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Abstract

Simulation is a crucial tool for the evaluation and comparison of statistical methods. How to

design fair and neutral simulation studies is therefore of great interest for both researchers

developing new methods and practitioners confronted with the choice of the most suitable

method. The term simulation usually refers to parametric simulation, that is, computer

experiments using artificial data made up of pseudo-random numbers. Plasmode simula-

tion, that is, computer experiments using the combination of resampling feature data from a

real-life dataset and generating the target variable with a known user-selected outcome-

generating model, is an alternative that is often claimed to produce more realistic data. We

compare parametric and Plasmode simulation for the example of estimating the mean

squared error (MSE) of the least squares estimator (LSE) in linear regression. If the true

underlying data-generating process (DGP) and the outcome-generating model (OGM) were

known, parametric simulation would obviously be the best choice in terms of estimating the

MSE well. However, in reality, both are usually unknown, so researchers have to make

assumptions: in Plasmode simulation studies for the OGM, in parametric simulation for both

DGP and OGM. Most likely, these assumptions do not exactly reflect the truth. Here, we aim

to find out how assumptions deviating from the true DGP and the true OGM affect the perfor-

mance of parametric and Plasmode simulations in the context of MSE estimation for the

LSE and in which situations which simulation type is preferable. Our results suggest that the

preferable simulation method depends on many factors, including the number of features,

and on how and to what extent the assumptions of a parametric simulation differ from the

true DGP. Also, the resampling strategy used for Plasmode influences the results. In partic-

ular, subsampling with a small sampling proportion can be recommended.
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Introduction

Simulation studies are usually defined as computer experiments using artificial data generated

by a pseudo-random number generator for which some truth about the data-generating pro-

cess (DGP) and the outcome-generating model (OGM) is known, e.g., the true parameter val-

ues of the OGM or the distribution of the features. Well-designed, fair simulation studies are

needed both for the evaluation of newly introduced methods and, in particular, for the neutral

comparison of existing methods [1]. The DGP and OGM are usually chosen to either reflect

realistic scenarios or edge cases for the application of the method of interest. We investigate

the first case here.

We call the kind of simulation with artificial data, where the DGP and OGM are fully

known, “parametric” simulations. Non-parametric simulation, where all data are real-life data,

is not part of our analysis. Plasmode simulation is a special case of semi-parametric simulation,

which is characterized by parts of the data being real-life data and parts of the DGP or OGM

being specified. [2] give a technical introduction to (parametric) simulation studies and focus

on guidance for best practices in performing and reporting simulation studies (“ADEMP” cri-

teria). [3] give a general and more applied introduction to (parametric) simulation studies.

Parametric simulation studies are a crucial tool in the performance evaluation and compar-

ison of statistical methods since they can offer insights beyond analytical results [2, 3] and can

be used to evaluate criteria that cannot be assessed on real data where the DGP and OGM are

unknown [3]. An example is the bias of an estimator, which can only be evaluated if the true

parameter value can be controlled within the simulation. Therefore, one of the main advan-

tages of parametric simulation studies is the full knowledge of the parameters of the DGP and

OGM within the study. Another advantage is the possibility of investigating large numbers of

different scenarios which permits analyzing how the performance of methods depends on the

choice of the DGP and OGM. Moreover, it is possible to generate very large numbers of data-

sets. One of the main disadvantages is the simplification of real-life DGPs. Often very simple

DGPs and OGMs are chosen arbitrarily which then do not reflect the often complex real-life

processes. This may lead to wrong conclusions [3]. The over-simplification gets even worse for

high-dimensional data, as it gets harder, for example, to specify realistic distributions and cor-

relation structures for an increasing number of variables [4].

A different approach are so-called statistical Plasmodes as first introduced by [5]. [4] distin-

guish between statistical and biological Plasmodes depending on the procedure used for gener-

ating data. The motivation of statistical Plasmodes is to preserve a realistic data structure by

resampling feature data from real-life datasets instead of using pseudo-random numbers as

usually done in parametric simulation. At the same time, some control over the generated data

is given by generating outcome variables for the given resampled feature data according to a

known outcome-generating model like in parametric simulation. So, parametric and Plasmode

simulations differ in the generation of features, while outcomes are generated in the same

manner. For the feature resampling, different resampling approaches can be utilized [4]. Bio-

logical Plasmodes are generated by natural biological processes, for example in a wet lab by

manipulating biological samples. In this paper, only statistical Plasmodes are considered.

The main advantage of Plasmode simulations is that the DGP does not have to be specified.

The resampling is claimed to ensure the generation of realistic feature data. At the same time,

quantities depending on the parameters of the OGM can still be assessed in contrast to fully

non-parametric simulations. However, the resampling requires suitable datasets from the true

DGP of interest with not too few observations. Depending on the application, this might be a

major limitation. A more detailed discussion of the advantages and disadvantages of paramet-

ric vs. Plasmode simulation is given in [4]. The authors especially point out that evidence for
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the often-made claim of Plasmode simulations producing more realistic data, i.e. data that is

closer to the true DGP, is missing. Also, the authors emphasize the lack of studies on the effect

of the often arbitrary choice of OGMs, which might affect both Plasmode and parametric sim-

ulation studies.

We aim to compare the ability of Plasmode and parametric simulation to assess the perfor-

mance of statistical methods, especially concerning how misspecifications affect the results in

both cases. We do this in a controlled simulation scenario so that we know both the true DGP

and the true OGM, for evaluation purposes. In general, if we knew the truth, parametric simu-

lation using this truth would be best. Since the truth is usually unknown in real-life applica-

tions, for parametric simulation researchers instead have to make assumptions about the DGP.

These assumptions might deviate from the truth. Without deviations, the parametric simula-

tion will always perform best since it accurately reflects the truth. On the other hand, when the

parametric assumptions about the DGP are far from the truth, we expect Plasmode to be supe-

rior since the resampling is expected to give results that are rarely very far from the true DGP.

Our goal is to determine the extent of deviation for which the parametric simulation gets

worse than Plasmode. Therefore, we aim to find out

1. How much the DGP chosen in the parametric simulation can deviate from the truth before

the parametric simulation becomes worse than Plasmode.

2. How deviations of the chosen OGM from the true OGM affect both parametric and Plas-

mode simulations.

3. How the choice of the resampling type affects the Plasmode simulation.

Based on the results, we are able to give guidance in which situations to choose parametric

or Plasmode simulation and how to perform it.

We restrict our analysis to a simple scenario and focus on the estimation of the mean

squared error (MSE) of the least squares estimator (LSE) in a linear regression model. There-

fore, we focus on explanatory performance of the linear model and do not consider predictive

performance. Moreover, we restrict to the low-dimensional setting, i.e., at most p = 50 features.

We compare how well both parametric simulations with different assumptions about the DGP

and the OGM and Plasmode simulations using different resampling strategies estimate the

true MSE. So here, we check how well parametric and Plasmode simulation perform for one

particular example of application. We investigate this for different true DGPs and OGMs. To

compare different methods via simulation, this approach ensures that the simulation studies

approximate well the performance of the methods for the true DGP and OGM.

The article is structured as follows. First, we describe parametric and Plasmode simulation

in general and our specific simulation setup. Afterwards, we present the results of our simula-

tions and provide recommendations for performing simulations based on our results. Finally,

the results are summarized and discussed.

Methods

In the following, we briefly explain parametric and Plasmode simulation in general, pointing

out, in particular, the different options for the resampling strategy in Plasmode simulations.

Parametric simulation

In parametric simulation studies, the whole data-generating process (DGP) and the outcome-

generating model (OGM) have to be specified and are therefore known within the study. They

are usually set up to either be as close as possible to a certain kind of data that the researcher is
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interested in (e.g. gene expression data) or to cover as many situations as possible, possibly

including extreme situations. We focus on the first case. Given the specified DGP, a large num-

ber of feature datasets is generated using pseudo-random number generators. In all cases that

we are investigating, a target variable is then generated from these features by applying the

OGM. This yields a large number of datasets which are then used for applying the methods of

interest. This procedure allows the researcher to evaluate the performance of the methods with

respect to a metric of interest. The process of generating the datasets can be seen as mimicking

the repeated collection of samples from a large population. The results can provide insights

into how the methods under study perform on average for datasets that are similar to the cho-

sen DGPs and OGMs [3]. For more details on how to design, perform, analyze, and report

parametric simulation studies, refer to [2].

Plasmode simulation

In Plasmode simulation studies, no assumptions on the DGP for the feature data are made.

Instead, it is required to have a representative real-life dataset at hand that resulted from the

true DGP [4]. If only real data was used, we would have no control over the DGP and OGM in

our simulation. This means that we could not estimate certain quantities (e.g. the bias of an

estimator) that directly depend on the true unknown parameters [3]. To enable us to estimate

the quantities that directly depend on the true parameters of the OGM (which are most quanti-

ties of interest for performance evaluation of models), Plasmode simulation combines the use

of real feature data with a known OGM. A Plasmode simulation study then works as follows.

In each iteration, a Plasmode dataset is drawn from the real-life dataset at hand. The researcher

has to decide on the resampling method. Possible methods include

• n out of n Bootstrap [6], i.e. drawing with replacement a dataset of the same size as the origi-

nal dataset,

• m out of n Bootstrap [7–9], i.e. drawing with replacement m< n observations of the original

dataset,

• subsampling, i.e. drawing without replacement m< n observations of the original dataset,

or other adaptations of Bootstrap like

• smoothed Bootstrap [10–13], i.e. applying kernel-estimation to the empirical distribution of

the original dataset and resampling from this smoothed empirical distribution,

• wild Bootstrap [14], i.e. adding the standardized values of each variable scaled by a random

number to the original variable, or

• no resampling, i.e. using the whole dataset as it is.

