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practical adoption of the FAIR principles closely aligned with the international

bioimaging community. We highlight which tools and services are ready to be

implemented andwhat the future directions for FAIRbioimage data have to offer.
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1 INTRODUCTION: CORE FACILITIES
AS ESSENTIAL PARTNERS IN RESEARCH
AND DRIVERS OF FAIR IMAGE DATA
HANDLING

Imaging core facilities create synergies by centralising
procurement, maintenance and accessibility of high-end
imaging instruments.1–3 Many core facilities also perform
their own research on method development. Researchers
use the core facility and consult with its staff to discuss
their experiments.4–6 Early career scientists especially rely
on core facility specialists to learn about microscopy tech-
niques and how to best apply them.7,8 Besides providing
training on microscopes, core facility staff regularly deal
with various user questions, for example: How does the
microscope choice influence data quality and quantity?
How are microscopy files structured? How do you retrieve
data from the instrument, and where do you store it?
Can images be used in an electronic lab notebook?, etc.
Following data acquisition, many users need support in
image analysis and software access and preparing data for
publication, for which they continue consulting with core
facility staff. Concerns include: What information about
the imaging experiment must be detailed in a methods
section? How do you adequately describe image process-
ing and analysis? How and where do you deposit data
as demanded by the publisher? Lastly, helping to recover
images in raw formats, for example, from former PhD
students, or identifying the imaging setup of a former Post-
doc’s work are among the challenges faced by core facility
staff. Notably, many questions relate to the complex topic
of research data management (RDM), a crucial part of
research in general. RDM refers to all activities to organise,
store, share, document and preserve research data, which
are mainly, but not only, digital data nowadays. A pro-
fessional RDM strategy helps to ensure scientific quality
and reliability, protect intellectual property and increase
the efficiency of scientific work by ensuring reproducibil-
ity and allowing reusability of research data. Research
communities have now widely accepted the FAIR guiding
principles for RDM.9,10 Funding agencies and policymak-
ers support them, and they have become part of good
scientific practice. In this article, we focus on RDM aspects
for handling bioimaging data, especially on adopting the

FAIR principles for this data type. While we include gen-
erally applicable aspects of RDM throughout the text,
we mainly refer to ‘bioimaging RDM’ or ‘bioimage data
management’ in this article.
The above-mentioned experiences have stimulated core

facilities to initiate activities to establish bioimaging RDM
practices. One of the first examples in Germany is the
open discussion group Research Data Management for
Microscopy (RDM4mic), focusing on the data manage-
ment system OMERO (OME Remote Objects).11,12 With
support fromGerBI-GMB, these activities led to additional
projects. The Information Infrastructure for BioImage
Data project (I3D:bio, https://www.i3dbio.de) started with
a focus on facilitating the implementation of OMERO
at universities and research institutions in Germany.13

Moreover,more than 20German institutions formed a con-
sortium dedicated to bioimage data management within
the National Research Data Infrastructure (NFDI).14 This
consortium, NFDI4BIOIMAGE, aims at fostering new
standards for image data handling and metadata cura-
tion (https://nfdi4bioimage.de) and is embedded within
a network of consortia (https://nfdi.de). These and more
projects (e.g., FoundingGIDE, https://cordis.europa.eu/
project/id/101130216) aim to align strategies for bioimag-
ing RDMwhile accounting for local and discipline-specific
needs. Based on the experience from these projects, this
article

∙ summarises current challenges for bioimaging RDM
from the perspective of core facilities (PART I),

∙ provides action items for core facilities to advance their
bioimaging RDM capabilities and services (PART II),

∙ invites to collaboratively drive the cultural change
toward expanding and acknowledging the role of core-
facility-supported RDM and bioimage data stewards in
scientific discovery (PART III).

2 PART I: THE BIOIMAGE DATA LIFE
CYCLE

Research data have the potential for scientific discovery
beyond its original acquisition purpose when handled
according to the FAIR principles.9,15 To structure all
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F IGURE 1 The research data life cycle as applied to bioimage data. As outlined in the main text, the researcher-centred life cycle

highlights six steps for conducting bioimaging experiments. Core facilities play a role in all steps of the life cycle, starting with planning an

experiment. However, we have highlighted four steps in which core facilities are mainly involved as essential partners, as indicated by the

colours. From publication to long-term archiving, the responsibilities are increasingly shared with external providers or generic RDM support

services, as the gradient indicates. Around the life cycle, tools, systems, and other aspects relevant to researchers and core facilities for

applying data management practices are positioned in arbitrary order. Many of these aspects are relevant for multiple life cycle steps, as

indicated by the colour code.

relevant RDM topics throughout every step of experimen-
tal research, we use the data life cycle concept applied
to bioimaging data.14,16,17 We highlight issues commonly
experienced in core facilities and describe our view on
present and potential future roles for core facilities in
bioimaging RDM. We exemplify tools and describe future
directions for data handling.
(i) The first step of a typical bioimage data life cycle is

planning. When FAIR image data are openly accessible in
public repositories, searching and reusing existing image
data can be considered at this step next to planning the
following ones: (ii) data acquisition, (iii) data storage and
organisation, (iv) data processing and analysis, (v) pub-
lication and (vi) data archiving (Figure 1). Many aspects
are special for bioimage data since they are often large

and multidimensional and lack a uniform file format but
are defined by a specific instrument.15,18–22 Usually, core
facility staff helps with instrument choice. As soon as new
bioimage data are to be acquired, they advise users how
data should be handled and moved from their quality-
controlled acquisition (2.2, image acquisition) to storage
location(s) (2.3, storage and organisation) over processing
and analysis (2.4, image analysis), to archiving or public
deposition (2.5, publication, and 2.6, archiving).

