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TO THE EDITOR:
In the battle against multiple myeloma (MM), T cell strategies have
emerged as crucial, exploiting their natural tumor-cell targeting
ability to enhance patient outcomes. Recent studies underscore
the dual roles of T cells in MM: while specific T cells can effectively
target and destroy MM cells, regulatory T cells may block this
response, highlighting the complexity of the immune environ-
ment in MM [1, 2].
Elotuzumab, targeting the SLAM family member 7 (SLAMF7)

protein, represents a promising advance enhancing natural killer
(NK) cell activity against MM cells modulating T cell responses. This
antibody not only boosts NK cell-mediated destruction of MM cells
but also affects T cells, including a specific regulatory CD8+ subset,
further contributing to its immunomodulatory effects [3–5].
Despite these promising mechanisms, clinical trials including the
German-Speaking Myeloma Multicenter Group (GMMG)-
HD6 study have yielded mixed results, highlighting the need for
further investigation into its role in MM treatment [6–10].
This study aims to delve deeper into the impact of elotuzumab

on T cell subsets within the MM microenvironment to elucidate its

prognostic implications and refine therapeutic strategies. Within
the context of the GMMG-HD6 trial, we performed a planned
subgroup-analysis on SLAMF7 high expressing T cell subsets.
The GMMG-HD6 trial assessed elotuzumab combined with

lenalidomide, bortezomib, dexamethasone (RVd) in newly diag-
nosed MM patients. Participants were allocated into four groups:
RVd/R (RVd induction/consolidation plus lenalidomide mainte-
nance), RVd/Elo-R (RVd induction, elotuzumab+RVd consolida-
tion, and elotuzumab+lenalidomide maintenance), Elo-RVd/R
(elotuzumab+RVd induction, RVd consolidation, lenalidomide
maintenance), and Elo-RVd/Elo-R (elotuzumab+RVd for both
induction/consolidation and elotuzumab+lenalidomide mainte-
nance). Following induction, all underwent stem cell mobilization,
high-dose melphalan, autologous stem cell transplantation, and
two consolidation cycles, with 26 cycles of maintenance over
three years (Fig. 1A). 564 patients were initially randomized in the
trial. Five patients were excluded from the study due to violation
of major eligibility criteria. The intention-to-treat (ITT) population
of the study consisted of 559 patients. Peripheral blood (PB)
samples for immune cell analysis were collected at baseline (T1)
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for 557 (99.6% ITT), post-induction (T2) for 357 (63.9% ITT), and
during consolidation/maintenance (T3) for 238 (42.7% ITT)
patients.
The baseline characteristics at T1 are depicted in Supplemen-

tary Table 1. The abundances of all analyzed immune cell types in

each treatment arm are displayed in Supplementary Table 2 &
Supplementary Fig. 1.
We recently demonstrated that elotuzumab induces Antibody

Dependent Cellular Phagocytosis (ADCP) of SLAMF7 high reg-
ulatory CD8+ T cells in MM patients [5]. To confirm high SLAMF7