A discussion of the first three options in the context of Plasmode simulation can be found

in [4]. In the case of m out of n Bootstrap and subsampling, the researcher also has to decide

on the number of observations to draw. For m out of n Bootstrap, there exists a data-depen-

dent algorithm to find the optimal value of m [15]. After resampling a number of Plasmode

datasets, the OGM is applied to each of the datasets to generate the outcomes. The resulting

datasets can then be used for computing the performance metrics of interest like in parametric

simulation. For more details, see [4].
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Setup of the comparison study

In the following, we first describe the general approach and then the detailed setup of our com-

parison study.

General approach

We conduct our comparisons with respect to different true DGPs and OGMs. For each sce-

nario, we calculate the true MSE of the least squares estimator (LSE). We then perform a

parametric and a Plasmode simulation for estimating the MSE. For these simulations, we

choose different DGPs and OGMs. The estimated MSEs resulting from these simulations are

then compared to the true MSEs to assess how well the parametric and Plasmode simulation

approximate the true values.

The outcomes are in all cases generated according to a linear model

y ¼ Xbþ ε ð1Þ

for the true scenarios as well as for the parametric and Plasmode simulations. Note that the

intercept is included in this model. The true MSE of the LSE b̂ depends on the number of

observations n, the residual variance of ε, and the distribution of the features X. For fixed X,

the LSE is unbiased and thus the MSE reduces to the variance, which is given by

Varðb̂jXÞ ¼ s2ðXTXÞ� 1
.

To define the true DGP and OGM, we have to determine

• the true distribution of the features,

• the true parameter vector β, and

• the true distribution of the error term ε.

In the context of the parametric simulation, both DGP and OGM have to be chosen, so the

distribution of the features, the coefficient vector, and the error distribution have to be speci-

fied. Inside the Plasmode simulation, only the OGM has to be chosen, so the coefficient vector

and the error distribution have to be specified.

Simulation setup

In this section, we describe the true scenarios used in the simulation as well as the deviations

from these true scenarios that are assumed for the parametric or Plasmode simulation.

True scenarios. We use different scenarios as our truth for the comparison. Table 1 gives

an overview of these scenarios. The scenarios differ in the number of features (p) and observa-

tions (n) as well as the true correlation structure. In all scenarios, we assume that our features

come from a multivariate normal distribution with mean zero and variances of one, that the

true vector of coefficients (β) consists of all ones, and that the true error distribution is N(0,

0.32).

We start with simple scenarios with only two features (p = 2), which are sampled from a

bivariate Gaussian distribution with mean zero, variances of one, and a pairwise correlation of

0.2 or 0.5, and 50 or 100 observations. We use the same parameter settings for p = 10 except

that we only look at pairwise correlations of 0.2. For p = 50, we always use 100 observations for

identifiability reasons. Once again, we set all pairwise correlations to 0.2. Additionally, we use

block diagonal correlation matrices with five blocks of ten features each. Within each block,

the correlations are once set to 0.2|i−j| and once to 0.5|i−j| for all i 6¼ j. Features from different

blocks are assigned a correlation of 0.
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The scenarios are chosen to represent a low, a moderate, and a higher number of features

for which the estimation process is still stable for 100 observations.

Moreover, we use covariance matrices estimated from real datasets to see how the simula-

tions behave with more complicated correlation structures. We chose regression datasets that

were available on OpenML [20], were used in the benchmark in [21], had at most 100 features,

no constant features, no missing values and pairwise correlations with absolute values of at

most 0.95. With these criteria, we ended up with four datasets: quake [16], wine_quality [17],

pol [18], and Yolanda [19].

Deviations from true scenarios. We choose DGPs and OGMs for parametric and Plas-

mode simulation that present different kinds of deviations from the truth described in the pre-

vious section. The general structures of these deviations are listed in Table 2. A complete list of

the specific parameter values that were chosen can be found in S1 Table. As a baseline, we

assume the true scenario, which reflects the case that we—by chance—correctly specify all

parameters in the simulations. Then we consider choices for each part of the DGP and OGM

that reflect increasing deviations from the truth. For the coefficients, we use different values

that are either wrong, but of the same order, or that even differ a large factor. We also included

the case of assuming no effect (β = 0) which is an important special case that might be of inter-

est in many studies. For the distribution of ε, we either only misspecify its standard deviation

or misspecify the distribution as either more heavy-tailed (scaled t-distribution) or skewed

(scaled and shifted χ2-distribution). As deviations from the true feature distribution, we first

still assume multivariate normal distribution but with wrong correlations, expectations, or var-

iances. We then look at entirely wrong distributions, namely Gaussian mixture, log-normal,

and Bernoulli distribution. The true correlation structure is preserved in those cases. We

Table 1. Parameters for true data generating processes (DGP) and outcome generating models (OGM). In all sce-

narios, the true vector of coefficients is equal to ð1; . . . ; 1Þ
T
2 Rpþ1

and the error distribution is set to ε* N(0, 0.32).

0p denotes the p-dimensional vector of zeros.

Name p n Distribution of features

(p2n100ρ0.2) 2 100 (X1, X2)T* N2(02, S) with Si,j = 0.2 8i 6¼ j, Sii = 1

(p2n50ρ0.2) 2 50 (X1, X2)T* N2(02, S) with Si,j = 0.2 8i 6¼ j, Sii = 1

(p2n100ρ0.5) 2 100 (X1, X2)T* N2(02, S) with Si,j = 0.5 8i 6¼ j, Sii = 1

(p10n100ρ0.2) 10 100 (X1, . . ., X10)T* N10(010, S) with Si,j = 0.2 8i 6¼ j, Sii = 1

(p10n50ρ0.2) 10 50 (X1, . . ., X10)T* N10(010, S) with Si,j = 0.2 8i 6¼ j, Sii = 1

(p50n100ρ0.2) 50 100 (X1, . . ., X50)T* N50(050, S) with Si,j = 0.2 8i 6¼ j, Sii = 1

(p50n100ρ0.2|i

−j|)

50 100 (X1, . . ., X50)T* N50(050, S) with covariance matrix S with blockdiagonal structure

where within each of 5 blocks of 10 features the pairwise covariance/ correlation

between the ith and jth feature of the block is given as 0.2|i−j| and all variances are

equal to 1

(p50n100ρ0.5|i

−j|)

50 100 (X1, . . ., X50)T* N50(050, S) with covariance matrix S with block diagonal structure

where within each of 5 blocks of 10 features the pairwise covariance/ correlation

between the ith and jth feature of the block is given as 0.5|i−j| and all variances are

equal to 1

(quake) 3 100 (X1, . . ., X3)T* N3(03, S) with covariance matrix S estimated from real dataset quake

[16]

(wine_quality) 11 100 (X1, . . ., X11)T* N11(011, S) with covariance matrix S estimated from real dataset

wine_quality [17]

(pol) 26 100 (X1, . . ., X26)T* N26(026, S) with covariance matrix S estimated from real dataset pol

[18]

(Yolanda) 100 200 (X1, . . ., X100)T* N100(0100, S) with covariance matrix S estimated from real dataset

Yolanda [19]

https://doi.org/10.1371/journal.pone.0299989.t001
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achieve this by generating Gaussian mixture, log-normal, and Bernoulli variables from multi-

variate normals and setting the covariance matrix of the underlying normals in a way such that

the corresponding variables have the desired variances and covariances. For log-normals and

Bernoulli variables with variables of the same distribution, the calculation can be found in [22,

23]. The calculation for log-normal and Bernoulli variables in combination with normal vari-

ables as well as all calculations for Gaussian mixture variables can be found in S1 Appendix.

Table 2. Deviations from true DGP and OGM for parametric and Plasmode simulation.

Scenario name Description

True model Assumptions coincide with truth

Coefficients misspecified I Assumed β vector ð0; 1=p; 2=p; . . . ; 1Þ
T
2 Rpþ1

instead of 1p+1

Coefficients misspecified II Assumed β vector 0.05p+1 instead of 1p+1

Coefficients misspecified III Assumed β vector 10p+1 instead of 1p+1

Coefficients misspecified IV Assumed β vector 0p+1 instead of 1p+1

Error sd misspecified c Assumed σ = c instead of σ = 0.3 for ε * N(0, σ2)

Correlation misspecified ρ Assumed fixed pairwise correlation of ρ
Correlation misspecified ρ|i−j| Assumed pairwise correlation of ρ|i−j| for ith and jth feature for p = 10, or

ith and jth feature within each of 5 blocks of 10 features for p = 50,

respectively

Coefficients (I) and correlation (ρ)

misspec.

0.05p+1 instead of 1p+1 and fixed pairwise correlation of ρ instead of ρtrue

Coefficients (II) and correlation (ρ)

misspec.

Assumed β vector 10p+1 instead of 1p+1 and fixed pairwise correlation of ρ
instead of ρtrue

Error sd (0.4) and correlation (ρ)

misspec.

