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SUMMARY

Thesensitivity ofmalignant tissues toTcell-based immunotherapiesdependson thepresenceof targetablehu-

man leukocyte antigen (HLA) class I ligands. Peptide-intrinsic factors, such as HLA class I affinity and protea-

somal processing, have been established as determinants of HLA ligand presentation. However, the role of

gene and protein sequence features as determinants of epitope presentation has not been systematically eval-

uated. We perform HLA ligandome mass spectrometry to evaluate the contribution of 7,135 gene and protein

sequence features to HLA sampling. This analysis reveals that a number of predicted modifiers of mRNA and

protein abundanceand turnover, includingpredictedmRNAmethylationandproteinubiquitinationsites, inform

on the presence of HLA ligands. Importantly, integration of such ‘‘hard-coded’’ sequence features into a ma-

chine learning approach augments HLA ligand predictions to a comparable degree as experimental measures

of gene expression. Our study highlights the value of gene and protein features for HLA ligand predictions.

INTRODUCTION

Spontaneous or immunotherapy-induced recognition and

destruction of malignant tissues by the CD8+ T cell-based im-

mune system is dependent on presentation of human leukocyte

antigen (HLA) class I-bound peptides to antigen-specific CD8+

T cells.1–3 Consequently, the composition of the pool of pep-

tide-HLA class I complexes at the cell surface—or the HLA class

I ligandome—strongly determines the ‘‘visibility’’ of tumor cells to

CD8+ cytotoxic T cells. Understanding the various factors that

determine the composition of this HLA ligandome is thus of ma-

jor value for cancer immunotherapy.

The HLA class I ligandome is primarily generated through the

intracellular degradation of proteins by the proteasome and sub-

sequent translocation of peptide fragments into the endoplasmic

reticulum (ER) lumen by the transporter associated with antigen

processing. These peptides can undergo further trimming by ER-

resident aminopeptidases, bind to the peptide-binding groove of

HLA class I molecules, and finally traffic to the cell surface to be

presented to the CD8+ T cell pool.4,5 The number of peptides that

can theoretically be generated from the human proteome is vast,

adding up to approximately 107 distinct peptides for 9-meric

species alone.6 This large space poses a substantial challenge

in the prediction of the HLA ligandome of a cell population of in-

terest. Over the past decades, significant advances have been

made to reduce this complexity, primarily by focusing on charac-

teristics of the peptide itself or its surrounding sequence. Specif-

ically, HLA class I ligands bind to the peptide-binding groove of

HLA class I through HLA class I allele-specific ‘‘anchor’’ resi-

dues, a feature that has been leveraged in the development of

allele-specific predictive algorithms.7–9 In addition, the cleavage

preference of the proteasome10 has been used to improve

epitope prediction accuracy.11,12

Beyond local sequence characteristics, a number of other pro-

tein-level features may be expected to play an important role in

the generation of HLA binding peptides; for instance, by influ-

encing protein abundance and turnover.13–15 In prior work, tran-

scriptome measurements have been used as a proxy for protein

expression to aid HLA ligand predictions. However, the variation

in protein levels is only partly (on average 36%) explained by
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mRNA sequencing data in different mammalian cell types16–18

because of factors such as post-transcriptional regulation. Such

post-transcriptional regulation includes the activity of RNA-bind-

ing proteins and non-coding RNA species but also sequence-

intrinsic features (e.g., GC content and codon usage) that can

affect the translational output of mRNAs.19,20 Furthermore, post-

translationalmodifications, including ubiquitination andglycosyla-

tion, are known to modulate protein abundance, localization, and

turnover rates21,22 and may thereby influence epitope sampling.

In this study, we aimed to examine the potential value of gene

and protein sequence features in the prediction of the HLA class I

ligands. Implementing a machine learning approach, we show

that the performance of such predictions can be improved

through the addition of sequence features. Importantly, predic-

tive models that make use of such features achieve the same

level of predictive power as models that incorporate experi-

mental measurements of gene expression levels, and the predic-

tive value of these features was generalizable to external data.

Our data exemplify how the ‘‘hard-coded’’ information of gene

and protein sequence features can be exploited to infer a cell’s

proteomic content and its derivatives.

