beta cells, gastric immune cells, and

adult kidney interstitium.

As input for miRNA network analysis, DA miRNAs for EC (Model

1 in Table 2, Figure 2C, and Table S1) was used and a degree filter of

2 was specified. The miRNA network shows the DA miRNAs for EC

and the associated genes. KEGG pathways in cancers had the stron-

gest association (q-value = 3.03e�8; Figure 3).

4 | DISCUSSION

Differential abundance of nine RNA classes was evaluated for EC

patients with samples collected prior to diagnosis, and matched con-

trols. DA RNAs for EC were mainly found for miRNAs (miRNAs and

isomiRs), and snRNAs. In addition, between BMI, smoking, and physi-

cal activity levels, RNAs showed differences in differential abundance

for EC. There were 47, 41, and 32 miRNAs between BMI levels,

smoking status, and physical activity groups in Models 1–3, respec-

tively, that showed difference in differential abundance for EC. This

included two DA miRNAs for EC (miR-223-3p and miR-29b-3p) that

showed interaction with all three factors.

We noticed that DA patterns for RNAs were temporally dynamic:

the top DA miRNAs for EC were dissimilar in the different Time

Frames, and the associations had the lowest q-value in Time Frame

2 (4.4–6.7 years) which is not closest to diagnosis. Biomarkers might be

more strongly associated with cancer at specific stages of development.

The temporal dynamics might be related to activation of specific cancer

hallmarks and fluctuation in export of miRNAs to circulation.

Fewer miRNAs are included in MirGeneDB than miRBase

(�40%). Nevertheless, the number of miRNAs after exclusion of low

abundant miRNAs, and the number of DA miRNAs for EC were com-

parable between the two. After pre-processing by smrnaseq, 8 of

14 DA miRNAs for EC based on MirGeneDB were also present for

those in miRBase. This shows that curated miRNAs in MirGeneDB

were also DA.

952 ROSTAMI ET AL.

 1
0
9
7
0
2
1
5
, 2

0
2
4
, 5

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/ijc.3

4
9
5
1
 b

y
 D

k
fz Z

en
tralb

ib
lio

th
ek

 K
reb

sfo
rsch

u
n
g
szen

tru
m

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [3

1
/0

7
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



Comparison of DA RNAs from different studies is not straightfor-

ward for several reasons. First, most studies of RNA levels and rele-

vance to EC have not used cases with samples collected prior to

diagnosis. RNA abundance patterns are not necessarily similar before

and after diagnosis. Second, sample types (e.g., tissue versus circulat-

ing) will influence the results and circulating RNA profiles do not

directly reflect the specific tissue profile.35 Third, there could be dif-

ferences in clinical phenotypes of samples in different studies.