Assumed σ = 0.4 instead of σ = 0.3 for ε * N(0, σ2) and fixed pairwise

correlation of ρ instead of ρtrue
Feature distribution misspecified N

(0,1), N(μ,1)

Assumed expectation of μ for second half of features

Feature distribution misspecified N

(μ,1)

Assumed expectation of μ for all features

Feature distribution misspecified N

(0,1), N(0,σ2)

Assumed variance of σ2 for second half of features

Feature distribution misspecified N(0,

σ2)

Assumed variance of σ2 for all features

Feature distribution misspecified N

(0,1), (1 − α)N(0,1)+αN(0,10)

Assumed marginal distribution of second half of features as Gaussian

mixture with 100α% outliers sampled from N(0, 10) and marginal

distribution of first half of features misspecified as normal with mean 0

and variance that matches the variance σ2 of the second half of features,

Cor(Xi, Xj) = ρtrue, i 6¼ j still holds

Feature distribution misspecified N(μ,

σ2), (1 − α)N(0,1)+αN(3,1)

Assumed marginal distribution of second half of features as Gaussian

mixture with 100α% of the observations sampled from N(3, 1) and

marginal distribution of first half of features misspecified as normal with

mean μ and variance σ2 chosen such that they match mean and variance

of the second half of features, Cor(Xi, Xj) = ρtrue, i 6¼ j still holds

Feature distribution misspecified N

(1.65,2.83), logN(0,1)

Assumed marginal distribution of second half of features misspecified as

log-normal with parameters 0 and 1 and marginal distribution of first half

of features misspecified as normal with matching mean and variance, Cor
(Xi, Xj) = ρtrue, i 6¼ j still holds

Feature distribution misspecified Bin

(π)

Assumed marginal distribution of second feature misspecified as

Bernoulli with a success probability of π, Cor(Xi, Xj) = ρtrue, i 6¼ j still holds

Error distribution misspecified t(df)

scaled

Assumed ε * tdf and scaled ε to still have sd 0.3

Error distribution misspecified chisq

(df) scaled

Assumed ε � w2
df and shifted and scaled ε to still have mean 0 and sd 0.3

https://doi.org/10.1371/journal.pone.0299989.t002
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Simulation procedure

The overall simulation structure is described in Algorithm 1. For each true scenario, we first

approximate the true MSE by drawing 25 000 000 datasets of size n from the true distribution

of X with the first column being a vector of ones, corresponding to the intercept of the model.

We then calculate Xβ and add random noise ε according to the true distribution of ε and

define this as our outcome vector y belonging to the respective dataset. For each pair of data X
and corresponding target y, we estimate b̂ using least squares estimation. We then calculate

the component-wise means over the replications of the simulation of ðb̂ j � bjÞ
2
; j ¼ 0; . . . ; p,

with p denoting the number of features, as estimates of the true component-wise MSEs. We

refer to these quantities as the “true” component-wise MSEs. In each true scenario, we then

perform parametric and Plasmode simulations for estimating the component-wise MSEs

under the assumption that we do not know the respective true scenario.

Algorithm 1 Structure of simulation process
Require: n > 0 (number of observations), 0 < p < n (number of fea-
tures), n.mse > 0 (number of MSE estimations), n.mod > 0 (number of
LSEs, i.e. model estimates, used for estimation of one estimated MSE),
true DGP (distribution of features), true OGM (β, distribution of ε),
assumed DGP (assumed distribution of features), assumed OGM (βa,
assumed distribution of ε), type of Bootstrap, proportion π for resam-
pling (= 1 for n out of n Bootstrap, Wild Bootstrap, and Smoothed
Bootstrap)
Ensure: Error in estimated MSE for parametric simulation

1: MSEtrue;j  E½ðb̂j � bjÞ
2
�;j ¼ 0; . . . ;p; for the LSE b̂ in the true model

2: for k = 1, . . ., n.mse do
3: X(k,i)  design matrix generated with Algorithm 2 or 3 for i = 1,

. . ., n.mod
4: for i = 1, . . ., n.mod do
5: ε(k, i) noise sampled from assumed distribution of ε
6: y(k,i)  X(k,i) βa + ε(k,i)

7: b̂ðk;iÞ  ððXðk;iÞÞTXðk;iÞÞ� 1
ðXðk;iÞÞTyðk;iÞ ⊳ LSE

8: end for
9: MSEðkÞj  1

n:mod

Pn:mod
i¼1
ðb̂
ðk;iÞ
j � ba;jÞ

2
;j ¼ 0; . . . ;p

10: ErrðkÞj  MSEðkÞj � MSEtrue;j;j ¼ 0; . . . ;p
11: end for

The process for data generation for parametric simulation is described in Algorithm 2. We

make different assumptions on the distribution of the features (X), the values of the coefficients

β, and the distribution of ε. We then generate n.mod = 1000 datasets according to these

assumptions using pseudo-random numbers.

Algorithm 2 Structure of feature data generation for parametric simulation
Require: n > 0, 0 < p < n, assumed DGP, k (iteration number of Algo-
rithm 1)
Ensure: Generated datasets
1: for i = 1, . . ., n.mod do ⊳ Inner Simulation
2: X(k,i)  design matrix drawn from assumed data generating process

using a pseudo-random number generator
3: end for

In some scenarios, we use parametric simulation with estimation of mean and covariance.

For this, at the beginning of each simulation, one dataset of size n = 1000 is sampled from the

true DGP and the mean and covariance are estimated from this dataset and used as the

assumed mean and covariance of the assumed DGP. This corresponds to the case that

researchers might have data at hand from which they estimate some characteristics of the DGP
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to incorporate them into a parametric simulation in order to perform a more realistic

simulation.

The procedure for data generation for Plasmode simulation is described in Algorithm 3.

Here, we have to specify the resampling method to use. As a first step for each Plasmode simu-

lation, one dataset is drawn from the true DGP. Note that in each case, the number of observa-

tions after resampling has to match the number of observations used for parametric

simulation and for the true scenario to ensure a fair comparison of methods. For a more

detailed discussion of this issue, see below. We then draw n.mod = 1000 resampled datasets

from our dataset according to the chosen resampling method.

Algorithm 3 Structure of feature data generation for Plasmode simulation
Require: n > 0, 0 < p < n, true DGP, type of Bootstrap, proportion π
for resampling (= 1 for n out of n Bootstrap, Wild Bootstrap and
Smoothed Bootstrap), k (iteration number of Algorithm 1)
Ensure: Plasmode datasets
1: XðkÞPlasm  design matrix 2 Rdn=pe�ðpþ1Þ drawn from true DGP
2: for i = 1, . . ., n.mod do ⊳ Inner Simulation
3: if type == “m out of n Bootstrap” or type == “n out of n Bootstrap”

then
4: X(k,i)  n rows sampled from XðkÞPlasm with replacement
5: else
6: if type == “Subsampling” then
7: X(k,i)  n rows sampled from XðkÞPlasm without replacement
8: else
9: if type == “Wild Bootstrap” then
10: a  vector of p numbers sampled from N(0, 1)
11: Xðk;iÞ1  1n
12: Xðk;iÞj  Xðk;iÞj þ aj � ðX

ðk;iÞ
j � �X ðk;iÞj Þ=SDðXðk;iÞj Þ, j = 2, . . ., p + 1

13: else
14: if type == “Smoothed Bootstrap” then
15: X(k,i)  n rows sampled from XðkÞPlasm with replacement + random

noise from a multivariate normal distribution centered at
the data points and parameterized by corresponding band-
width matrix estimated by Silverman‘s rule [24]);

16: end if
17: end if
18: end if
19: end if
20: end for

We utilize the following Bootstrap versions:

• m out of n Bootstrap [7–9] with resampling proportion π 2 {0.01, 0.1, 0.5, 0.632, 0.8, 0.9}, i.e.

drawing with replacement n observations out of dn/πe observations,

• n out of n Bootstrap [6], i.e. drawing with replacement n observations out of n (special case

of m out of n Bootstrap for π = 1),

• Smoothed Bootstrap [10–13], i.e. drawing with replacement n observations out of the

smoothed empirical distribution of n observations,

• Wild Bootstrap [14], i.e. adding the standardized version of each observed feature vector

scaled with a noise factor sampled from N(0, 1) to the observed feature vectors, and

• subsampling with resampling proportion π 2 {0.01, 0.1, 0.5, 0.632, 0.8, 0.9}, i.e. drawing

without replacement n observations out of dn/πe observations,
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• no resampling, equivalent to subsampling with resampling proportion π = 1.

We do not determine an optimal resampling proportion, e.g. with the algorithm introduced

in [15], since it takes too much time to repeat this for every dataset in the simulation. Instead,

we try a range of resampling proportions.

On each dataset generated either according to the parametric or the Plasmode approach,

the linear model (1) using the chosen parameters for the OGM is then applied to generate the

outcome variable. From these, b̂ is estimated for each dataset. The MSE is estimated as the

average component-wise squared difference of the estimated and assumed coefficient vectors.

One estimated MSE value corresponds to the result of one parametric or Plasmode simulation

study. The whole process is repeated 100 times so we can see how much variation exists in the

MSE estimation when repeating the parametric or Plasmode simulation study.

Performance evaluation

To compare the performance of parametric and Plasmode simulation, we look at their errors

in MSE estimation. For each type of simulation (parametric, parametric with estimation of

mean and variance, Plasmode with different resampling methods and proportions) we obtain

100 estimated MSEs for each deviation from the true DGP and OGM. We calculate the com-

ponent-wise absolute errors as the differences between estimated MSEs and corresponding

true MSEs in each case. Additionally, we calculate the relative errors by dividing the absolute

errors by the corresponding true MSEs. We aggregate the absolute and relative errors per sim-

ulation over the coefficients by taking the arithmetic mean over the absolute component-wise

values. We aggregate over the repetitions of the simulation studies by taking the median of the

aggregated values. With this strategy, runs with large errors in single coefficients obtain large

aggregated values, while the overall aggregated value across simulation repetitions is robust

against single simulations with large aggregated errors.

We examine the errors graphically using boxplots. An example with a corresponding expla-

nation will be shown later. Additionally, we analyze how much the assumptions in parametric

simulation can deviate from the truth until the results are worse than with Plasmode simula-

tion. Therefore, we sort the parametric deviations within each subgroup (e.g. deviation from

the variance of the multivariate normal) in increasing order of the magnitude of the deviation

(e.g. if the true variance is 1 and the tested values are 0.1, . . ., 0.99, these are ordered decreas-

ingly) and identify the first value in this order for which the fully aggregated error for paramet-

ric simulation is larger than that for the considered type of Plasmode simulation. In this way,

we can quantitatively compare parametric simulation to the different Plasmode variants. If the

first value where parametric is worse than Plasmode is close to the true value, it follows that for

deviations of this type, the parametric simulation is very sensitive to small deviations and we

have to be very confident in our parameter settings for the DGP if we want to use parametric

simulation. These are the cases where Plasmode might be superior to parametric simulation.