RESULTS

Identification of human melanoma HLA ligandomes

To investigate putative determinants of the HLA ligandome, we

performed liquid chromatography-mass spectrometry (LC-MS)

on pan-HLA immunoprecipitates of three melanoma lines

Figure 1. Identification of HLA ligandomes

(A) HLA class I haplotype of the melanoma lines used and number of peptides and source proteins identified.

(B)Peptide lengthdistributionofeachLC-MSdatasetcompared to thepeptide lengthdistributionofknownmelanoma-derivedHLAclass I ligandsdeposited into IEDB.

(C and D) Enrichment of the indicated amino acids relative to amino acid occurrence in the proteome, at each position of all 9-meric species in the datasets. A

summary depicting themedian of the absolute enrichment values of all amino acids for each position (C) and heatmaps visualizing hierarchical clustering of amino

acid enrichment (D) are shown.

(E) Sequence logos of all 9-mer ligands deposited into IEDB for the HLA class I alleles expressed by SK-MEL-95 (top) and the sequence logos of 6 peptide clusters

obtained using the GibbsCluster algorithm (bottom). The number of clusters was constrained to the number of expressed HLA class I alleles.

(F) Affinity percentile rank scores of LC-MS-detected peptides compared to randomly drawn peptides from the human proteome (decoy peptides).

See also Figure S1.
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(Figure 1A), resulting in the identification of 20,696 peptides

derived from 8,554 proteins at a false discovery rate of <1%.

The length distribution of the LC-MS-detected peptides closely

matched that of knownmelanoma-derived HLA ligands (Immune

Epitope Database [IEDB]23; Figure 1B), with the vast majority of

peptides consisting of 9-meric species. Examination of posi-

tional frequencies of each amino acid revealed strong usage

biases at positions 2 and 9 (Figures 1C and 1D). To assess

whether this observed amino acid enrichment was explained

by the known ligand preference of the HLA class I haplotypes ex-

pressed by these tumor lines, 9-meric peptide sequences from

eachmelanoma line were clustered using the GibbsCluster algo-

rithm.24 This analysis revealed dominant motifs present in each

of the HLA ligandomes that closely matched the corresponding

HLA haplotype consensus binding motifs for 11 of 11 HLA A

and B alleles and 5 of 6 HLAC alleles (Figures 1E, S1A, and S1B).

As a final quality check, LC-MS-detected peptides generally

had a high predicted affinity for the expressed HLA class I alleles

(Figures 1F and S1C), and 97.6%–99.4% of all MS-detected pep-

tides could be reliably assigned to one of the expressedHLA class

I alleles using the MHCMotifDecon algorithm25 (Figures S1D and

S1E). Notably, ‘‘unassigned’’ peptides exhibited an unusual length

distribution (Figure S1F), and therefore the subsequent analyses

were restricted to 9- to 11-meric species.

Gene and protein features inform on HLA sampling

Gene and protein sequence features, such as post-transcrip-

tional or post-translational modification sites, have been shown

to influence mRNA or protein abundance.20,26–28 In line with

this, sequence features can be integrated into machine learning

models to predict mRNA and protein expression levels.29 To

determine whether such features can be employed to predict

the presence of HLA ligands within the proteome, we made

use of a library of 7,135 ‘‘hard-coded’’ sequence features.

This feature library includes codon and amino acid usage,

RNA-binding motifs from 142 RNA-binding proteins, predicted

microRNA binding site scores, and RNA modification sites that

were separately analyzed for the 50 untranslated region (UTR),

30 UTR, and coding sequence (CDS).30 Predicted post-transla-

tional modification (PTM) sites, such as ubiquitination, acetyla-

tion, and malonylation sites, were additionally included. Of

note, this sequence feature library comprises mRNA and pro-

tein sites than can potentially be modified or recognized, irre-

spective of whether these sites are, in fact, utilized, and these

features are hence considered hard coded.

To assess whether individual sequence features can inform on

HLA sampling, we first performed an exploratory analysis on a

subset of features that could be assigned to five major feature

classes (50 UTR, CDS, 30 UTR, miRNA binding, and PTM)

and that displayed a substantial degree of variance across the

proteome (Figure 2A; 5,782 of 7,135 features in the library). A

set of 2,000 HLA ligands was drawn from each tumor line and

supplemented with a 4-fold excess of decoy peptides that

were randomly sampled from the human proteome. This dataset

was then used to train individual random forest classifiers for

each tumor line and each sequence feature class, which were

subsequently used to determine the importance of these

sequence features to each of the obtained classifiers

(Figures 2B and S2A, showing normalized importance plots

and random forest metrics). The importance of sequence fea-

tures was highly consistent between the different melanoma

ligandome datasets, indicating that a shared set of features reli-

ably informed on the presence of HLA ligands (Figure 3C).