Eight DA miRNAs overlapped for EC in Model 1 based on RNA

counts from the two RNA pre-processing pipelines with miRBase

annotation. Therefore, we can report these DA miRNAs with greater

reliability. Upregulation of oncogenic miR-155-5p and its association

with clinical outcomes is well known for several cancers including

breast cancer36 and cervical cancer.37 In a small study (n = 27),

miRNAs were evaluated between benign endometrium, endometrial

endometrioid adenocarcinoma, and serous adenocarcinoma tissue

samples. Association of miR-155-5p with endometrioid adenocarci-

noma, and serous adenocarcinoma were reported borderline signifi-

cant (P = .053, and P = .049, respectively).38 miR-155 is involved in

controlling expression in genes encoding for immunomodulatory,

tumor-suppressor, and inflammatory proteins.39 In this study, miR-

200b-3p had higher level in EC cases compared to controls. Both

tumor-suppressor and oncogenic associations of miR-200b-3p have

been reported in different studies and cancers (reviewed in

Ref. [40]). In one study, miR-200b-3p was among the top 10 miRNAs

with higher levels in EC cases.41 In the current study, miR-589-5p

had a higher level in EC cases. In a study using endometrial tissue

samples, miR-589-5p had a lower level in EC cases.42 Different

microenvironments (serum vs. tissue) make the studies less compara-

ble but might imply the biomarker potential of miR-589-5p. Similar

to our study, miR-543 had a lower level in EC cases in a study using

endometrial tissue samples. miR-543 was shown to target FAK and

TWIST1, which are known to be associated with metastasis and sur-

vival in different cancers.43 miR-625-3p showed association with

colorectal cancer by affecting cell migration and invasion.44,45

We compared our DA miRNAs from cases with samples collected

prior to diagnosis, to previous studies measuring circulating miRNAs at

the time of EC diagnosis.14–16 Fourteen DA miRNAs for EC from the

three Models in the present study were reported in one or more of

these three studies (Table S8). However, the direction (higher or lower

levels in EC cases compared to controls) were not necessarily similar. In

our high BMI group, miR-142-3p had a lower level in EC cases com-

pared to control. This is consistent with reports from several cancer

types showing that miR-142-3p is a tumor suppressor miRNA with

lower levels in cancer cases.46 Although, in Bloomfield et al.,14 EC cases

were reported to have a higher level of miR-142-3p. In the present

study, EC cases had a lower level of miR-151a-5p (overall in both BMI

levels, as well as in the high BMI level), which is the opposite direction

to Bloomfield et. al.14 miR-139-3p had a lower level in EC cases in Zhou

et al.,16 similar to the low BMI group in our study. For high BMI level,

F IGURE 3 Network analysis for DA
miRNAs (q-value <0.05) for endometrial
cancer (Model 1 in Table 2, Figure 2C) and
the associated genes. Blue, miRNAs;
Yellow, genes for KEGG pathways in
cancers (KEGG pathways in cancers had
the highest strength of association,
q-value = 3.03e�8); Purple, other genes
in the network (names not given).
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however, EC cases had a higher level. These inconsistencies exemplify-

ing the variability between studies and cohort characteristics. snRNAs

are involved in cleavage of pre-mRNAs.7 We identified several DA

snRNAs for EC mainly for U6 snRNAs and some U2 snRNAs. Differen-

tial abundance of U6 snRNA has been reported for cervical cancer

tissue.47 Serum biomarker potential of U2 snRNA was reported for lung

cancer.48 We identified EC DA for scaRNA3, a H/ACA scaRNA relevant

for several cancers such as breast cancer.49

JSB is useful for studying cancer biomarkers given its population-

based design and availability of cases with samples collected prior to

diagnosis. This study has also taken advantage of linkage to the

Cancer Registry of Norway, considering its high quality and complete-

ness of data, as well as linkage to data from health survey.

RNA levels are known to be influenced by age, smoking, BMI, and

physical activity.30 Obesity has the strongest association with EC

among 20 of the most prevalent cancer types.3 By incorporating rele-

vant RNA-related and EC-related variables in our Models, we aimed

to identify associated DA circulating RNAs for EC.

There were several sources of non-biological variation in the data.

First, there was a notable effect of sample batch, given the different

storage times and processing of samples.27 In all DA models, we used

a mixed model and treated sample batch group as a random effect. In

this way, we ensured that the variation due to this technical factor

was accounted for without allowing the statistical power of the test

to be heavily compromised because random effect models use less

parameters compared to fixed effect models. Furthermore, high

Spearman's correlation for logFC (0.98) for the analysis including all

samples, and the sensitivity analysis with group 1 samples removed

implies that the DA results are reliable.

In the present study, age at EC diagnosis had the median 52 and

mean 54 years. However, median age at EC diagnosis in Norway in

the 2017–2021 period was 69 years.50 BMI, physical activity, and

smoking distributions are available for the whole JSB cohort (140,282

individuals) which is fairly representative of general Norwegian female

population at the time of sample collection.19 Overall, individuals in

the present study were comparable with regards to physical activity

to the whole JSB. However, females in JSB had a higher percentage

of individuals in the “low BMI” level (67.1%) compared to both EC

cases and controls. Regarding smoking, 57.8% were ever smokers in

the whole JSB. This is higher than that of EC cases and controls in the

present study. Therefore, with the samples in JSB, and the selection cri-

teria we used, the DA analysis is not necessarily representative of the

general Norwegian female population at the time of study. Reproduc-

tive factors such as parity, and oral contraceptive and menopausal hor-

mone use are associated with the risk of EC. Data on lifestyle factors

such as alcohol use, dietary habits, and drug usage were not available

or not reliably reported. Therefore, potential residual confounding due

to these factors cannot be excluded.

In conclusion, findings from the present study suggest that circulat-

ing RNAs undergo alterations and exhibits temporal fluctuations before

the onset of EC. The relationship between RNAs and EC are affected

by BMI, smoking status, and physical activity. These findings may have

implications for identification of potential pathways associated with EC

risk, and progression of pre-neoplastic and early neoplastic disease to

clinically evident endometrial cancer.
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