Software

All analyses are performed using R 4.2.2 [25]. We use the mvtnorm package [26, 27] to simu-

late data from multivariate normal distributions. For smoothed Bootstrap, the R package ker-

nelboot [28] is used. For visualization of the results, we use the ggplot2 package [29] and ggh4x

[30]. The R code and results for the simulation are available on Zenodo (https://doi.org/10.

5281/zenodo.10567144, https://doi.org/10.5281/zenodo.10567059).
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Results

In this Section, we evaluate the results of the simulations. First, we explain the plots for one

simple scenario and type of deviation. Then, the different resampling strategies for Plasmode

are compared. Afterward, we discuss the results for the different types of deviations. Last, we

consider the results for correlation structures estimated from real data as well as the effect of

the size of the resampled dataset.

Example

In the following, we explain the displays that we use in the subsequent sections using one con-

crete example. We again consider the two scenarios with p = 2, n = 100, pairwise correlation of

0.2, β = 13, and ε* N(0, 0.32) or ε* N(0, 32). We calculated the errors in the MSE estimation

using parametric and Plasmode simulation as described in the previous section. We display

the errors in different ways using boxplots. We display the absolute or relative errors for each

coefficient individually like in Figs 1 and 3, and S1 Fig, or aggregated over the coefficients like

Fig 1. Relative error in MSE estimation for individual coefficients for different types of Plasmode simulation compared to parametric simulation

under assumption of true DGP and OGM.

https://doi.org/10.1371/journal.pone.0299989.g001
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in Fig 2. We use the unaggregated version in cases where the error for different coefficients

might behave differently. This is for example the case for deviations in the feature distribution

of the second half of features. Otherwise, if all coefficients behave similarly, we use the aggre-

gated version.

For the individual coefficients, the absolute or relative errors of the 100 repetitions of each

type of simulation (parametric, different types of Plasmode) are displayed in one box per coef-

ficient. This is done separately for the true model and each deviation. The deviations are

described on the x-axis and coefficients are distinguished by differently colored boxes. The

headers give information about the type of simulation used. The first row is the distinction

between parametric and Plasmode simulation. The second row gives the type of Plasmode sim-

ulation. The third row gives the resampling proportion. For example in Fig 1 in the third facet,

the relative errors per coefficient for Plasmode using m out of n Bootstrap with a resampling

proportion of 0.5 are displayed. This corresponds to sampling with replacement 100 observa-

tions from a dataset of 200 observations for each simulation. For parametric simulation, n out

of n Bootstrap and Smoothed Bootstrap, there is no subsampling proportion so this field is left

empty. We leave out Wild Bootstrap in the following analyses since it produces very large out-

liers and is consistently outperformed by all other Bootstrap types (see e.g. Fig 4). We abbrevi-

ate m out of n Bootstrap as m-Bootstrap, n out of n Bootstrap as n-Bootstrap and Smoothed

Bootstrap as S-Bootstrap. If necessary we further abbreviate Bootstrap as Boot. or B., Paramet-

ric as Param. or Prm. and Subsampling as Sub.

For the aggregated errors, we display the mean over the absolute values of the errors of the

individual coefficients per deviation, i.e. the mean error per coefficient of one simulation, for

the 100 repetitions of each simulation type in one box. Apart from the aggregation, the figures

are constructed in the same way as for the individual coefficients.

Fig 2. Absolute value of the relative error in MSE estimation averaged over individual coefficients, for different types of Plasmode simulation

compared to parametric simulation under the assumption of the true DGP and OGM, for p = 2, n = 100, β = (1, 1, 1)T, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j.

https://doi.org/10.1371/journal.pone.0299989.g002
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There are two types of comparisons: we can compare the performance of different types of

simulation for the true model like in Figs 1 and 2, and S1 Fig to see how well each simulation

type would perform if we knew the truth. Or we can compare the performance for differently

strong deviations like in Fig 3. This allows us to assess the impact of different deviations on the

performance. We can also combine both displays and show the performance for one kind of

deviation for all those types of simulation that are affected by it and the performance for all

other simulation types for the true model only. For example, in the case of deviation from the

mean of the second feature distribution, we can show the errors for parametric simulation for

different amounts of deviation as in Fig 3 along with the performance of the Plasmode types

under the true model as in Fig 1 or S1 Fig. We cannot misspecify the feature distribution in

Plasmode simulation, so only the true model is shown. This combined version is the display

that we will use for the rest of our analysis.

In general, we might be interested in both absolute and relative errors. As can be seen in S1

Fig, the absolute errors for our specific problem are directly dependent on the chosen parame-

ter for the error standard deviation: if the standard deviation changes by a factor of 10, e.g.

here from σ = 0.3 to σ = 3, the errors change by a factor of approximately 102 = 100, which can

easily be checked by the theoretical relation Varðb̂jXÞ ¼ s2XTX, using that the LSE is unbiased

for fixed X. The relative errors, on the other hand, are independent of σ since the factor affects

both the absolute error and the true MSE, by which the absolute error is divided, in the same

way. This is for example demonstrated in Fig 1. Therefore, we will only display the relative ver-

sion for the rest of this analysis since the absolute values could be scaled to be arbitrarily small

or large by choosing the error variance accordingly. We will also restrict our analysis to the

case σ = 0.3, since this leads to more stable simulations than σ = 3, as the latter corresponds to

an extremely low signal-to-noise ratio.

Fig 3. Absolute value of relative error in MSE estimation for individual coefficients when the assumed feature distribution in parametric simulation

deviates from the true distribution, for p = 2, n = 100, β = (1, 1, 1)T, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j.

https://doi.org/10.1371/journal.pone.0299989.g003
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Comparison of different Plasmode types and resampling proportions

Fig 4 shows the aggregated relative errors for p = 50 with fixed pairwise correlations of 0.2 for

the true model for all types of simulation. This example confirms that overall, Plasmode using

Wild Bootstrap performs worst. All values for its relative errors lie outside the range of all

other resampling types. This is similar for other scenarios, such that we do not show the results

for Wild Bootstrap in any other plot. Within the other simulation types, Plasmode using the n
out of n Bootstrap performs worst with relative mean errors of around 2.5 and also relatively

high variation. m out of n Bootstrap and subsampling perform better both in terms of the

median aggregated error and in terms of smaller variability with decreasing resampling pro-

portion, i.e. the larger the dataset from which the 100 observations are sampled, the lower the

variability. m out of n Bootstrap converges towards n out of n Bootstrap for increasing subsam-

pling proportions. Except for very low subsampling proportions (0.1 and 0.01), Bootstrap per-

forms worse than subsampling both with regard to median aggregated error and variability. It

is interesting to note, that no resampling (i.e. subsampling with a subsampling rate of one),

which means using the same feature data for the whole simulation and only sampling new

observations of the target, still outperforms m out of n Bootstrap with subsampling propor-

tions from 0.5 on as well as the smoothed, n out of n, and wild bootstrap. Smoothed Bootstrap

performs worse than all subsampling versions, but better than the m out of n Bootstrap for

subsampling proportions from 0.5 on. With Smoothed Bootstrap, the true MSE of the slope

coefficients gets consistently underestimated under the true model (see e.g. Fig 1). Subsam-

pling and m out of n Bootstrap are indistinguishable for very low subsampling proportions

since the impact of duplicate observations decreases with increasing size of the dataset from

which we resample. For a proportion of 0.01, both these approaches perform as well as the

parametric simulation. These results reflect what we also have seen in all other scenarios,

Fig 4. Absolute value of relative error in the MSE estimation averaged over individual coefficients for different types of Plasmode simulation

compared to parametric simulation, under the assumption of the true data generating process and outcome generating model, for p = 50, n = 100, β
= 151, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j.

https://doi.org/10.1371/journal.pone.0299989.g004
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although for lower p, the differences between the simulation types become very small. It should

be noted that in these simulations, subsampling and m out of n Bootstrap require a larger data-

set to resample from for lower resampling proportions. This might give them an advantage.

Due to its very poor performance, we will exclude the wild Bootstrap from now on. We will

also reduce the values of resampling proportions to 0.1 and 0.632 for m out of n Bootstrap and

to 0.1, 0.632, and 1 for subsampling for more clarity. The numbers were chosen to represent a

relatively low and a relatively high resampling proportion. Moreover, 0.632 has been used in

Plasmode simulations, motivated by the expected proportion of non-duplicated observations

for n out of n Bootstrap [31].

Deviations from true feature distribution

We will now take a look at the different deviations from the true feature distribution. These

only affect the parametric simulation. Since in all cases, different coefficients are affected dif-

ferently, we always show the individual errors per coefficient. We focus on the case p = 2 and

n = 100 since for this we can still display the errors for individual coefficients in a clear man-

ner. The results can be transferred to higher numbers of features or lower numbers of observa-

tions. As expected, the absolute values of the errors are larger for higher values of p or smaller

values of n, but the qualitative results are the same. In all cases, we only display the range of

deviations that is relevant to the comparison of parametric and Plasmode simulation.

Gaussian with wrong expectation. Fig 5 shows the relative errors in case of deviations

from the expectation of the second feature (Feature distribution misspecified N(0,1), N(μ,1),

cf. Table 2). We can observe that the second coefficient stays unaffected while the errors for

the intercept increase with increasing deviations from the true mean. This result is to be

expected, as can be seen by reparametrization. If the truth is X2 * N(0, 1) and we assume

Fig 5. Relative error in MSE estimation for individual coefficients when the assumed mean of the marginal distribution of the second feature in

parametric simulation deviates from the true mean, for p = 2, n = 100, β = (1, 1, 1)T, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j. N(0,1), N(μ,1) denotes that the first

feature is generated from a standard normal (truth), and the second feature is generated from a normal distribution with mean μ instead (deviation).

https://doi.org/10.1371/journal.pone.0299989.g005
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Xa
2
� Nðm; 1Þ; m > 0, we can rewrite the resulting linear model using Xa

2
instead of X2 as

Y ¼ b0 þ X1b1 þ Xa
2
b2 þ ε

¼ b0 þ X1b1 þ ðX2 þ mÞb2 þ ε

¼ b0 þ mb2|fflfflfflfflffl{zfflfflfflfflffl}
¼:bnew

0

þ X1b1 þ X2b2 þ ε:

As μ> 0 and β2 > 0 in our case, it holds b
new
0
> b0.