Furthermore, direct comparison of the occurrence of high-

importance sequence features within source proteins of HLA li-

gands and decoy peptides revealed significant differences for

a set of sequence features (Figure S2). For example, HLA ligands

were preferentially sampled from proteins that contained a

higher number of predicted sites for ubiquitination and acetyla-

tion, two PTMs that can regulate targeted proteasomal degrada-

tion and protein stability31–33 (Figure 2D). Predicted N1-methyla-

denosine (m1A) sites within the 50 UTR were also enriched in the

mRNA of source proteins of HLA ligands, an effect that appears

to be consistent with the prior observation of enhanced transla-

tion efficiency of m1A-modified mRNA molecules.27 In contrast,

50 UTR length and occurrence of G-rich motifs in the CDS, fea-

tures that have been suggested previously to negatively impact

mRNA levels and translation, respectively,34,35 were negatively

associated with the presence of HLA ligands (Figure 2D).

To understand the ability of individual sequence features to

contribute to HLA ligand prediction in a more quantitative

manner, a custom enrichment score was calculated for each of

the selected features (STAR Methods). In brief, the set of HLA li-

gands and decoy peptides was either sorted by the occurrence

of each feature or was arranged randomly. Subsequently, the

quantity of HLA ligands present in the top 50% of ranked pep-

tides was compared between these two cases, reflecting the

benefit of each feature when used as a single determinant. In

concordance with the prior analysis (Figure 2C), miRNA binding

site quantities exhibited no detectable bias toward HLA ligands

or decoy peptides. In contrast, sequence features from the other

classes showed a consistent capacity to enrich or deplete the

presence of HLA ligands (Figures 2E and S2C). The most prom-

inent associations were observed in the CDS and PTM classes

(Figure 2F), with many features increasing the number of ligands

detected by more than 20%. To assess whether the association

between specific PTM sites and HLA class I sampling is also

observed for experimentally observed PTMs, we interrogated

the dataset from Abelin et al. that comprises matched HLA ligan-

dome, ubiquitinome, acetylome, and phosphorome measure-

ments of human lung adenocarcinomas.36 This analysis sug-

gests that the presence of acetyl and ubiquitin groups is

associated with the presence of HLA ligands in source proteins

(Figures S2D and S2E). Computed m1A and N7-methylguano-

sine sites were also predictive of the presence of HLA ligands

in the protein product and irrespective of their location within

either coding sequence or untranslated regions (Figure 2E), an

observation that aligns with their general translation-enhancing

capacity.27,37 Intriguingly, even though GC content was consis-

tently informative on HLA sampling, its directionality was context

dependent (i.e., positively correlated in the 50 UTR and negatively

correlated in the 30 UTR and CDS), in line with prior reports sug-

gesting that GC contentmay influencemRNA levels in a location-

dependent manner.6,18,38 Together, the above analyses show

that gene and protein sequence features can individually inform

on the presence of HLA class I ligands.
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Figure 2. Sequence features inform on HLA sampling

Random forest models were trained using HLA ligandome data from each melanoma line and using individual classes of gene and protein sequence features to

identify HLA ligands.

(A) Sequence feature classes used to fit random forest classifiers for each melanoma line. Values indicate the number of features per class.

(B) Mean importance of sequence features of each class to the random forest models. Feature importance represents the mean decrease in accuracy when that

sequence feature was excluded from the model. Importance scores are re-scaled per feature class to a 0–100 scale. Dots indicate individual features.

(C) Comparison of the importance of all sequence features across the individual random forest models. Dots indicate individual features, and linear regressions

are shown as colored lines and 95% confidence intervals as gray areas. Colored text denotes the respective Pearson correlation coefficients.

(D) Comparison of sequence feature occurrence between 500 LC-MS-detected HLA ligands and the same number of decoy peptides. Selected sequence

features are shown. Boxplots indicate group median and 25th and 75th percentiles, whiskers indicate the interquartile range multiplied by 1.5, and dots signify

individual peptides.