A

B

T1 T2 T1 T2

0

25

50

75

100

P
e

rc
e
n

ta
g

e
 o

f 
 

e
ff

e
c

to
r 

C
D

8
+
 T

 c
e

ll
s

 f
ro

m
 a

ll
 C

D
8

+
 T

 c
e

ll
s ✱✱✱

C

T1 T2 T1 T2

0

25

50

75

100

P
e

rc
e
n

ta
g

e
 o

f 
 

re
g

u
la

to
ry

 C
D

8
+
 T

 c
e

ll
s

 f
ro

m
 a

ll
 C

D
8

+
 T

 c
e

ll
s ✱✱✱

✱✱

T2 T3

0

25

50

75

100

P
e

rc
e
n

ta
g

e
 o

f 
 

e
ff

e
c

to
r 

C
D

8
+
 T

 c
e

ll
s

 f
ro

m
 a

ll
 C

D
8

+
 T

 c
e

ll
s

✱✱

D

E F G

P
e

rc
e
n

ta
g

e
 o

f 
 

e
ff

e
c

to
r 

C
D

8
+
 T

 c
e

ll
s

 f
ro

m
 a

ll
 C

D
8

+
 T

 c
e

ll
s

T2 T3

0

25

50

75

100 ✱✱

✱

P
e

rc
e
n

ta
g

e
 o

f 
 

re
g

u
la

to
ry

 C
D

8
+
 T

 c
e

ll
s

 f
ro

m
 a

ll
 C

D
8

+
 T

 c
e

ll
s

T2 T3

0

25

50

75

100
✱✱

0

25

50

75

100

T2 T3

P
e

rc
e
n

ta
g

e
 o

f 
 

re
g

u
la

to
ry

 C
D

8
+
 T

 c
e

ll
s

 f
ro

m
 a

ll
 C

D
8

+
 T

 c
e

ll
s

✱✱

✱

RVd

Elo-RVd

RVd/R

RVd/Elo-R

Elo-RVd/R

Elo-RVd/Elo-R

K. Kriegsmann et al.

1622

Leukemia (2024) 38:1621 – 1625



expression in specific subsets of CD8+ T cells within our study
cohort, we performed flow cytometry analysis in representative
PB/BM samples of newly diagnosed MM patients from different
time points. The results confirmed the high SLAMF7 expression in
the regulatory and effector CD8+ T cells in comparison to other
CD8+ T cells (effector CD8+ T cells: p < 0.01 and regulatory CD8+

T cells p < 0.01; Supplementary Fig. 2A–D). Further, higher
expression was observed across all time points, indicating the
same distinctive phenotype (effector CD8+ T cells: p < 0.05 at all
time points; regulatory CD8+ T cells: p < 0.05 at T1 and T3, p < 0.01
at T2; Supplementary Fig. 2E, F).
Our current analysis focused on differences induced by the

variable expression of SLAMF7. We observed a decrease in effector
CD8+ T cells with high SLAMF7 expression post induction
treatment (T2) compared to baseline (T1) in treatment arms
including Elo-RVd during induction therapy (26.3% [14.5–43.2%]
vs. 12.4% [7.5–24.8%], p < 0.001; Fig. 1B, Supplementary Table 2 &
Supplementary Fig. 3A). Similarly, we observed a decrease in
regulatory CD8+ T cells with high SLAMF7 expression after
induction treatment with Elo-RVd (26.8% [14.0–41.3%] vs. 13.2%
[4.4%–26.9%], p < 0.001; Fig. 1C, Supplementary Table 2 &
Supplementary Fig. 3B).

Based on a linear regression model, effector CD8+ T cells at T2
correlated with their initial level at T1 (p < 0.001) and elotuzumab-
based induction treatment (p < 0.001) but not with age or sex
(Supplementary Table 3). Regulatory CD8+ T cells at T2 correlated
with their initial level at T1 (p < 0.001) and elotuzumab-based
induction treatment (p < 0.001). In addition, female sex was
negatively correlated with the levels of regulatory CD8+ T cells
at T2 (p= 0.04; Supplementary Table 4).
Administration of elotuzumab during consolidation/mainte-

nance (T3) without prior induction exposure (RVd/Elo-R) signifi-
cantly reduced effector and regulatory CD8+ T cells with high
SLAMF7 expression compared to patients not treated with
elotuzumab (effector CD8+ T cells at T3: RVd/Elo-R 16.6%
[7.3–37.0%] vs. RVd/R 31.2% [18.0–42%], p < 0.01 and regulatory
CD8+ T cells at T3: RVd/Elo-R 14.3% [4.6–30.6%] vs. RVd/R 25.1%
[13.7–45.6%], p < 0.01). Patients receiving elotuzumab during
induction and consolidation/maintenance (i.e., Elo-RVd/Elo-R)
maintained consistently lower levels of both cell types from T2
to T3 (effector CD8+ T cells at T2: 12.4% [7.5–24.8%] and at T3:
15.1% [8.4–36.9%], regulatory CD8+ T cells at T2: 13.2%
[4.4–26.9%] and at T3: 9.1% [5.6–33.8%]; Fig. 1D–G, Supplementary
Table 2 & Supplementary Fig. 3C–F).