The errors in the intercept can be prevented by estimating the mean using a dataset sam-

pled from the true DGP. This leads to slightly increased variance in the errors of the paramet-

ric simulation, but stable median errors that are close to zero for all coefficients.

Gaussian with wrong variance. Fig 6 shows the relative errors for deviations from the

true variance of the second feature. We see that both slope coefficients are affected. The true

MSE is underestimated by the simulation and this underestimation gets worse for increasing

(misspecified) variance of the second feature.

Again, this behavior can be prevented by estimating the covariance matrix from a dataset

from the true DGP at the cost of slightly increased variation. For estimation of the covariance

matrix, the dataset from the true DGP must have sufficiently many observations. Here, we

used 1000 observations which is sufficient for p = 2, as well as for p = 50. Smaller numbers of

observations are insufficient for p = 50 as can be seen in S2 Fig. When increasing the variance

of the second feature, the error in MSE converges to an upper bound corresponding to the

true MSE, since the estimated MSE converges to zero for increasing variances. This can lead to

problems later on, when we look for the first deviation where the aggregated error for

Fig 6. Relative error in MSE estimation for individual coefficients when the assumed variance of the marginal distribution of the second feature in

parametric simulation deviates from the true variance, for p = 2, n = 100, β = (1, 1, 1)T, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j. N(0,1), N(0,σ2) denotes that the

first feature is generated from a standard normal (truth), and the second feature is generated from a normal distribution with variance σ2 instead

(deviation).

https://doi.org/10.1371/journal.pone.0299989.g006

PLOS ONE Simulation study to evaluate when Plasmode simulation is superior to parametric simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0299989 May 15, 2024 16 / 34

https://doi.org/10.1371/journal.pone.0299989.g006
https://doi.org/10.1371/journal.pone.0299989


parametric simulation exceeds the error for Plasmode simulation. For low p, the upper bound

of the error for increasing the feature variance in parametric simulation is still larger than the

errors obtained with Plasmode simulation. However, for large p, where Plasmode performs

worse, the error reached even with very high values for the variance of the second half of fea-

tures is smaller than that of some Plasmode types. This is demonstrated in S3 Fig for the case

of p = 50. There, we show the mean of the relative errors of the coefficients per simulation run.

In that case, we do not take the absolute values before averaging, to demonstrate the direction

of the errors. In the present case, this is no problem since either the MSEs for all coefficients

are overestimated or all are underestimated, so there is no risk of the errors of different coeffi-

cients cancelling out in the mean. Decreasing instead of increasing the variance of the second

half of features leads to an overestimation of the true MSE and this overestimation is

unbounded. Therefore, in settings where the upper bound does not exceed the errors of all

Plasmode types, we use decreasing instead of increasing variances, see e.g. S4 Fig.

Gaussian with wrong correlations. The overall influence of misspecifying the pairwise

correlations of the features is more easily demonstrated, when the true pairwise correlations

are 0.5 instead of 0.2. The relative errors in this case for parametric simulation are shown in

Fig 7.

The intercept is unaffected when misspecifying the correlation. For the errors in the slopes,

we observe a parabolic shape that intersects with zero at the true correlation of 0.5 and at −0.5.

For the MSE estimation, the sign of the correlation does not seem to have any influence, only

the absolute value, as the parabolic shape is symmetrical around zero. When overestimating

the absolute value of the true correlation, the true MSE is overestimated. For underestimating

the absolute value of the true correlation, the true MSE is underestimated.

This pattern is also observed for a true correlation of 0.2 (Fig 8). For the comparison of

parametric and Plasmode, we concentrate on assuming a correlation that is higher than the

Fig 7. Relative error in MSE estimation for individual coefficients when the assumed correlation of the features in parametric simulation deviates

from true correlation, for p = 2, n = 100, β = (1, 1, 1)T, σ = 0.3, Cor(Xi, Xj) = 0.5 8i 6¼ j.

https://doi.org/10.1371/journal.pone.0299989.g007
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true correlation, since for these deviations, the errors are monotonously increasing. This can

for example be seen in the comparison for true fixed pairwise correlations of 0.2 and p = 2,

n = 100 as shown in Fig 8.

The observed shape is plausible from a theoretical point of view. The MSE of the LSE given

X is equal to its variance, as it is unbiased. This variance is given as the diagonal of σ2(XTX)−1.

For X drawn from a multivariate normal distribution, i.e. ignoring the intercept term, (XTX)−1

follows an inverse Wishart distribution. Its expectation is given by the inverse covariance

matrix S−1 of this multivariate normal. When explicitly calculating the diagonal values of S−1

in case of pairwise fixed correlations of ρ, we can see that this expectation depends quadrati-

cally on ρ, which matches the observed form.

When the true correlation matrix has a block structure, we observe lower errors for the

coefficients at the margins of the blocks if the value of the correlations but not their structure is

misspecified (Fig 9). Again, this can be derived theoretically for the very simple case described

above when inserting the block diagonal structure for S.

Gaussian mixture. Next, we use two different versions of Gaussian mixtures as feature

distributions for the second half of the features. With this, not only the parameter but the

whole shape of the distribution is altered. For the first type of Gaussian mixture, a proportion

of α of the observations stems from a normal distribution with mean 3 and variance 1. This

yields a bimodal distribution. For the second type of Gaussian mixture, a proportion of α of

the observations stems from a normal distribution with mean 0 and variance 10. This repre-

sents a contamination model with outliers. In both cases, the remaining proportion of 1 − α
stems from the standard normal, in agreement with the true distribution. We always set the

marginal distribution of the first feature to a normal that has the same mean and variance as

the Gaussian mixture for the second marginal distribution and successively increase the

Fig 8. Relative error in MSE estimation for individual coefficients when the assumed correlation of the features in parametric simulation deviates

from true correlation, for p = 2, n = 100, β = (1, 1, 1)T, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j.

https://doi.org/10.1371/journal.pone.0299989.g008
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proportion in the mixing distribution. This enables us to separate the influence of the change

in expectation and variance of the distribution from the effect of the bimodality and outliers.

In the bimodal case (Fig 10) we see that with an increasing proportion of observations from

the N(3, 1) distribution, the underestimation of the MSE for the corresponding second coeffi-

cient also increases. It is still less pronounced than for the first coefficient which corresponds

to the normal with wrong expectation and variance. This might be due to the fact that most of

the observations in the mixture distribution belong to the true distribution. In the case of a

normal with wrong expectation and variance, all observations come from a distribution that

differs from the true one.

For the contamination model (Fig 11) we observe the same behavior, but the differences

between the coefficients are smaller there.

Log-normal. Fig 12 shows the relative errors for the individual coefficients when the dis-

tribution of the second feature is misspecified as log-normal and the distribution of the first

feature is misspecified as a normal with matching mean and variance. There is a large overesti-

mation of the MSE for the intercept, while the MSEs for the other coefficients are underesti-

mated. The underestimation is slightly worse for the second coefficient than for the first, so the

additional skewness of the log-normal leads to worse MSE estimation compared to a normal

with the same mean and variance. The errors in all coefficients for this deviation are consider-

ably higher than the ones of any Plasmode variant that is compared here.

Bernoulli. Fig 13 shows the relative errors for the individual coefficients when the distri-

bution of the second feature is misspecified as Bernoulli and the distribution of the first feature

Fig 9. Relative error in MSE estimation for individual coefficients when the assumed correlation of the features in parametric simulation deviates

from true correlation, for p = 2, n = 100, β = (1, 1, 1)T, σ = 0.3, Cor(Xi, Xj) = 0.2|i−j| for ith and jth feature within each of the 5 blocks.

https://doi.org/10.1371/journal.pone.0299989.g009
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Fig 10. Relative error in MSE estimation for individual coefficients when the assumed marginal distribution of the second feature in parametric

simulation is misspecified as Gaussian mixture with increasing proportion of data drawn from Gaussian with different expectations (bimodal

distribution). The mean and the variance of the marginal normal distribution of the first feature are set to match those of the second. The mixing

proportion is given on the x-axis.

https://doi.org/10.1371/journal.pone.0299989.g010

Fig 11. Relative error in MSE estimation for individual coefficients when the assumed marginal distribution of the second feature in parametric

simulation is misspecified as Gaussian mixture with increasing proportion of data drawn from Gaussian with different variance (contaminated

distribution), for p = 2, n = 100, β = (1, 1, 1)T, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j. The mean and the variance of the marginal normal distribution of the first

feature are set to match those of the second. The mixing proportion is given on the x-axis.

https://doi.org/10.1371/journal.pone.0299989.g011
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Fig 12. Relative error in MSE estimation for individual coefficients when the assumed marginal distribution of the second feature in parametric

simulation is misspecified as log-normal, for p = 2, n = 100, β = (1, 1, 1)T, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j. The mean and the variance of the marginal

normal distribution of the first feature are set to match those of the second.

https://doi.org/10.1371/journal.pone.0299989.g012

Fig 13. Relative error in MSE estimation for individual coefficients when the assumed marginal distribution of the second feature in parametric

simulation is misspecified as Bernoulli with different success probabilities, for p = 2, n = 100, β = (1, 1, 1)T, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j.

https://doi.org/10.1371/journal.pone.0299989.g013
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is correctly specified as a standard normal. We observe an increasing overestimation of the

MSE for the intercept with increasing success probabilities. The MSE for the first coefficient is

unaffected. The MSE for the coefficient belonging to the binary feature is also clearly overesti-

mated where the overestimation decreases towards success probabilities of 0.5. The errors for

the intercept and the second coefficient for this deviation are considerably higher than the

ones of any Plasmode variant that is compared here.