(E and F) HLA ligands and decoy peptides were either ranked at random or by the indicated sequence feature, and the number of HLA ligands in the top 50%

ranked peptides was quantified. Data depict the relative increase in HLA ligands found comparing feature-ranked and random-ranked peptides; see STAR

Methods for details. (E) Bars indicate the mean percentage increase of 50 bootstraps, and error bars depict 95% confidence intervals. (F) Comparison of

averaged absolute enrichment values between feature classes. Boxplots indicate groupmedian and 25th and 75th percentiles, whiskers indicate the interquartile

range multiplied by 1.5, and dots signify individual features.

See also Figure S2.
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Sequence features augment HLA ligand predictions

Having shown that individual sequence features can inform on

HLA sampling, we next assessed whether these features can

be leveraged to improve HLA ligand prediction models. To this

end, the melanoma HLA class I ligand dataset was divided into

a training set (80%) and test set (20%) that were supplemented

with a 4-fold and 1,000-fold excess of decoy peptides, respec-

tively. To evaluate the added value of sequence features to

classical HLA ligand prediction methods, such as netMHCpan

(HLA affinity), the training set was used to generate multiple

XGBoost39 classifier models (Figure 3A), each integrating a

different set of explanatory variables. As reported previously,9,12

computed HLA affinity was strongly predictive of HLA sampling

(Figures S3A and S3B). Importantly, applying the obtained

B C

D E

A

F G

H I

Figure 3. Value of sequence features in HLA ligand predictions

(A) The melanoma line dataset was split into a training set and test set at an 80/20 ratio. The training set was used to build XGB classifiers using different

combinations of features. Classifiers were either trained using the full sequence feature library (n = 7,124) or a trimmed version (n = 680).

(B and C) Number of true HLA ligands observed in the top 0.1% of predicted peptides from the matched melanoma line test set by each of the indicated models.

Line graphs depicting the cumulative sum (B) and bar charts depicting areas under the curve (AUCs) (C) are shown.

(D and E) Positive predictive value (PPV) at each peptide rank within the top 0.1% of predicted peptides from the melanoma line test set by each of the indicated

models.

(F and G) Quantity of true HLA ligands observed in the top 0.1% of predicted peptides from the melanoma line test set by each of the indicated models. Line

graphs depicting the cumulative sum (F) and bar charts depicting AUCs (G) are shown.

(H and I) PPV at each peptide rank within the top 0.1% of predicted peptides from the melanoma line test set by each of the indicated models. Features used to

build classifiers were predicted HLA class I affinity (A), transcript abundance (RNA), ribosome occupancy (RP), sequence feature library (SF), and trimmed

sequence feature library (SFT).
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XGBoost models to predict HLA ligands in the test set revealed

that the classifier that included sequence feature information

consistently and significantly outperformed models that lacked

this information. Specifically, the model that included sequence

features consistently ranked true HLA ligands at a higher position

(Figures 3B and 3C) and increased positive predictive value

by approximately 1.5-fold (Figures 3D and 3E). The selection of

informative features is a frequently used strategy in machine

learning to reduce model complexity and, thereby, computa-

tional cost and to improve model generalization. To evaluate

this approach, an additional ‘‘trimmed’’ sequence feature

XGBoost model (termed A+SFT) was trained using a smaller

set of sequence features (n = 680) that contributed most sub-

stantially to the accuracy of the original classifier. This more effi-

cient XGBoost classifier demonstrated equal model perfor-

mance compared to the original sequence feature classifier

(Figures 3B–3E). Of note, the strongest contributing features to

the A+SFT model belonged to the PTM and CDS classes

(Figures S3B and S3C), in line with the analysis of the predictive

value of individual sequence features (Figure 2).