Fig. 1 Box plots showing the percentages of the analyzed immune cell populations at inclusion (T1), after induction therapy (T2), and
during consolidation and maintenance therapy (T3) by treatment arms. A Flow chart of the GMMG-HD6 trial and sample collection time
points. MM patients were randomized into one of four arms (RVd/R, RVd/Elo-R, Elo-RVd/R, and Elo-RVd/Elo-R). Patients in the RVd/R or RVd/
Elo-R arm received induction therapy consisting of four cycles of RVd. Patients in the Elo-RVd/R or Elo-RVd/Elo-R arm additionally received the
monoclonal antibody elotuzumab in the four cycles of RVd. After induction therapy, patients underwent mobilization therapy followed by
peripheral blood stem cell collection and melphalan high-dose chemotherapy/autologous stem cell transplantation. Consolidation therapy
was performed with two cycles of RVd (RVd/R and Elo-RVd/R) or RVd/elotuzumab (RVd/Elo-R und Elo-RVd/Elo-R), followed by two years of
lenalidomide maintenance therapy with elotuzumab for the RVd/Elo-R and Elo-RVd/Elo-R arms or without elotuzumab for the RVd/R and Elo-
RVd/R arms. For the present study, peripheral blood samples were collected and analyzed at three different time points: at inclusion (T1), after
induction therapy (T2), and during consolidation or maintenance therapy (T3). Box plots of the percentage of (B) effector CD8+ T cells and (C)
regulatory CD8+ T cells (CD8+ CD28-) at T1 and T2 in study arm RVd/R + RVd/Elo-R and study arm Elo-RVd/R + Elo-RVd/Elo-R. D, E The
percentage of effector CD8+ T cells at T2 and T3 in study arms RVd/R, RVd/Elo-R, Elo-RVd/R and Elo-RVd/Elo-R. F, G The percentage of
regulatory CD8+ T (CD8+ CD28-) cells at T2 and T3 in study arms RVd/R, RVd/Elo-R, Elo-RVd/R and Elo-RVd/Elo-R. Differences between groups
were evaluated using Student’s t-test; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table 1. Multivariable model on progression-free survival from landmark post induction therapy (T2).

Variable Effect Hazard ratio 95% Confidence limits

Age 10 years increment 1.23 0.93 1.62

Sex Female : Male 0.63 0.42 0.94

R-ISS II : I 1.49 0.89 2.50

III : I 1.46 0.68 3.12

Not classified : I 0.95 0.37 2.44

Effector CD8+ T cells at T1 30% increase 0.88 0.77 0.99

Regulatory CD8+ T cells at T2 High : low RVd/R 1.02 0.45 2.29

RVd/Elo-R 4.14 1.78 9.63

Elo-RVd/R 1.11 0.51 2.43

Elo-RVd/Elo-R 3.12 1.39 7.01

Treatment arm RVd/Elo-R : RVd/R Low reg. CD8+ T cells 0.54 0.22 1.34

High reg. CD8+ T cells 2.19 1.11 4.33

Treatment arm Elo-RVd/R : RVd/R Low reg. CD8+ T cells 1.16 0.55 2.46

High reg. CD8+ T cells 1.26 0.58 2.77

Treatment arm Elo-RVd/Elo-R : RVd/R Low reg. CD8+ T cells 0.66 0.29 1.53

High reg. CD8+ T cells 2.03 0.98 4.20

Multivariable Cox proportional hazards model on progression-free survival from landmark post induction therapy (T2) including 303 available patients with

complete measurements of regulatory CD8+ T cells. Missing values were imputed for high-risk cytogenetics (included in R-ISS) and effector CD8+ T cells at T1.

Cut-off (high vs. low) for regulatory CD8+ T cells at T2 was identified at 20% by maximally selected log-rank statistics. Hazard ratios and confidence intervals

are computed for a 10% change in effector CD8+ cells, regulatory CD8+ T cells at T2 dependent on treatment arm, and separated by treatment arms based on

low and high levels of regulatory CD8+ T cells at T2.
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Cessation of elotuzumab treatment during consolidation/
maintenance after initial therapy during induction (i.e., Elo-RVd/
R) resulted in a rise in the levels of effector and regulatory CD8+

T cells with high SLAMF7 expression compared to their T2 levels
(effector CD8+ T cells at T2: 12.4% [7.5–24.8%] and at T3: 29.1%
[17.9–47.8%], p < 0.05; regulatory CD8+ T cells at T2: 13.2%
[4.4–26.9%] and at T3: 35.4% [16.9–49.4%], p < 0.05; Fig. 1D–G &
Supplementary Table 2 & Supplementary Fig. 3C–F). Interestingly,
we observed that the decrease in effector CD8+ T cells, caused by
elotuzumab treatment, led to an increase in central memory CD8+