2.1 Experiment planning

Research involves running experiments iteratively to eval-
uate and refine them but planning early helps to anticipate

 1
3
6
5
2
8
1
8
, 2

0
2
4
, 3

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/jm

i.1
3
3
1
7
 b

y
 D

k
fz Z

en
tralb

ib
lio

th
ek

 K
reb

sfo
rsch

u
n
g
szen

tru
m

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

8
/0

5
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n
s L

icen
se



SCHMIDT et al. 353

potential issues and relevant stakeholder interactions.
Problems are averted if the core facility is consulted
upfront, which oftentimes does not happen, either because
users underestimate the complexity of the techniques and
the hurdles to be taken to generate reliable results23 or
simply because the core facility’s capacity may be lim-
ited to devote enough attention and resources to the
project.5 Scientists with little bioimaging experiencemight
insufficiently consider the consequences of the subopti-
mal choice of equipment, instrument settings and sources
of bias.24,25 These factors influence whether an image
accurately represents the biological phenomenon and the
necessaryworkload from image acquisition to publication-
ready results. Improvements in planning and preparation
avoid acquiring excessive and unusable data. Addition-
ally, when users do not consider the requirements for
image analysis before acquisition, image data sets are
likely to be difficult or unsuitable to process for technical
reasons.26,27

2.1.1 Role of a core facility for experiment
planning

Experienced core facility staff can help to acquire high-
quality imaging data and avoid storage-intensive imaging
modalities when they are not needed,28 for example,
favouring a high-content plate-based acquisition over
repeated acquisitions with classical slides. Core facility
staff can help identify and overcome technical feasibility
concerns,2 for example, by guided instrument choice after
per-project consultation and by estimating required stor-
age volumes (2.2, data acquisition). Ideally, users draft a
data management plan (DMP).5,29 However, researchers
and core facility staff seem to have limited usage of DMPs
in practice.7,30 DMP templates that have been approved
or provided by the core facility, if available within an
institutional DMP tool, can guide scientists to questions
regarding image data handling appropriate to their local
IT environment. Core facility staff are familiar with the
institutional resources for bioimaging, including acquisi-
tion machines, IT resources for storage and data transfer,
workstations for processing and analysis and services by
academic libraries such as providing persistent identi-
fiers (PIDs). Thus, investing in DMP templates can help
structure project consultations, alleviating the workload
in the long run and taking the prior experience of the
researcher planning an experiment into account. Writ-
ing a DMP does not mean that everything is fixed. A
DMP is regarded as a living document adapted as nec-
essary in a transparent manner.31 Tools for writing a
DMP can be found online (https://rdmkit.elixir-europe.
org/data_management_plan).

Core facility staff can teach researchers about the poten-
tial for data reuse. Specialised repositories like the BioIm-
age Archive (BIA) or the Image Data Resource (IDR)
allow for metadata-based findability, access to, online
visualisation, and downloading of published bioimage
data.32–34 Preceding own experiments, researchers can
search for data with similarities to their own project and
suitable bioimage analysis tools to test one’s own anal-
ysis workflows (2.4, image analysis). Searching data in
repositories and archives also educates about the impor-
tance of metadata for finding and retrieving data after
publication. Both technical and biological metadata docu-
mentation can be planned before an experiment.35,36 Core
facility staff are experts in technical metadata, but it is
out of the core facility’s scope to provide all research
domain-specific metadata standards. However, users can
learn from core facility staff about community-established
guidelines. Highlighted examples are the Recommended
Metadata for Biological Images (REMBI),37 the NBO tiered
guidelines38 and recommendations for certain fields and
modalities like MITI for multiplexed tissue imaging,39

MIHCSME for high-content screening,40 3D-MMS for 3D
volume microscopy41 or the Brain Imaging Data Struc-
ture (BIDS).42 Tools are available to support metadata
annotation.43–45 Tabular metadata collection formats are
often used.7,40 Optionally, core facilities can enforce meta-
data enrichment, especially for large data otherwise hard
tomanage. Amandatorymetadata checklist could become
part of the core facility’s usage policy, for example, as rec-
ommended for high-content screening (HCS) data within
the Dutch bioimaging network.40

As data management planning and data handling best
practices are accumulated locally over time, they can
become a useful resource for new facility users. Due
to their mostly well-established cross-institutional net-
works, core facility staff can also guide towards third-party
resourceswhere needed (2.3, storage and organisation, and
2.4, image analysis). Many federated resources exist that
researchers may not be initially aware of. Some exam-
ples from the European area are the European life science
infrastructure ELIXIR, the German Network for Bioin-
formatics (de.NBI), and the developing European Open
Science Cloud (EOSC). Core facility professionals dissem-
inate new and updated community-approved practices,
leverage peer-to-peer support or moderate help requests
in forums like https://forum.image.sc. Table 1 summarises
important aspects of data management planning.

2.2 Data acquisition

Ideally, when users collect data, they have planned their
experiment enough to ensure the data are comprehensive
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TABLE 1 Common issues and solutions regarding bioimage data management planning.

Common issue Proposed solution

Underestimating the complexity of bioimage data

handling

Consulting and taking advice from core facility staff. Using DMP templates

that have been approved or provided by core facilities.

Reusing existing data is not considered Data search and review in public repositories and institutional archives can

become part of experiment planning. Reusing data from repositories can

help users familiarise themselves with the data types and test workflows

before acquiring their own data.

Suitable archives can be found on re3data.org or on FAIRsharing.org.

Bioimaging-specific archives include, for example, the BioImage Archive

(BIA) and the Image Data Resource (IDR). Institutional archives may be

another data source.

Lack of adaptation strategies for changing demands

throughout the experiment

Writing a data management plan and using it as a living document to adapt

where required, and record changes.

Suboptimal instrument choice User training and guidance on instrument choice and setup, as well as

recommendations on sample preparation. Consulting the core facility

and taking advice on instrument and software choice.

Image analysis and data processing are not planned

prior to the acquisition

Consulting with core facility staff, image analysts and data stewards before

starting a new project.

Searching example data and protocols that have established the desired

procedure previously to test image analysis a priori. Planning suitable

data structures and metadata for analysis and running a pilot experiment

before adjusting and scaling up.

The data volumes, storage space and data transfer

requirements are not considered before the

acquisition

Gathering comprehensive information about typical image sizes of the core

facility’s instruments. Highlight limits to memory load and data transfer

with large files. Estimating expected data volumes and required storage

and ensuring resource availability.

The importance of metadata collection is

overlooked

Preparing a metadata annotation checklist for the data even before

acquisition, for example, based on REMBI. Optionally, enforce

annotation as part of a usage policy.

Lack of a strategy for the publication of image data Considering data publication, candidate public repositories, and reviewing

submission guidelines. Defining authorship and licensing criteria with

collaboration partners early in the project.

and reliable by recording all the relevant (meta)data
that describe the experiment and the (biological) sample.
The complexity of this task may not be fully appreci-
ated upfront, for example, when applying an advanced
microscopy technique to an unknown sample for the first
time. Reliability presupposes valid quality measures to
ensure an appropriate instrument setup and calibration,
for whichmost researchers rely on their core facility. Some
scientists state that they would not share and reuse data
because they do not trust the quality of a dataset they
did not acquire.46 While not standard practice today, a
record of the quality measures (e.g., a QC and calibra-
tion protocol) would optimally be linked via a persistent
identifier (e.g., a DOI). Most commercial acquisition soft-
ware records technicalmetadata in nonstandard formats.47

Due to proprietary file formats, this metadata – like
the measurement data itself – is often only accessible
with vendor-specific software or through file format con-
version or translation. However, the translation fidelity
differs between file formats, and the maintenance of

libraries such as Bio-Formats does not scale with the vari-
ety of proprietary formats (https://www.openmicroscopy.
org/2016/01/06/format-support.html).47 What’s more, on-
the-fly translation creates a computational bottleneck.48

For nonbioimaging specialists, these issues are usually a
challenge to overcome.