Sequence features can match ‘‘wet lab’’ measures of

gene transcription and translation

Prior studies have established that mRNA abundance measure-

ments can increase the accuracy of HLA class I ligandome pre-

dictions,40–42 and recent efforts have indicated that ribosome

occupancy (as a measure of active protein translation43,44) can

inform on HLA class I sampling.45 To understand the value of

hard-coded protein and gene sequence features relative to

these experimental measurements of either gene expression or

ribosome occupancy, we generated mRNA sequencing (tran-

script abundance) and ribosome profiling (protein translation

activity) datasets for each of the melanoma lines. Consistent

with previous reports, both measures of gene expression were

strongly indicative of HLA sampling, and the combination of tran-

script-level data and ribosome occupancy data offered little

additional benefit (Figures S4A‒S4E). Next, to directly compare

the predictive value of sequence features versus these ‘‘wet lab’’

measures of gene transcription and protein translation, addi-

tional XGBoost classifiers were trained that included these met-

rics. Application of this new set of models to the test dataset re-

vealed that the XGBoost model that included sequence features

was able to predict true HLA ligands at an equal potency as

models that incorporated ‘‘wet lab’’ measurements of gene tran-

scription or protein translation (Figures 3F–3I). Interestingly,

addition of ‘‘wet lab’’ measurements of gene transcription and

protein translation in a model that contained sequence features

did not consistently improve predictiveness (Figures S4F and

S4G), indicating that sequence features and ‘‘wet lab’’ measure-

ments may capture similar information. Together, these data

show that gene and protein sequence features jointly provide a

similar degree of information on HLA ligandome composition

as experimentally obtained expression levels.

Sequence feature-based HLA ligand classifiers are

generalizable

Next, we sought to understand to what extent the information

value of sequence features in HLA ligandome predictions is

generalizable to other tumor types, to different HLA class

I alleles, and to independent datasets. To this purpose, we as-

sessed the performance of the different classifiers on HLA li-

gandome data obtained from either mono-allelic B721.221

cell lines,41 cultured T and B cells, meningeal tumor lines,

ovarian carcinomas,46 and lung adenocarcinomas.47 In addi-

tion, to evaluate whether the predictive power of the sequence

feature-based classifier could be further boosted by extending

the size of the training dataset, an additional XGBoost model

was trained using the HLA ligandome data generated here com-

bined with HLA ligandome data obtained from two external

studies40,47 (termed A+SF 2.0). Application of these classifiers

to data derived from 20 mono-allelic B721.221 lines showed

that XGBoost models that included sequence feature informa-

tion reproducibly outperformed models based only on affinity

(Figures 4A and 4B). Furthermore, the extended A+SF 2.0

model performed better than the model trained on internal

LC-MS data (A+SFT) and showed increased performance rela-

tive to the RNA sequencing-based model by a small but signif-

icant margin. This improved performance of the A+SF 2.0model

was likewise observed in HLA ligandome data obtained from

lung adenocarcinomas (Figure 4C), meningeal cancer lines (Fig-

ure 4D), Epstein-Barr virus (EBV) immortalized B cells, and tu-

mor-infiltrating T cells (Figure 4E).

To further test the robustness of the sequence feature based

XGBoost models, their performance was assessed on HLA li-

gandome data obtained from ovarian carcinoma cells cultured

in the presence or absence of interferon g (IFNg),46 and an

HLA ligand dataset comprising non-canonical open reading

frames (ORFs) detected inmultiple B721.221 cell lines.48Despite

the strong modulatory effects of IFNg on the cellular proteome

and the antigen-processing machinery, XGBoost models that

included sequence features still resulted in improved perfor-

mance compared to those solely based on predicted affinity

(Figure S5A). The A+SF 2.0 model also performed significantly

better than the affinity-basedmodel in predicting ligands derived

from non-canonical ORFs (Figure S5B). Taken together, the

A+SF 2.0 XGBoost model is generalizable across various cell

types, maintains performance upon cellular perturbation (IFNg

treatment), and enhances prediction of HLA ligands derived

from non-canonical ORFs.

DISCUSSION

Gene and protein sequence features represent a class of ‘‘hard-

coded’’ regulators of protein expression, influencing this process

at many different levels. In this study, we leveraged a large set of

such gene and protein features to assess their contribution to the

composition of the HLA class I ligandome. We demonstrate that

sequence features can augment HLA ligand predictions and that

the predictive gain obtained in these models is equal to that of

models that incorporate experimentally obtained gene expres-

sion and protein translation data.