T cells at T2 and T3 (Supplementary Fig. 3G–J).
The optimal cut-off regarding progression free survival (PFS) for

subdividing patients with regulatory CD8+ T cells with high versus
low SLAMF7 expression levels at T2 was 20%. The application of a
multivariable Cox proportional hazards model at the end of
induction therapy (T2) identified a statistically significant prog-
nostic effect determined by effector CD8+ T cells (HR= 0.88, 95%
CI= 0.77-0.99), female sex (HR= 0.63, 95% CI= 0.42-0.94), and
high regulatory CD8+ T cell levels for patients who received
elotuzumab during consolidation and maintenance therapy (RVd/
Elo-R: HR= 4.12, 95% CI= 1.78-9.63 and Elo-RVd/Elo-R: HR= 3.12,
95% CI= 1.39-7.01). Moreover, an interaction effect between
treatment and regulatory CD8+ T cells at T2 was observed. A
worse PFS time was observed for patients with high levels of
regulatory CD8+ T cells when treated with elotuzumab-based
consolidation/maintenance therapy compared to the standard
treatment arm (high regulatory CD8+ T cells at T2: RVd/Elo-R vs.
RVd/R HR= 2.19, 95% CI: 1.11-4.33 and Elo-RVd/Elo-R vs. RVd/R
HR= 2.03, 95% CI: 0.98-4.20; Table 1). Corresponding landmark
analyses of PFS for each treatment arm and regulatory CD8+

T cells at T2 are shown in Supplementary Fig. 4.
Despite the trial’s overarching findings, which did not

demonstrate a PFS benefit from elotuzumab addition, our analysis
pivoted towards dissecting the impact of SLAMF7-positive T-cell
subsets on patient prognosis under elotuzumab therapy. We
found that elotuzumab selectively targets and diminishes effector
and regulatory CD8+ T cells marked by high SLAMF7 expression.
Intriguingly, cessation of elotuzumab led to the resurgence of
these cells, hinting at a complex interplay between treatment and
immune recovery [5]. Moreover, increased effector CD8+ T cells
with high SLAMF7 expression at baseline correlated with
improved PFS, consistent with other studies [11, 12].
Our pivotal finding—that elevated levels of regulatory CD8+

T cells post-induction correlate with inferior PFS in patients
receiving elotuzumab during consolidation/maintenance phases
—illuminates a critical dimension of elotuzumab’s action mechan-
ism. Our findings suggest two key insights into CD8+ T cell roles in
MM treatment outcomes. First, the impact of regulatory CD8+

T cells with high SLAMF7 expression on PFS becomes significant
only after induction therapy, indicating a dynamic interplay with
other immune populations such as effector T cells. Second, these
regulatory CD8+ T cells might identify patients who benefit more
from specific immunomodulatory treatments like elotuzumab,
especially during later treatment phases. This highlights the
complexity of the immune response in treatment efficacy and
suggests a path towards personalized therapy.
Recently, Li et al., which identified a subset of suppressive CD8+

T cells expressing killer cell immunoglobulin-like receptor (KIR) in
the context of SARS-CoV-2, we explored the possibility of overlap
with our identified regulatory CD8+ T cell population [13].
However, our analysis indicated only slight expression of KIR on
the regulatory CD8+ T cells, suggesting that they are distinct (data
not shown). Noteworthy, a similar CD8+ T cell populations have
been characterized by Pangrazzi et al. to have senescent-like
attributes [14]. Senescence in CD8+ T cells is typically associated
with diminished proliferative potential and altered functional
properties. Meanwhile, our previous findings demonstrated that
these regulatory CD8+ T cells maintain potent suppressive

functions within the context of MM, indicating an active, rather
than senescent, state [15].
All in all, this study marks a significant step in understanding the

immunological underpinnings of elotuzumab’s efficacy in MM
therapy. The delineation of T cell subsets by SLAMF7 expression
levels post-induction offers a novel prognostic tool, suggesting a
more critical approach to leveraging immune dynamics in MM
treatment strategies. However, such insights, derived from a
multivariable analysis, require further exploration into how these
immune landscapes might be navigated to enhance patient
outcomes in the evolving landscape of MM therapy.
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