2.2.1 Role of a core facility in data
management for image acquisition

Many core facilities have adopted regular quality control
measures and instrument calibration as a standard operat-
ing procedure – an essential contribution to data reliability
and reusability. International standardisation of quality
control measures and the provision mentioned above of
those quality measure records would be an asset.49,50

Through global collaboration, the Quality Assessment
and Reproducibility for Instruments and Images in
Light Microscopy (QUAREP-LiMi) initiative defines such
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standards and develops protocols and tools for their prac-
tical application.51–56

To understand the technical metadata associated with
an image, which encode the settings under which the
image was acquired, and to avoid mistakes in data han-
dling and interpretation, users should understand first the
basic architectural principles of bioimaging files and, sec-
ond, how information on, for example, optical resolution,
detector gain, bit depth, etc., are essential to make the
digital representation of a sample that the microscope pro-
duced interpretable.57–59 This technical metadata should
be available along with the shared FAIR data. Core facil-
ities are essential in providing training on these aspects.7,8

With its fast storage component, the usually vendor-
provided acquisition computer functions as the initial
location to write data to disk. Using a network drive for
initial storage is not recommended, as network instabil-
ity could result in data corruption. Subject to individual
core facility policies, users should clear the acquisition
computer and transfer data after acquisition to a suitable
storage location optimally through network transfer (2.3,
storage and organisation), avoiding portable drives, which
would increase the risk of spreading malware.60

Vendors usually optimise their proprietary software
and file formats for fast writing-to-disk. Many vendors
offer free versions of their software to open their file
formats. However, data accessibility and interoperability
are enhanced when data can be recorded in or faith-
fully converted to open file formats.21 Bio-Formats-based
conversion to, for example, OME-TIFF has been the de
facto standard solution for a long time.47 But new file for-
mats are required for working with large files in cloud
and object storage environments, for which the OME-
Zarr format is under development.48,61 Core facility staff
should familiarise themselves with next-generation file
formats (NGFF) like OME-Zarr, learn to use conversion
tools in relevant use cases, and stay abreast of the devel-
opment. Thanks to NGFF, data chunking makes large
multidimensional images cloud-compatible and ready for
streaming. As such, OME-Zarr allows users random access
to any plane or part of large multidimensional images over
the Internet without the necessity of loading the whole
image. This is particularly important for modalities like
light-sheet microscopy, HCS, volume electron microscopy,
etc., and bears strong potential for a broadly adaptable
new standard.61,62 Table 2 summarises data management
aspects related to image acquisition.

2.3 Storage and organisation

Users face various challenges regarding the requirements
for storage efficiency, interoperability, computational per-

formance, accessibility and data transfer, particularly for
handling data from advanced bioimaging techniques like
light-sheet microscopy, HCS or whole slide imagers.22,60

Effective storage and organisation of large-scale data
require hardware infrastructure, workflow optimisation
and sharing protocols. Network availability and band-
width are pivotal for facilitating large file transfer and
access. High-speed networks and efficient data transfer
protocols minimise latency and maximise throughput,
particularly in distributed environments. Specific prereq-
uisites may depend on project-specific factors like collabo-
ration requirements, data volumes and the computational
tasks performed on the data. Storage technology for var-
ious applications has evolved significantly over the past
decades,63 and a large heterogeneity of storage modali-
ties is found in the research landscape. While individual
research groups still often rely on NAS servers or hard
drives for data storage, diverse institutional offers might
exist, for example, file systems, tape systems for cold
storage, distributed or virtual storage and object storage.
Aspects regarding storage reliability technologies (e.g.,
RAID or erasure coding) are to be considered.60,63 The
complexity behind the growing trend towards working
‘in the cloud’ is sometimes underestimated by scientists
without in-depth IT knowledge.64,65

Besides providing sufficient storage space and network
capacity, the storage modality must be appropriate for the
data type to allow more than merely holding the data in
a certain location. Image data formats and software can
influence how efficiently large multidimensional images,
for example, 3D time-lapsed multichannel images, are
accessed. Especially when working with data through a
network, large N-dimensional arrays may require a whole
file download, depending on the format. Bioimage data,
like other research data, are frequently accessed through-
out a project (also referred to as hot data, as opposed to
archival data, referred to as cold data). For processing and
analysis, regular computer RAM (random access mem-
ory) capacities readily fall short.48,66 Central services (e.g.,
Nextcloud instances) may be inadequate for sharing large
data sets. In bioimaging, data volumes can reach terabytes
within one or a few acquisition sessions – exceeding most
standard file-sharing solutions’ capabilities.22

Research processes encompass numerous steps involv-
ing various data types. Data conversion may be necessary
for data integration across different platforms. Processing
and analysis software produces output files in diverse
formats, including images, tables, texts and annotation
files. Compressed images are generated regularly for
presentations or reports. This multifaceted nature of data
handling contributes to potential data fragmentation,
making it challenging to maintain a comprehensive
overview. Keeping track of all copies and linked files while
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TABLE 2 Common RDM issues and solutions for data acquisition.

Common issue Proposed solution

Quality control and instrument calibration are not

documented

A core facility can make the QC measures and records of instrument

calibration accessible for the users or provide links to published

protocols that are applied for QC at the respective instrument.

Ad-hocmetadata documentation during acquisition is

not transformed into structured annotations

Raise awareness to document technical metadata and validate its

completeness. If new metadata items are collected, the DMP and

structured annotations (e.g., in OMERO) should be amended.

Users leave data on acquisition machine computers The core facility policy should enforce data transfer from the

computers. Orphaned data can be moved, uploaded to a data

management system like OMERO offering a period for users to

handle the data, or be deleted.

Sample preparation metadata is not added to acquired

image files as structured annotations or linked

metadata files

Sample preparation can be linked to data, for example, by linking to

ELNs, or public protocols in the metadata. For example, in

OMERO, the dataset description or the Key-Value Pairs could

contain such links.