Deviations from true coefficients

Fig 14 shows the aggregated relative errors in MSE estimation for p = 50 and fixed correlations

of 0.2 for misspecifications of the coefficient vector β. Since the specification of the coefficient

vector is part of the OGM, this concerns all types of simulations. For each simulation type, the

errors for the misspecified coefficients do not differ from the errors for the true model. There-

fore, we conclude that the assumed values for the coefficients do not affect the simulation

results. The theoretical MSE formula for given X is also only dependent on σ and X, so inde-

pendent of β.

Deviations from true error variance

In Fig 15, the aggregated relative errors in MSE estimation for p = 50 and fixed correlations of

0.2 for misspecifications of the standard deviation of the error term ε are shown. Here, we use

the relative errors directly without taking the absolute value to demonstrate under- and over-

estimation. This again concerns all types of simulation. In general, for too small error standard

deviations, the true MSE is underestimated, and for too large error standard deviations, the

true MSE is overestimated. This pattern is visible for nearly all types of simulations. For m out

Fig 14. Absolute value of relative error in MSE estimation averaged over individual coefficients when the assumed coefficients in parametric and

Plasmode simulation are misspecified, for p = 50, n = 100, β = 151, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j, βI = (0, 0.02, . . ., 1)T, βII = 0.0551, βIII = 1051, βIV =

051. Large outliers for n out of n Bootstrap are not displayed.

https://doi.org/10.1371/journal.pone.0299989.g014
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of n Bootstrap with large resampling proportions as well as for n out of n Bootstrap, the MSE is

overestimated even for the true model, and the errors for other values of the error standard

deviation are shifted up accordingly. This leads to values closest to zero for too small error

standard deviations. In all cases, the variability of the errors increases with increasing error

standard deviation. We observe the same ordering that has already resulted for the true model

(see Fig 4) when comparing the errors from different simulation types for misspecified error

standard deviations.

Deviations from true error distribution

In Fig 16, the aggregated relative errors in MSE estimation for p = 50 and fixed correlations of

0.2 for misspecifications of the distribution of the error term are shown. There are two types of

misspecifications that we compare. We use t-distributed errors as an example of a heavier-

tailed distribution and χ2-distributed errors as an example of a skewed distribution. Both are

scaled and shifted in a way that the errors still have zero expectation and a standard deviation

of 0.3. Overall, the distribution of the errors does not seem to have any influence on the error

in MSE estimation as long as the error standard deviation and zero mean are preserved.

True DGP: Correlation estimated from real data

We now analyze the results for the scenarios where the true correlation matrix is estimated

from a real dataset. In the following, we only discuss the results that differ from those for the

more simple correlation structures we looked at before. These are all deviations that do not

alter the correlation matrix. For deviations from the true correlations, it gets more compli-

cated. In the case of small correlations which differ little, the results are still similar to those

that we saw before. For example, Fig 17 shows the results for the correlation estimated from

Fig 15. Absolute value of relative error in MSE estimation averaged over individual coefficients when the assumed error variance in parametric and

Plasmode simulation are misspecified for p = 50, n = 100, β = 151, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j. Large outliers for n out of n Bootstrap are not

displayed.

https://doi.org/10.1371/journal.pone.0299989.g015
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Fig 16. Absolute value of relative error in MSE estimation averaged over individual coefficients when the assumed error distributions in parametric

and Plasmode simulation are misspecified, for p = 50, n = 100, β = 151, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j. Large outliers for n out of n Bootstrap are not

displayed.

https://doi.org/10.1371/journal.pone.0299989.g016

Fig 17. Absolute value of relative error in MSE estimation for individual coefficients when the assumed feature correlation matrix in parametric

simulation is misspecified. True correlation matrix is estimated from the benchmark dataset quake (p = 3, n = 100, β = 14, σ = 0.3).

https://doi.org/10.1371/journal.pone.0299989.g017
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the dataset quake. The true pairwise correlations are Cor(X1, X2) = −0.1286, Cor(X1, X3) =

−0.0151, and Cor(X2, X3) = 0.1353. The results look similar to those we saw before for fixed

correlations of 0.2. On the other hand, for the other datasets, the estimated pairwise correla-

tions show higher variation, which means that no fixed value can be used to approximate all

correlations simultaneously in a good way. This is for example clearly visible in Fig 18 for the

correlation matrix estimated from the dataset wine_quality. For each choice of fixed pairwise

correlation, there are some coefficients with very large relative errors. This can also lead to

errors showing a pattern that differs from the parabolic shape we observed before (Fig 7), as

can be seen in Fig 19 for the dataset Yolanda. For those cases where no constant correlation

approximates all real correlations well, many of the Plasmode variants outperform parametric

simulation for all assumed oversimplified correlation structures. A possible cure for paramet-

ric simulation would be to estimate the correlation structure from real data which—in this

case—corresponds to the true model. Overall, assuming some simple correlation structure,

like often done in parametric simulations, might lead to high errors in the estimation of the

MSE in cases where the true correlation structure is more complicated. To correctly guess this

correlation structure is highly unlikely, and it might even be impossible to specify complicated

correlation structures in high-dimensional settings.

Size of resampled datasets

Until now, we have always compared simulations that use the same number of observations,

which leads to differently sized datasets from which the Plasmode data is resampled. This

might seem unintuitive, but is necessary to ensure a fairer comparison of the simulation meth-

ods since the true MSE that the estimations are compared to, is monotonously decreasing in

the number of observations in the dataset. Therefore, if we set the size of the dataset that we

Fig 18. Absolute value of relative error in MSE estimation for individual coefficients when the assumed feature correlation matrix in parametric

simulation is misspecified. True correlation matrix is estimated from benchmark dataset wine_quality (p = 11, n = 100, β = 112, σ = 0.3).

https://doi.org/10.1371/journal.pone.0299989.g018
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are resampling from to 100 and resample smaller datasets from this, the MSE will always be

overestimated, even for the true model. This means that if we want to estimate the MSE for

datasets of a certain size n, we have to use datasets of that exact size in our simulations. How-

ever, it might be unrealistic that we have a dataset of the correct size at hand to resample from

for our simulation. For example, if we use simulation to estimate a quantity that cannot be esti-

mated directly from the data since it depends on unknown parameters (e.g. the bias of an esti-

mator), we might have a concrete dataset at hand for which we want to estimate this quantity.

In this case, Plasmode would be a natural choice and since the number of observations is lim-

ited, we might use resampled datasets of smaller size to estimate the quantity for the whole

dataset. We now discuss the results for this case for p = 10 for the true model. For p = 2, differ-

ences between the resampling methods are very small anyway. For p = 50, it will be hard to dif-

ferentiate between the errors occurring due to the differently sized datasets and the errors

caused by approaching the boundary of identifiability. Fig 20 shows the results for the different

Bootstrap methods compared to parametric simulation for differing sizes of datasets resam-

pled from a dataset of size 100. For comparison, the case of resampling 100 out of 158 observa-

tions that has been used in the analysis so far for a resampling proportion of 0.632 is also

included. The estimated MSEs are compared to the true MSE for n = 100 in all cases. Higher

errors are observed for smaller sizes of the resampled dataset. The smallest errors are observed

for subsampling with the subsampling proportion approaching the number of observations in

the dataset. So in the case where the number of observations is limited to the number of obser-

vations that we are interested in, it might even be the best choice to do no resampling at all and

just generate different responses for the MSE estimation. It should be noted that when fixing

the size of the dataset to resample from, the n out of n Bootstrap performs comparably well. A

reason for this might be that it uses a dataset of size 100 for estimating the MSE. Therefore, no

errors occur due to the dependency of the MSE on n. Moreover, the n out of n Bootstrap can

Fig 19. Absolute value of relative error in MSE estimation averaged over individual coefficients when the assumed feature correlation matrix in

parametric simulation is misspecified. True correlation matrix is estimated from benchmark dataset Yolanda (p = 100, n = 200, β = 1101, σ = 0.3).

https://doi.org/10.1371/journal.pone.0299989.g019
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use the dataset more efficiently since it uses more samples for the MSE estimation than sub-

sampling or the m out of n Bootstrap with lower resampling proportions.

Conclusions and recommendations

In the following, we summarize what we have learned from the comparisons that we per-

formed. First, we provide some general insights. Then, we present detailed comparisons, for

which type of deviations from the data-generating process Plasmode was superior to paramet-

ric simulation in our analyses.

General insights

We looked at different true data-generating processes (DGP) and deviations from those for the

estimation of the MSE of the least squares estimator (LSE) in linear regression to compare how

well different simulation types perform in this case. Overall, we saw that if there is no deviation

from the true scenario, parametric simulation outperforms all Plasmode simulations. The

same holds for deviations that affect parametric as well as Plasmode, i.e. deviations from the

outcome generating model (OGM), given that the DGP used for parametric simulation is

close to the truth. We saw that the misspecification of the coefficients and of the error distribu-

tion (as long as expectation and variance are kept) does not have any effect on the quality of

the MSE estimation while the misspecification of the error standard deviation does have an

effect.

Misspecifications of the DGP only affect parametric simulation. For all kinds of misspecifi-

cations of the DGP in parametric simulation (misspecification of expectation, variance, corre-

lation, whole distribution), parametric simulation can become worse than Plasmode. The

degree of misspecification needed for Plasmode to be superior depends on the type of

Fig 20. Comparison of different resampling types for different numbers of observations resampled from a dataset with 100 observations. Absolute

value of relative error in MSE estimation averaged over individual coefficients when the true model is assumed in parametric and Plasmode simulation, for

p = 10, n = 100, β = 111, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j.

https://doi.org/10.1371/journal.pone.0299989.g020
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misspecification, the resampling method used in the context of Plasmode that we compare

with, and on the number of observations n and the number of features p. A detailed analysis of

the degree of misspecification needed for Plasmode to be superior is given in Subsection 2.