Technical metadata record correctness is not validated Sometimes, technical metadata is incomplete or not correctly

conserved in file format translations. Essential metadata for the

experiment should be checked for newly handled formats.

navigating through processing, sharing, figure drafting
and publication can be an error-prone task.67,68

Most imaging facilities allow users to access and use the
instruments after initial training and are, hence, termed
‘self-service facilities’. In other cases, imaging experiments
are performed by facility staff, who have control over
data acquisition and data provision to users. Especially
in self-service core facilities, the prevailing practice is to
transfer data to users’ storage locations immediately after
acquisition, rendering users solely responsible for organ-
ising and storing the data.5 Some research groups specify
their data management individually per project. Hence,
data structuring and labelling can vary significantly within
institutions, and this variability hampers data reusability.
Repeatedly, new core facility users must recapture images
when attempting to restart previous projects because the
original data are no longer identifiable.
In our experience, only a small number of users, usually

with a background in bioinformatics or computer science,
have a deeper understanding of storage in away as outlined
above. Most users ask for sufficient space and data security
but understandably rely in full on their IT department or
core facility for any details. This creates a challenge when
neither the user nor the IT staff know how these details
can affect working with the researchers’ specific data
types.

2.3.1 Role of a bioimaging core facility in
storage and organisation

Full-service or hybrid-service facilities, but also self-service
core facilities, are confronted with storage provision and

data organisation challenges. To this end, some core facil-
ities favour gaining full autonomy with respect to their
IT resources.28 One can purchase commercially available
packages of acquisition systems, analysis software and
workstations, including storage. However, besides a ven-
dor lock-in risk, any additional hardware and software
offered by the core facility creates a maintenance overhead
that requires a sufficient budget.2,5

Most facilities inevitably rely on central resources. In
our experience, it is important to seek strategic alignment
at the institutional level to reduce costs, facilitate interop-
erable solutions and share maintenance responsibilities.
Besides researchers, relevant partners regarding storage,
electronic lab notebooks (ELNs), or Laboratory Informa-
tion Management Systems (LIMS) are other core facilities,
IT departments, academic libraries, and central admin-
istrations. Core facilities can estimate the storage needs
based on the user number, the instrument bookings and
the average file sizes generated per system. Creating cus-
tom in-house storage solutions might seem appealing, but
a fragmented landscape of solutions can impede usability
and interoperability.69 A bioimaging-specific RDM plat-
form like OMERO, combining storage and organisation, is
an asset acknowledged by scientists, although such plat-
forms have not been broadly implemented so far.7 Several
solutions were developed with differences in discipline-
specificity versus generalisability.11,12,70–79 For example,
while OMEROor XNAT could (but not necessarily should)
be installed by a core facility alone, a more generic system
like iRODS (https://irods.org) is instead an option as an
institution-wide strategic decision for overall RDM of all
data types. Themost widely adopted platform for bioimag-
ing inGermany isOMERO7which can serve as a long-term
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TABLE 3 Important considerations about storage and organisation for bioimage data.

Common issue Proposed solution

Fragmentation of data Core facility staff can allocate data to storage and linkage pipelines or

workflows. A DMP can help to keep track of data.

The file formats impede data integration Data can be converted into suitable formats with the help of core

facility staff to avoid loss of information regarding data and metadata.

Hurdles to data integration due to the design of the

infrastructure. Different data types/modalities

cannot be accessed and analysed together

Using a holistic approach that addresses hardware infrastructure,

network capacity, workflow optimisation and sharing protocols.

Avoiding isolated local systems and ensuring the compatibility of

RDM solutions or defining bridges between different solutions.

Standardisation of integration processes can avoid confusion and

inefficiency. Ensuring that the performance and infrastructure

scalability do not become a bottleneck for data integration.

Performance bottlenecks when accessing data Core facility staff can help close the gaps in mutual understanding

between IT and researchers in terms of the architectural structure of

image data and the resulting infrastructure requirements.

Lack of central (bioimaging) RDM infrastructure Core facility staff can educate users to adopt community-approved

RDM strategies in file systems or can contribute to aligning strategies

at the institution to save costs, facilitate interoperable solutions and

share maintenance responsibilities.

storage depending on the total data volumes. OMERO’s
(and other platforms’) advantage is that data are not fre-
quently moved or copied, but users work collaboratively
on the data in the same location and export only when
necessary.80 OMERO’s user management allows defin-
ing data ownership and access rights, which helps avoid
orphaned data. If required, connecting an OMERO server
via a high-speed cable connection to image analysis work-
stations can meet user needs for fast computing with
large data files.81 Importantly, finding data in any location
depends on metadata. OMERO allows adding metadata
as structured annotations while making the instrument
metadata accessible, too. In our experience, an OMERO
installation on a flexible resource management backend,
like a virtual-machine-based Open Stack environment
with scalablemounted storage, is an asset for core facilities
and researchers alike.
Where a bioimaging RDM platform is lacking, core

facility staff can help users to adopt community-approved
data structuring in file systems. Examples are the ISA
framework, including tools, data model and serialisa-
tion for (meta)data,82,83 or BIDS for Microscopy.42 Ver-
sion control software (e.g., Git, Gitlab, DataLad) might
be an option for computer-affine users.84 File naming
conventions with tokens can be discussed in project
consultations. Where sufficient storage with fast data
access is not available, users might consider using third-
party, federated storage and compute resources that exist
at the regional, national and the international level
(e.g., Galaxy https://imaging.usegalaxy.eu, de.NBI https://
www.denbi.de, ELIXIR https://elixir-europe.org, EUDAT
https://www.eudat.eu, EOSC https://open-science-cloud.

ec.europa.eu, etc.). Table 3 summarises considerations of
data storage and organisation.

2.4 Image analysis

Bioimage analysis is standard practice to obtain scientific
results as objectively, reliably, and reproducibly as possible.
As with any method, incorrect usage of bioimage analy-
sis methods and tools will lead to wrong conclusions.85–88

Image analysis is a science in itself, and aspects to consider
are outlined elsewhere.89–94 Notably, data management is
crucial in image analysis: accessing large data sets, sharing
copies of data or results, maintaining records of pro-
cessed data and their provenance and associating results
with the corresponding raw data for later exploration.95

This becomes even more pivotal in the context of auto-
mated analysis pipelines, where the code heavily relies on
well-structured data sources. While a common approach
involves using file systems with a combination of folders,
naming conventions, and inventory spreadsheets to organ-
ise data, cross-referencing integrity is not assured. These
challenges create a significant workload for core facility
staff assisting researcherswith their image analysis project.

2.4.1 Role of a core facility in RDM for
image analysis

While some institutions build on independent bioimage
analysis facilities,92 core facilities may provide support
and training with image analysis. Existing pipelines and
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software should be considered for reuse to lower the over-
all cost of software development and maintenance.96–98

Beyond that role, core facility staff can advise researchers
on how to document their analysis, using file structures
compliant with accepted standards (ISA, BIDS or simi-
lar), recording analysis steps, for example, with the macro
recorder in ImageJ/Fiji,99,100 or usingGalaxy Imaging101,102

for robust and reproducible workflows recorded in RO-
Crates.103 Other examples are Bioimage Analysis Desktop
(BAND) provided by the EMBL (https://band.embl.de)
or the AI4LIFE project (https://ai4life.eurobioimaging.
eu). An overview of resources can be found in David
et al.104 and in a 2023 biologist’s guide to planning
quantitative imaging.105 These, however, do not sub-
stitute for data management support provided by core
facilities.
To ensure data quality and integrity, database technolo-

gies have introduced methods to enhance information
validity and accuracy. This includes concepts such as
primary keys for unique item identification or normalisa-
tion processes.106 Database tables used in RDM systems
adhere to these data structuring principles by design.
This is why solutions such as OMERO or Cytomine are
well suited to handle the complexity of microscopy data:
researchers can benefit from the flexibility to view and
organise images according to their preferences by leverag-
ing the object-oriented data organisation of such systems,
and they can use annotations like tags, key-value pairs
(dictionaries) or tables of typed data, each with specific
purposes. Such structured data integrates well into image
analysis pipelines, eased by the Application Programming
Interfaces (APIs) of these tools.107

Our experience with OMERO is that it eliminates the
need to transfer data between collaborators, decreasing the
total data volume and preventing divergences of processed
data versions: the data stored centrally on a server is shared
via links and accessed fromdifferent physical locations and
software clients. Tools that are widely used by the com-
munity like QuPath,108 ImageJ/Fiji,99,100 or Python scripts
within Jupyter Notebooks109 and others have their dedi-
cated OMERO clients.110–112 Once an analysis is complete,
the results are uploaded back to the server and kept in a
format defined by the OME model.113,114

The development of integrated tools in the OMERO.web
client is supported by the bidirectional links between
data sources (images) and derived results (ROIs, tables),
improving the user experience and simplifying the pro-
cess of sharing and validating results.112 ROIs are displayed
in the image viewer (OMERO.iviewer) and overlaid in
figures (OMERO.figure). Tables are plotted, and data
points can be traced back to the source to identify out-
liers (OMERO.parade, OMERO.mdv). Common issues and

proposed solutions regarding the dependency of image
analysis on data management are listed in Table 4.

2.5 Publication

Sequencing or structural biology data have been shared in
public repositories for decades.115–117Only recently, sharing
bioimage data has becomemore feasible due to specialised
repositories such as BIA, or the added-value databases IDR
and SSBD.32,33,118–120 ‘Data is available on request’ state-
ments in publications were found to be often unreliable
in practice,121–123 and data are not easy to find without
a public metadata record available for search engines.
Researchers usually focus on experiment optimisation to
achieve the best result during their projects. Making this
process understandable and reproducible implies provid-
ing access to the complete documentation from sample
preparation over data acquisition to publication. Mis-
takes in properly representing microscopy images, or, in
extreme cases, intentional misrepresentation, have been
well documented.89,124–126 A principle of Open Science is
to share data as openly as possible and keep it only as
closed as necessary. Where not restricted by law, open data
with metadata linked to a research publication enhances
trust in research quality, also indicated by higher citation
impact.127,128 Scientists face several challenges: How can
images and the deduced findings be represented accurately
in a manuscript? How to write the methods section for
microscopy experiments correctly? How to enable access
to the original data with little to no restraints?What access
and reuse rights should be granted, and who owns the
data to choose an appropriate license? These aspects can
be complicated if, for example, the data producer has left,
the data went through many hands, losing essential meta-
data, or because guidelines on image data publication are
not known or lacking.

2.5.1 Role of a core facility in image data
publication

It is the researcher’s and author’s duty to present data accu-
rately in a publication. Helping researchers follow rigorous
bioimagingRDMpractices from the start avoids frustration
and reduces the workload at the publication stage. With
improving capabilities of repositories, new journal sub-
mission guidelines, the development of new microscopy
techniques and novel standards in research domains, good
publication practice keeps evolving. Uncertainty about
data ownership is an impediment to data sharing,7 and
core facility staff can help to identify who is authorised
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TABLE 4 RDM aspects around image analysis.

Common issue Proposed solution

Tracking of data to process with folders, file

names and spreadsheets

Using a bioimaging RDM platform to communicate the data status to process

and exchange results

Analysis pipelines depend on a rigid data

organisation in folder structures

Using established standard file organisations and naming conventions or

leveraging object storage and structured annotations to interrogate data

flexibly via APIs without duplicating data

Analysis pipelines each implement their own data

input and output formats

Analysis pipelines access data in management platforms through an API for

data input and uploading analysis output

Image files, analysis files and annotations lack

links and structure

Using standard file structures or leveraging database links of RDM platforms

for bioimaging (e.g., OMERO) preserving the consistency of the relations

between data and analysis results

Analysis results exploration requires dedicated

software installation

Data exploration from a remote location and through a browser that only

requires an Internet/intranet connection (e.g., OMERO.web)

to license the data, which in turn depends on the collab-
orators, data privacy concerns, intellectual property rights
and funding agencies’ regulations.129 Institutional policy
can reinforce open data sharing.130,131 A trend towards
more open data sharing and reuse is apparent among early
career researchers.132,133

Guidelines on properly presenting image data in
publications exist (e.g., by Cromey89), and members
of QUAREP-LiMi developed comprehensive community
checklists.134–136 Core facilities help to disseminate such
knowledge and can crosscheck the proper data repre-
sentation. Only presenting ‘representative examples’ in
a manuscript should be avoided.122,127 Instead, scientists
should publish the original data behind figures, for exam-
ple, full data sets used to derive quantitative results by
image analysis.32,122 Many journals and funding agen-
cies now require public data deposition. Data publications
– even independent of classical publications – are also
becoming an option for large image data sets due to the
advancement of repositories (for a list, see Ref. 120). Core
facility staff can aid with data formatting and repository
choice.
Beyond mentioning core facilities in acknowledgement

sections, there are reasons to regard a core facility staff‘s
work as a scientifically relevant contribution. Organis-
ing and annotating bioimage data improves processing
and analysis and fosters scientific rigor, reliability and
reusability. Hence, we advocate that core facility staff
should become coauthors of the data publication entry in
a repository (e.g., BIA) where appropriate, even if they
are not coauthors of the journal publication on the overall
findings.137,138 This will help strengthen the core facility‘s
position to the benefit of researchers by showing ameasur-
able impact of core facilities not only as generic support
facilities but as partners in scientific discovery. For core
facility staff members, it supports building their career in
scientific support infrastructures based on a track record.