Within the different resampling strategies for Plasmode simulations we observed that in

general, Wild Bootstrap performed worst, followed by n out of n Bootstrap. m out of n Boot-

strap performed better than n out of n and subsampling usually performed best. For both m
out of n Bootstrap and subsampling, smaller resampling proportions are favorable. This means

that for a fixed number of subsampled observations n of interest, larger datasets to resample

from are required. Smoothed Bootstrap usually performs worse than subsampling and even

than no resampling (subsampling proportion of one), but better than m out of n Bootstrap

with moderate resampling rates, i.e. rates larger than 0.5. When the number of observations

for resampling is limited to the number of observations that we are interested in, we are

restricted to n out of n Bootstrap, Smoothed Bootstrap, Wild Bootstrap, no resampling at all

(i.e. subsampling with the proportion of one), or resampling a dataset of smaller size for Plas-

mode. Our analyses suggest that no resampling at all or subsampling with a subsampling pro-

portion very close to one might be the best choice in this case. This is due to the dependence of

the MSE on the number of observations, which leads to biased estimates of the MSE if the

number of observations used for the simulation differs from the number of observations of

interest.

Detailed comparisons

Table 3 presents the values for each scenario and deviation at which certain types of Plasmode

simulation are superior to parametric simulation. As discussed before, this is only applicable

to deviations regarding the data-generating process (DGP). The numbers given in the Plas-

mode columns are calculated as follows. For the given scenario, deviation and Plasmode type,

the deviations are ordered increasingly. Then, the first deviation for which the median aggre-

gated relative error of parametric is higher than that for the Plasmode type is identified. These

values correspond to the medians in the aggregated boxplots. For example in the first row, the

case of p = 2, n = 100 and fixed pairwise correlations of 0.2 is analyzed for deviations of the

assumed expected value for the second feature. The true expectation is 0. Plasmode with m out

of n Bootstrap or subsampling with a resampling proportion of 0.1 is superior to parametric

simulation for assumed expectations of 0.25 and higher. Plasmode with m out of n Bootstrap

or subsampling with a resampling proportion of 0.632 is only superior for assumed expecta-

tions of 0.4 and higher, n out of n Bootstrap for values of 0.5 and higher, Smoothed Bootstrap

for values of 0.55 and higher, and Plasmode without resampling (subsampling with proportion

of 1) for values of 0.45 and higher.

When using correlation matrices estimated from real datasets, the order for the deviations

in the correlations is unclear, as discussed before. Therefore, they are excluded from the com-

parison. Also, in all cases, assuming log-normal or binary data instead of normal data is worse

than all Plasmode variants and therefore also excluded.

For these analyses, in the parametric simulations, the expectations and high variances were

increased in steps of 0.05, and the low variances were decreased in steps of 0.1. The mixing

proportion for Gaussian mixtures and the pairwise correlations were increased in steps of

0.01.

For p = 50 and assuming Gaussian mixtures, in some cases even a proportion of 100% data

for the second half of features coming from the wrong distribution is not sufficient for Plas-

mode to be superior, as can be concluded from the values found for deviating expectations and

variances. The corresponding entries in Table 3 are left empty in these cases.
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Table 3. Smallest deviations in parametric simulations for which Plasmode simulation is superior to parametric simulation. p denotes the number of features, n the

number of observations. True ρ gives the true correlation structure, scenario type the type of deviation and true value the true parameter value that the deviation refers to.

p n True ρ Scenario type True value m-Bootstrap n-Bootstrap Smoothed Bootstrap Subsampling No resampling

0.1 0.632 0.1 0.632

2 100 0.2 Expectation of 2nd feature misspecified 0 0.25 0.4 0.5 0.55 0.25 0.4 0.45

2 100 0.2 Variance of 2nd feature misspecified 1 1.05 1.15 1.15 1.2 1.1 1.1 1.15

2 100 0.2 Distribution misspecified: Gaussian mixture with N(0,10) 0 0.01 0.02 0.02 0.03 0.01 0.02 0.02

2 100 0.2 Distribution misspecified: Gaussian mixture with N(3,1) 0 0.01 0.01 0.02 0.02 0.01 0.01 0.01

2 100 0.2 Feature correlation misspecified N(0,1) 0.28 0.35 0.39 0.4 0.29 0.35 0.36

2 50 0.2 Expectation of 2nd feature misspecified 0 0.3 0.5 0.55 0.6 0.3 0.5 0.55

2 50 0.2 Variance of 2nd feature misspecified 1 1.1 1.2 1.25 1.3 1.1 1.2 1.2

2 50 0.2 Distribution misspecified: Gaussian mixture with N(0,10) 0 0.01 0.03 0.03 0.04 0.01 0.03 0.03

2 50 0.2 Distribution misspecified: Gaussian mixture with N(3,1) 0 0.01 0.02 0.02 0.03 0.01 0.02 0.02

2 50 0.2 Feature correlation misspecified N(0,1) 0.33 0.41 0.41 0.41 0.29 0.39 0.41

2 50 0.5 Expectation of 2nd feature misspecified 0 0.25 0.35 0.4 0.5 0.25 0.35 0.4

2 50 0.5 Variance of 2nd feature misspecified 1 1.05 1.15 1.15 1.25 1.05 1.1 1.15

2 50 0.5 Distribution misspecified: Gaussian mixture with N(0,10) 0 0.01 0.02 0.02 0.03 0.01 0.02 0.02

2 50 0.5 Distribution misspecified: Gaussian mixture with N(3,1) 0 0.01 0.02 0.02 0.03 0.01 0.01 0.02

2 50 0.5 Feature correlation misspecified N(0,1) 0.54 0.57 0.57 0.61 0.54 0.56 0.57

10 100 0.2 Expectation of 2nd half of features misspecified 0 0.25 0.45 0.6 0.7 0.25 0.4 0.5

10 100 0.2 Variance of 2nd half of features misspecified 1 1.1 1.25 1.4 1.55 1.1 1.2 1.25

10 100 0.2 Distribution misspecified: Gaussian mixture with N(0,10) 0 0.01 0.02 0.03 0.04 0.01 0.02 0.02

10 100 0.2 Distribution misspecified: Gaussian mixture with N(3,1) 0 0.01 0.02 0.02 0.03 0.01 0.01 0.02

10 100 0.2 Feature correlation misspecified N(0,1) 0.24 0.29 0.33 0.36 0.24 0.28 0.3

10 100 0.2 Feature correlation misspecified ρ|i−j| N(0,1) 0.24 0.38 0.41 0.44 0.24 0.36 0.39

10 50 0.2 Expectation of 2nd half of features misspecified 0 0.3 0.7 0.9 0.7 0.3 0.55 0.65

10 50 0.2 Variance of 2nd half of features misspecified 1 1.1 1.55 2.45 1.55 1.1 1.3 1.45

10 50 0.2 Distribution misspecified: Gaussian mixture with N(0,10) 0 0.01 0.05 0.08 0.04 0.01 0.03 0.04

10 50 0.2 Distribution misspecified: Gaussian mixture with N(3,1) 0 0.01 0.03 0.06 0.03 0.01 0.02 0.03

10 50 0.2 Feature correlation misspecified N(0,1) 0.26 0.36 0.43 0.36 0.25 0.31 0.34

10 50 0.2 Feature correlation misspecified ρ|i−j| N(0,1) 0.33 0.44 0.5 0.44 0.22 0.39 0.42

50 100 0.2 Expectation of 2nd half of features misspecified 0 0.4 1.55 2.7 0.8 0.25 0.5 0.65

50 100 0.2 Variance of 2nd half of features misspecified (too small) 1 0.88 0.38 0.17 0.69 0.94 0.84 0.77

50 100 0.2 Distribution misspecified: Gaussian mixture with N(0,10) 0 0.02 0.57 0.05 0.01 0.02 0.03

50 100 0.2 Distribution misspecified: Gaussian mixture with N(3,1) 0 0.01 0.98 0.04 0.01 0.02 0.02

50 100 0.2 Feature correlation misspecified N(0,1) 0.27 0.57 0.78 0.37 0.24 0.29 0.32

50 100 0.2 Feature correlation misspecified ρ|i−j| N(0,1) 0.25 0.62 0.79 0.46 0.34 0.21 0.42

50 100 0.2|i−j| in 5 blocks Expectation of 2nd half of features misspecified 0 0.4 2.05 2.6 0.8 0.25 0.5 0.6

50 100 0.2|i−j| in 5 blocks Variance of 2nd half of features misspecified (too small) 1 0.88 0.39 0.17 0.68 0.94 0.84 0.77

50 100 0.2|i−j| in 5 blocks Distribution misspecified: Gaussian mixture with N(0,10) 0 0.02 0.51 0.05 0.01 0.02 0.03

50 100 0.2|i−j| in 5 blocks Distribution misspecified: Gaussian mixture with N(3,1) 0 0.01 0.26 0.03 0.01 0.02 0.02

50 100 0.2|i−j| in 5 blocks Feature correlation misspecified N(0,1) 0.2 0.5 0.74 0.28 0.2 0.2 0.22

50 100 0.2|i−j| in 5 blocks Feature correlation misspecified ρ|i−j| 0.2|i−j| 0.3 0.59 0.78 0.41 0.25 0.32 0.36

50 100 0.5|i−j| in 5 blocks Expectation of 2nd half of features misspecified 0 0.5 2.05 3.4 2.05 0.3 0.6 0.8

50 100 0.5|i−j| in 5 blocks Variance of 2nd half of features misspecified (too small) 1 0.88 0.39 0.17 0.68 0.94 0.84 0.78

50 100 0.5|i−j| in 5 blocks Distribution misspecified: Gaussian mixture with N(0,10) 0 0.02 0.43 0.05 0.01 0.02 0.04