2.6 Archiving research data

Good scientific practice requires that the source data of a
research publication be preserved over the long term, for
example, at least ten years after publication, according to
the German Research Foundation’s code of conduct.139 If
the primary purpose is to hold a faithful data record, local
archiving appears sufficient. But data can become trapped
in institutional silos, not accessible for more research. In
some cases, research data are only stored on hard drives,
where data are inaccessible to others and at risk of perma-
nent loss due to hardware failures. Since researchers move
between positions while building their careers, retriev-
ing and understanding ‘old’ data becomes challenging for
principal investigators and colleagues.140

Data privacy restraints or economic considerations
may prohibit open data publication. But even if kept
behind closed doors, data archiving is more than storing
data for a long time. Archiving must ensure that data
can be found, retrieved, and reused upon demand. Only
then will ‘cold’ data that are not frequently accessed
remain preserved as FAIR data.141 This requires data
selection and cleaning, a strategy for data structuring and
metadata annotation, and regulations regarding access
and reuse by institutional policy. Original data must
usually be conserved. Derived data may be deleted if it
can be regenerated from raw data using the accurately
documented analysis pipeline, highlighting the impor-
tance of reproducible image analysis again (2.4, image
analysis). Many institutions provide central archiving
systems through the IT department or academic libraries,
but some systems may be insufficient for large bioimaging
data. Special software implementations may be in place
to orchestrate research data archiving, for example, Tivoli
Storage Manager (now IBM Spectrum/Storage Protect)
for tape storage.142 Often, institutions establish long-term
preservation systems compliant with the Open Archival
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Information System (OAIS) reference model integrating
data ingest, storage, management, access and admin-
istration (https://www.iso.org/standard/57284.html). A
combination of solutions may be implemented in local or
federated environments, for example, in EUDAT B2SAFE
(https://www.eudat.eu/service-catalogue/b2safe). Exam-
ple solutions are iRODS, Coscine (https://about.
coscine.de/en) or the EOSC project ARCHIVER
(https://www.archiver-project.eu). Implementing these
systems is beyond the scope of an imaging core facility but
should be pursued as an institutional strategy.

2.6.1 Role of core facilities in image data
archiving

Data archiving goes beyond the specific needs for
bioimaging data. Solving this task is not primarily a
core facility’s responsibility. Core facility staff can sup-
port archiving in several ways: by emphasising proper
archiving practices towards users, by guiding to the
institutional archiving systems, and by communicating
bioimaging-specific needs to research data policymakers
and infrastructure providers. An example would be a
strategy to identify ‘cold’ data in an imaging data man-
agement system like OMERO11 or Cytomine70,143 and
transfer it to archival systems. Technical solutions for
this task are under development, such as an integration
between iRODs and OMERO (https://github.com/irods-
contrib/irods_working_group_imaging). The develop-
ment of FAIR Digital Objects for bioimaging to wrap
data, metadata and accompanying research assets into
shippable packages is ongoing.144 As noted above, core
facilities can guide metadata annotation, include quality
control protocols and support data cleaning and selec-
tion. For example, open file formats like OME-TIFF or
OME-Zarr are more suitable for long-term archiving
than proprietary vendor formats that may not be sup-
ported in the future.134 Finally, the desired best practice
would be archiving data in a suitable public archive as
the authoritative faithful data record (2.5, publication).
Table 5 summarises issues and proposed solutions for both
publication and archiving.

2.7 Closing the life cycle

It has been showcased that new research can be based on
existing image data from other studies.145–147 The reuse
potential of quality-controlled, annotated data that are
findable and accessible in open, interoperable formats was
demonstrated byWilliams et al.118 and FAIR open data are
expected to advance bioimage informatics.148 Especially in

the era of AI-based analysis, segmentation and hypothesis
building, well-annotated and quality-controlled research
data are essential for training models and obtaining reli-
able results,15,149 and data have been reused for novel
algorithm development.150,151

3 PART II: ACTION ITEMS FOR CORE
FACILITIES TO ADVANCE IN
BIOIMAGING RDM

We explore strategies and actions for core facility man-
agers, core facility staff and science managers tasked to
advance the capacity and capability for bioimaging RDM.
While one-size-fits-all solutions are unavailable, we report
on considerations from practical experience within the
framework of GerBI-GMB and the funded RDM projects
in which we are active.

3.1 Foster deployment of a bioimaging
RDM platform in your institution

The complexity and sizes of bioimage data constitute spe-
cific requirements for bioimaging RDM platforms, and
several systems were developed by imaging communities,
often with global support. OMERO has a history of more
than 20 years in development, is among the best-known
and most widely used systems, and is supported by devel-
opers worldwide.7,11,12 Cytomine, established in the field of
histopathology, offers comparable features.70,143 BISQUE
is a combined image organisation and analysis platform72

but appears to have a smaller user base as compared
with, for example, OMERO7 (https://forum.image.sc/t/
data-management-bisque/42370/2). Originating from the
Neuroscience field, XNAT (https://xnat.org) is a versatile
image data management tool predominantly used in med-
ical and preclinical imaging.75,152 Moreover, commercial
offers exist to enable microscopy data management.
In Germany, many core facilities chose OMERO as

an aligned approach to implementing bioimaging-specific
datamanagement.7,13,80,81Our recommendations are, thus,
largely based on the experience with setting up and intro-
ducing OMERO instances in Germany while the scheme
may apply more generally.
Review the status: Establishing and disseminating

new practices among researchers takes time, needs trust,
and costs resources. At the start, core facilities need to
understand where they stand and where to go.

∙ What are the largest RDM concerns in a facility? Pointed
examples should be selected so that nonexperts can
understand the nature of the issues.
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TABLE 5 Concepts and considerations for publishing and archiving bioimage data.

Common issue Proposed solution

Copies of raw data are left on acquisition machines The core facility’s user policy defines and enforces interim data

storage, transfer and deletion.

Data is only stored on hard drives together with paper

notebooks as documentation

Enriching data with essential metadata to find, identify, understand

and potentially reuse it. Contacting institutional archiving

providers or uploading data to a repository.

Data is published or archived ‘as is’ Data must be curated, selected and quality-controlled before

archiving. The data to be archived can be planned upfront and

noted in a data management plan. File formats and metadata

should be considered. Community checklists can be used for

publication.

Valuable data are only archived locally Considering public repository deposition of the data with or

independent of a research article to enable findability and

reusability.

The capacity or quota of the local archival system is

insufficient for large bioimage data files

Upload to a suitable public repository as the faithful data record after

publication.

∙ Gain an overview of general concerns versus special
cases. Intrafacility communication is important for this
task.

∙ What works well? The ability to implement new solu-
tions is underlined by previous success.

∙ What storage and data itinerary practices are prevailing
among users?

∙ What data types are users concerned with? Are there
cases with data privacy protection, intellectual property
concerns, etc.?

∙ Key indicators: Current user number, number of instru-
ments, and potential for expansion. Do external users
use the facility? What is the expected yearly rate of
image data volumes? Is collaborative data access across
institutional boundaries required? Which services crit-
ically depend on investing in bioimaging RDM? Pri-
mary arguments thus include researchers’ demands,
funding agency demands, strategic decisions, and posi-
tioning from the administration (e.g., participation in
large national funding initiatives like, for example, the
Excellence Initiative of the German Federal and State
Governments). Which high-cost factors, both on the
core facility’s side and on the researcher’s side, could be
alleviated with better bioimaging RDM infrastructure?

Identification of stakeholders and resources: It is
imperative to invest in a stakeholder process.

∙ Researchers are primary data generators. The focus
should be on heavy users and special groups of inter-
est: Collaborative Research Centers, Research Training
Groups, etc. Applying for infrastructure projects within
such funding schemes is an opportunity. Early career
scientists, specifically young group leaders, should be
included. Strong partners are researchers acknowledg-

ing the core facility as a partner in science, not only
regarding core facilities as being ‘service providers’.
In our experience, scientists are willing to test new
solutions when expectations are managed and over-
promising is avoided.

∙ Core facilities for other technologies: As is true
for managing a facility, collaboration with other core
facility managers is important for RDM, identifying syn-
ergies versus demand for disparate solutions. Other core
facilities are partners for the metadata specification for
scientific instruments and data acquisition systems.

∙ Information technology (IT) departments are
responsible for implementing and maintaining techni-
cal infrastructure, including storage, backup systems,
and networks. In some cases, departmental IT is distinct
from the institution-wide IT. One should establish a
genuine partnership, a process that cannot be started
too early, as it takes time and communication. Under-
standing the IT partner‘s offers and constraints is
important.

∙ Institutional ReviewBoards (IRBs) and legal depart-
ments: Data privacy and security experts are particularly
important when dealing with sensitive data. They help
adhere to ethical guidelines and privacy regulations.

∙ Financial officers and grant offices: Sustainable
and continuous operation requires financing person-
nel and hardware/software. Especially at the beginning,
extra funds to kick off new implementations might
be instrumental. Which institutional and third-party
funding lines exist? Core facility staff should apply as
part of research grants highlighting RDM infrastructure
requirements for the research objectives.

∙ Scientific networks: Colleagues with prior experi-
ence can support. One can learn from examples and
understand local peculiarities as opposed to others.
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Contacts within national or regional core facility
networks (e.g., German BioImaging, BioImaging
North America, Euro-BioImaging, France BioImaging,
BioImaging UK, BioImaging NL, Microscopy Australia,
etc.) are an asset.

∙ Central RDM teams: If available, local RDMandOpen
Science teams are valuable partners. At some institu-
tions, general-level data stewards can be partners in
implementing a new system (Part III).

∙ Administration and Management: With defined
goals and established partnerships, approaching man-
agement boards can help to make the case. The man-
agement board’s perspective plays a role with respect
to sustainability and support. What is the future strate-
gic plan, and how would establishing a bioimaging
RDM infrastructure align with it? Outline that RDM
goals could include finding tangible solutions for the
important aspects:
• Reducing costs through improved data flow: cen-
tralised maintenance of storage capacity and organ-
isation, data security and interoperability with other
stakeholder resources.

• Building on established solutions avoiding isolated
silos with lock-in problems.

• Reacting dynamically to changing demands.
• Facilitating scientific excellence by improving data
quality, integrity, reach, collaboration and compliance
with funding agency and publisher guidelines.

3.2 Design the infrastructure concept

With the stakeholders identified, discrete aspects of a
robust and scalable infrastructure can be defined. Various
software options and commercial services can be evalu-
ated, and a decision can be made based on the stakeholder
process and the difficulty of tasks to solve. We propose
a scheme for defining technical details and responsibil-
ities for the topics to address (Figure 2). It focuses on
operational implementation, running and maintenance.
Therefore, the stakeholders in focus are only those thatwill
be involved over the long term when the infrastructure is
installed and an operational service is established.

∙ Storage and server location: Central server infrastruc-
ture is typically offered by the IT department. Software
providers specify minimum requirements and depend
on the expected use. These influence the installation’s
design (physical server or virtual machine, load balanc-
ing, network bandwidth, etc.). We recommend a virtual
machine environment, for example, OpenStack, where
the required storage is mounted and setups are adapted
dynamically. Core facility staff can learn to manage the
virtual machine and estimate initial storage needs. With

OMERO, the option to mount researchers’ own respon-
sibly maintained storage to the server has advantages
(costs, storage space allocation) and disadvantages (risk
of breaking links is on researchers’ side, responsibility
for backup and security).

∙ Network architecture: The need for frequent access to
data should be discussed with the researchers and com-
municated to the network provider. To load centrally
hosted large data via the network, several bottlenecks
slowing down the process can be avoided. Using file
serversmounted to a bioimaging RDM system (so-called
in-place import) is an option to consider when working
with large amounts of data. For image analysis, a cable-
connected, remote analysis workstation with software
preinstalled is an option.81 A large number of simul-
taneous connections might challenge the system. On
the other hand, microscopes generate a large amount
of data that require sufficient network bandwidth for
upload.

∙ Maintenance plan: Sustained support and hardware
maintenance should be secured by IT. A plan to mon-
itor performance issues must be conceived. Mainte-
nance responsibility for the bioimaging RDM system
and image analysis stations can lie with core facility
staff. Responsibilities must be clearly defined to avoid
misunderstandings regarding long-term operation and
support.

∙ Data types: Different file sizes and structures of
bioimaging data affect the performance of remote access
and computing. Data integration with links to other
storage environments might be required. Different stor-
age architectures exist with different strengths and
limitations.

∙ Access and user management: Depending on the
configuration, remote access may be enabled over the
Internet or restricted to intranet connections. The user
management in OMERO allows default groups and the
integration of institutional user and identity manage-
ment (e.g., LDAP).

∙ User integration and training: Users need train-
ing to adopt new solutions. Immediate benefits should
be highlighted (viewing images, making figures), and
reusable trainingmaterial can be leveraged, for example,
the OMERO guide, https://omero-guides.readthedocs.
io/en/latest, or I3D:bio’s OMERO training material.153

∙ Data acquisition and integration: Best practices for
uploading newly acquired and existing data can be pro-
vided. Large data might require a command-line tool-
based supported upload and an appropriate network
connection.