50 100 0.5|i−j| in 5 blocks Distribution misspecified: Gaussian mixture with N(3,1) 0 0.01 0.26 0.02 0.01 0.01 0.01

50 100 0.5|i−j| in 5 blocks Feature correlation misspecified N(0,1) 0.5 0.67 0.83 0.51 0.5 0.5 0.5

50 100 0.5|i−j| in 5 blocks Feature correlation misspecified ρ|i−j| 0.5|i−j| 0.54 0.72 0.85 0.6 0.53 0.55 0.58

3 100 quake Expectation of 2nd half of features misspecified 0 0.3 0.5 1 1 0.3 0.45 1

3 100 quake Variance of 2nd half of features misspecified (too small) 1 0.99 0.99 0.99 0.99 0.99 0.99 0.99

3 100 quake Distribution misspecified: Gaussian mixture with N(0,10) 0 0.01 0.02 0.02 0.03 0.01 0.02 0.02

3 100 quake Distribution misspecified: Gaussian mixture with N(3,1) 0 0.01 0.01 0.02 0.02 0.01 0.01 0.01

https://doi.org/10.1371/journal.pone.0299989.t003
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Summary and discussion

We performed a simulation study to compare the performance of parametric and Plasmode

simulation in the context of MSE estimation for the least squares estimator (LSE) in the linear

regression model. For parametric simulation, artificial data is generated according to a fully

user-specified data-generating process (DGP) for generating the feature data and an outcome-

generating model (OGM) for generating the outcome variable. In contrast to that, in Plasmode

simulation the feature data is generated by resampling from a real-life dataset and only the

OGM has to be specified. For comparing the two approaches, we need control of the true

underlying DGP and OGM. We used different true DGPs and OGMs. Since the true DGP and

OGM are unknown in practice, they must be specified when conducting a simulation study.

For Plasmode simulation the DGP is implicitly given by the chosen dataset. This specification

is likely a deviation from the truth. Therefore, we examined the influence of different devia-

tions on both types of simulation studies. Note that for Plasmode, there is no explicit deviation

from the DGP. When resampling from a dataset, one samples from the empirical DGP which

ideally converges to the true DGP.

Within Plasmode simulations, we compared different resampling strategies, namely n out

of n Bootstrap, m out of n Bootstrap, subsampling, smoothed Bootstrap, and wild Bootstrap,

and where applicable also different resampling proportions. Each simulation strategy was eval-

uated based on the differences between the MSEs estimated using the respective method and

the true MSEs. If the true DGP and OGM are known, it is obvious that parametric simulation

is the optimal choice as long as drawing from the true DGP and OGM is feasible. However, in

reality, the true DGP and OGM are unknown and can at best be approximated using expert

knowledge. In Plasmode simulations, as long as a dataset from the DGP of interest is given,

only the OGM has to be specified. Therefore, our aim was to find out

1. How much the DGP chosen in the parametric simulation can deviate from the truth before

the parametric simulation becomes worse than Plasmode simulation.

2. How deviations of the chosen OGM from the true OGM affect both parametric and Plas-

mode simulations.

3. How the choice of the resampling type affects the Plasmode simulation.

In general, we observed that parametric simulation is superior to Plasmode in all situations

where the DGP is specified correctly, i.e. for the true situation or deviations from the true

OGM only. For deviations from the DGP in parametric simulation, it depends on the kind of

deviation, the degree of deviation, the number of observations, and especially on the number

of features in the dataset and the type of resampling used for the Plasmode simulation. For

very small deviations, parametric simulations usually remain superior. For low numbers of

observations, or especially for higher numbers of features, the performance of Plasmode simu-

lation decreases more drastically than that of parametric simulation both in terms of the

median difference between the estimated and true MSE and the variation of the estimated

MSE. This means that the deviations from the true DGP in the assumptions of parametric sim-

ulation have to be larger for Plasmode to be superior. The effect is more pronounced when

using resampling strategies with replacement and a high resampling proportion. A reason for

this might be that in these cases, the number of unique observations is lower. Therefore less

information is contained in the data, so the variance and consequently the MSE of the estima-

tor is inflated. On the other hand, there are certain settings where Plasmode was always supe-

rior to parametric simulation in our study, such as when the DGP was severely misspecified,

e.g. when using binary instead of standard normal features.
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The effect that Plasmode notably overestimates the true MSE for increasing p, especially for

resampling with replacement and high resampling proportions, might be a property of the

chosen simulation setup. It is known that using Bootstrap to estimate the variance of the LSE

in linear regression models for p/n! κ 2 (0, 1) can lead to severe overestimation of the true

variance. For n out of n Bootstrap and features sampled from a multivariate standard Gaussian

distribution, this property was formally shown and additionally demonstrated via simulation

in [32]. Overestimation of the variance implies overestimation of the MSE, so the arguments

made in [32] might in part explain the bad performance of Plasmode simulations that we

observed. The authors also derived an overestimation of the variance by Jackknifing which is

similar to subsampling with resampling proportions very close to one.

If the distribution class of the features was misspecified as log-normal or even Bernoulli

instead of normal or if the true correlation matrix of the features is more complex and

parametric simulation uses an oversimplified approximation for it, all types of resampling

used for Plasmode simulations were superior.

Regarding the resampling strategy used for Plasmode simulations, we observed that wild

Bootstrap performed by far the worst with respect to MSE estimation. For the remaining

types, n out of n Bootstrap was usually inferior to the other resampling strategies. The perfor-

mance of m out of n Bootstrap and subsampling depends on the chosen subsampling propor-

tion. Generally, smaller proportions are beneficial. Note that the size of the resulting dataset

after resampling has to be fixed, so a smaller proportion corresponds to a larger dataset from

which to sample. For small resampling proportions, m out of n Bootstrap and subsampling

behave very similarly, for larger proportions, subsampling performs better. Smoothed Boot-

strap performs similarly to m out of n Bootstrap and subsampling with moderate resampling

proportions. For the resampling proportion approaching one, m out of n Bootstrap converges

to n out of n Bootstrap. No resampling (subsampling with a resampling proportion of one), i.e.

using the whole dataset for the features and only generating new responses in each iteration of

the simulation, performed better than n out of n Bootstrap. The differences between the resam-

pling types except for wild Bootstrap are negligible for small numbers of features (p = 2). In

that case, Plasmode using any resampling strategy might be a good option since even very

small deviations from the DGP lead to parametric simulation being inferior. In general, we

suggest using subsampling with a small resampling proportion if feasible.

For larger numbers of features, the performance of Plasmode simulations gets worse in gen-

eral. Nevertheless, there might still be good reasons for Plasmode simulations in this case. For

example, the specification of the DGP gets more and more complicated with an increasing

number of features. Especially the specification of the correlation structure is non-trivial as the

number of pairwise correlations increases quadratically with the number of features. This

might lead to the choice of oversimplified correlation structures for which we observed a

clearly inferior performance of parametric compared to Plasmode simulation. A remedy could

be to at least estimate key parameters like mean and covariance matrix from a real dataset for

the parametric simulation. We observed good results for that strategy at least as long as the

dataset from which the parameters are estimated is big enough.

The availability of datasets might be a major limitation for the application of Plasmode sim-

ulations. In general, at least one suitable dataset from the DGP of interest is required, see Sec-

tion 3.2 in [4] for a discussion. Ideally, this dataset is considerably larger than the sample size n
of interest, to allow for a low resampling proportion. In practice, this might often not be given.

If the dataset size is limited to the sample size one is interested in, our comparison suggests

that no resampling (subsampling with a resampling proportion of one) might be a reasonable

variant since the error made by using a dataset of the wrong sample size might outweigh the

advantage of lower resampling proportions.
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Overall, the choice of the simulation type should be carefully considered for each applica-

tion. A combination of parametric and Plasmode simulation within a simulation study might

be a solution to use both the flexibility of parametric simulation and the ability of Plasmode to

preserve characteristics of real-life data.

So far, the comparison of parametric and Plasmode simulation is limited to the specific

example of estimating the MSE of the LSE. Therefore, further studies on other endpoints as

well as a comparison for high-dimensional data which brings additional challenges might be

interesting extensions of the analysis at hand.

Supporting information

S1 Fig. Absolute error in MSE estimation for individual coefficients for different types of

Plasmode simulation compared to parametric simulation under assumption of true data

generating process and outcome generating model. (A) p = 2, n = 100, β = (1, 1, 1)T, σ = 0.3,

Cor(Xi, Xj) = 0.2 8i 6¼ j. (B) p = 2, n = 100, β = (1, 1, 1)T, σ = 3, Cor(Xi, Xj) = 0.2 8i 6¼ j.
(TIF)

S2 Fig. Relative error in MSE estimation averaged over individual coefficients when the

variance of the second half of features is misspecified for p = 50, n = 100, β = 151, σ = 0.3,

Cor(Xi, Xj) = 0.2 8i 6¼ j. The first facet displays the errors in case the misspecified variances are

used in the simulation. The remaining facets display the errors for using a variance that is esti-

mated using datasets of different sizes from the true DGP for parametric simulation instead.

(TIF)

S3 Fig. Relative error in MSE estimation averaged over individual coefficients when the

assumed variance of the second half of features exceeds the true variance for p = 50,

n = 100, β = 151, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j. Large outliers for n out of n Bootstrap not

displayed.

(TIF)

S4 Fig. Relative error in MSE estimation averaged over individual coefficients when the

assumed variance of the second half of features underestimates the true variance for

p = 50, n = 100, β = 151, σ = 0.3, Cor(Xi, Xj) = 0.2 8i 6¼ j. Large outliers for n out of n Bootstrap

not displayed.

(TIF)

S1 Table. Complete list of deviations from true scenarios.

(PDF)

S1 Appendix. Simulation of Bernoulli, log-normal, and Gaussian mixture variables with

fixed correlations.

(PDF)
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