∙ Data analysis: Users’ needs for image processing and
analysis must be discussed. APIs often enable interoper-
ability with OMERO. If commercial software is required
or the data transfer is limiting, in-place-imported data
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F IGURE 2 Designing a bioimaging RDM concept. The figure focuses on the operational aspects of installing and maintaining the

infrastructure. Different stakeholders may formulate requirements and take over responsibilities for the various tasks depending on local

circumstances, configurations, and personnel availability and skill. Responsibilities may lie with different stakeholders or change over time.

might be used, or cable-connected remote stations need
to be installed.

∙ Data life cyclemanagement: Considerations include,
for example, identifying unused data that should be
moved to long-termarchiving, orOME-TIFF/OME-Zarr
conversion before uploading to the bioimaging RDM
system. Storage usage, annotations, data access, etc. can
be regularly monitored, but storage quotas cannot be
directly enforced in OMERO.

∙ Compliance and regulations: User management,
server configurations and access influence the sys-
tem’s security level. For example, is the upload of
privacy-protected data possible? How andwhen data are
deleted? Who is responsible for compliance with data
privacy regulations? Compliance with the usage policy,
institutional data policy, and general laws have to be
considered. In some cases, institutional groups like the
staff council have to be involved.

∙ Repositories and persistent identification: Depend-
ing on configuration and policy, a system like OMERO
can function as an institution-internal or even pub-
lic repository. Academic libraries might be important
partners, for example, for persistent identifiers.154 Data
might also be moved from an OMERO instance to a
public repository to increase findability or comply with
publisher requirements.

∙ Sustainability: Bottlenecks and limitations of person-
nel capacity, and direct costs for hardware and software
must be considered from the start. Sustainability strate-
gies should be discussed. Synergies with other stake-
holders, such as central RDM teams and third-party
funding, can be leveraged.

3.3 Planning the process

Implementation should comprise (i) a consultation phase
to establish stakeholder contacts and understand perspec-
tives. A task team should lead the efforts once a funding
plan is agreed on. (ii) A setup phase where infrastructure
is installed and tested by the team to get familiar with
systems and assign responsibilities. Updating OMERO,
installing extensions and plugins, changing data owner-
ship, or approving new users can be performed by an
IT staff member, by a core facility member, or by a data
steward, depending on availability and individual skills.
Supporting annotation and best practices of image anal-
ysis with OMERO will, in contrast, rather become a core
facility task. The test instance allows to make mistakes
and to learn before the operational instance is installed.
(iii) A pilot phase in which a limited number of volun-
tary users with a limited variety of data types test the
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prototype operational system for applicability within their
research. The trustful collaboration with pilot users and
their acknowledgement is very important. For the core
facility, it is a key phase to understand the dynamics of
the system, to establish the training needs, and to learn
to manage user expectations. The pilot phase duration is
flexible but should not be too short, for example, a pilot
phase of one year, during which gradually more pilot users
are admitted. (iv) Launch of the operational system. Open-
ing the infrastructure for all users is the most relevant but
not the ultimate milestone.With increasing user numbers,
new concerns are to be expected. No system is optimal
for all cases. (v) Evaluation and re-adjustment. Review-
ing how using the bioimaging RDM system has changed
the previously documented user concerns provides suc-
cess indicators. A successful implementation benefits the
researchers and the strategic position of the core facility.

4 PART III: DATA STEWARDSHIP FOR
BIOIMAGING DATA IN CORE FACILITIES

Image acquisition and analysis are typically aided by imag-
ing experts and image analysts in core facilities (in small
facilities, this is often a dual role for one person). Addi-
tionally, the size and multidimensionality of many image
data formats require expertise in handling data infrastruc-
tures, which is usually acquired by core facility staff over
the years. Most core facilities have established local stor-
age facilities for image data that allow central access. At
the local level, this may satisfy criteria for data accessi-
bility and, to some degree, reusability. To achieve public
accessibility and reusability, additional aspects of FAIR
data management must be integrated into routine image
data handling. This is to transform the theoretical FAIR
framework and guiding principles into discrete, actionable
practices.10,155 The international bioimaging community
facilitates FAIR data globally, and data stewardship is a
key component.156 The role of the ‘data steward’ has devel-
opedwith various understandings depending on data types
and research fields. This includes helping to optimise
data values by making it reusable but also serving data
preservation and research integrity.157–159

Best practices in bioimage data management are devel-
oping and must be tested and ‘negotiated’ in the global
research community. We regard data stewards as a vital
component in implementing novel practices so that the
community can evaluate workflows, new tools and stan-
dards in everyday research practice. In our experience,
such support increases the readiness of researchers to
invest in FAIR data management. One reason for not
sharing data is the perception of a lack of skills, time
and technical resources.7,46,132 Data stewards train scien-

tists at all career levels and, thus, document and gain
experience with best practices that they can apply to
new use cases. Examples of data reuse for new research
have to be collected to showcase the scientific benefit of
bioimaging RDM. Initiatives at the national and interna-
tional levels, like Germany’s NFDI, Euro-BioImaging and
bioimaging communities worldwide, focus on advancing
the above-mentioned implementing and iterative testing
in the disciplinary and methodological research commu-
nities. They provide cross-institutional personnel capacity
for bioimaging-specific data stewards who foster FAIR
data sharing in collaboration with core facilities. Example
studies supported by NFDI4BIOIMAGE and I3D:bio are
Nöth et al.138,160 or Jannasch et al.161 We do not assume
that individual core facilities must sustain data steward
positions individually. However, data stewards will likely
remain key to the research process at large. Hence, new
ways for sustainable funding of data stewards at yet-
to-be-determined domain-specificity levels will become
important for research infrastructures.

5 CONCLUSION AND OUTLOOK

Research data management and the FAIR principles are
no ‘end in itself’. There is an initial risk of perceiving
RDM practices primarily as a burden, apparently without
immediate comprehensible benefit. However, the poten-
tial that lies in professionalising bioimaging RDM is
enormous: It supports researchers to get more out of their
own data, facilitating the systematic handling of (large
amounts of) data, thus enabling the democratisation of
the research data value if such data are publicly avail-
able. It enables the integration of different data types and,
therefore, more comprehensive perspectives on a research
question. FAIR data management is an essential contri-
bution to successfully applying advanced image analysis
approaches, including artificial-intelligence-based proce-
dures. This applies in particular to complex and large
imaging data, where new and unbiased algorithms might
reveal unexpected new patterns. Thus, FAIR image data
management paves theway to a new understanding of spa-
tiotemporal analysis, which can be described as integrative
image data science.
For core facilities, increasing their capacity and capa-

bility for professional RDM in bioimaging alleviates the
workload that today partially stems from the lack of RDM
routines. But importantly, it comprises an additional layer
underlining the value and impact of core facility work
for rigor and trust in scientific discovery. Core facilities
have a strategically important position at the interface
between relevant stakeholders to make FAIR bioimage
data state-of-the-art in research routines.
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