While not formally assessed here, it is expected that at least

some of the sequence features contribute to HLA ligand predic-

tions by providing a proxy for protein abundance. This notion

is supported by the observation that sequence features such

as mRNA region length, GC content, and post-transcriptional
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modifications can be used to help predict protein levels.18

Furthermore, predicted RNA methylation sites were among the

features that were most prominently associated with the pres-

ence of HLA ligands, an observation that may be explained by

their knownmodulatory effect on both mRNA stability and trans-

lation efficiency.27,28,37,49 In addition to features involved in

mRNA regulation and translation, our data reveal that the pre-

dicted occurrence of several PTM sites informed on the pres-

ence of HLA ligands. For ubiquitination, the PTM that displayed

the highest predictive value, its positive association with HLA

ligand yield may be caused by an enhanced accessibility to pro-

teasomal degradation.21,33,50 For other PTMs that were predic-

tive of HLA ligands, such as methylation and acetylation, their

involvement in specific pathways is less well understood.22,51,52

Our data provide correlative evidence that that these modifica-

tions influence availability of proteins to the antigen processing

machinery but further work will be required to formally test this.

Improvement of HLA ligand prediction approaches remains an

active field of research, with the aim to, for example, allow the

more precise selection of cancer (neo)antigens for therapeutic

purposes.40,41,53,54 Because of its generalizable nature and

lack of requirement for direct transcriptome measurements, we

envision that the approach described here will be of value in

these efforts.

Limitations of the study

The present study has the following limitations. (1) Predicted pro-

tein and RNA modification sites were found to influence HLA

class I sampling. As our models rely on predicted modification

sites, it cannot be concluded that the actual presence of these

Figure 4. Sequence feature-based XGBoost models generalize to external data

XGBoost classifiers were validated using HLA ligandome data from 3 external datasets.

(A and B) Validation of the indicated XGBoost models on HLA ligandome data obtained from 20 mono-allelic B721.221 cell lines. (A) Bar charts depict the area

under the curve calculated over the number of true HLA ligands observed in the top 0.1% of predicted peptides. (B) Boxplots summarizing the data shown in (A).

Boxplots indicate group median and 25th and 75th percentiles, whiskers indicate the interquartile range multiplied by 1.5, and dots signify individual cell lines.

(C‒E) Validation of the indicated XGBoost models on HLA ligandome data obtained from 4 meningeal cancer lines46 (C), 8 lung adenocarcinomas47 (D), 4 EBV

immortalized B cell lines, and 3 tumor-infiltrating T cell cultures46 (referred as cultured T and B cells; E). Boxplots depict the area under the curve calculated over

the number of true HLA ligands observed in the top 0.1% of predicted peptides (left graphs) or the PPV within the top 0.1% of predicted peptides (right graphs).

Boxplots indicate group median and 25th and 75th percentiles, whiskers indicate the interquartile range multiplied by 1.5, dots signify individual samples, and

lines connect matched samples. Features used to build classifiers were predicted HLA class I affinity (A), transcript abundance (RNA), trimmed sequence feature

library (SFT), and sequence feature library 2.0 (SF 2.0). The p values represent results of two-sided paired t tests. The Holm-Bonferroni method was applied to

correct for multiple testing.

See also Figure S5.
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modifications influences HLA class I ligand sampling. Although

we present an analysis in this work that suggests an association

between experimentally observed ubiquitination and acetylation

and HLA class I ligand yield, further work will be required to vali-

date this observation. (2) This study largely focused on the rules

that govern HLA class I ligand selection in transformed cell lines

and cancer tissues. While the presented models are applicable

across various transformed tissues and cell lines of different

origin, it is possible that non-transformed cell types and special-

ized cell types (e.g., antigen-presenting cells) may require the

training of dedicated prediction models. (3) Inclusion of a larger

set of HLA ligandome data significantly improved the predictive

power of the sequence feature-based XGBoost model, and it re-

mains to be determined whether an additional expansion of the

training data can further boost the performance of these models.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ton Schu-

macher (t.schumacher@nki.nl).

Materials availability

This study did not generate new unique reagents.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

mouse monoclonal IgG2a antibody W6/32 In house; Heck Lab N/A

Chemicals, peptides, and recombinant proteins

Cycloheximide Sigma-Aldrich Cat#C7698-1G

AmbionTM RNase I Invitrogen Cat#AM2294

proteinase K Merck Cat#3115836001

TRIzol reagent Invitrogen Cat# 15596026

T4 RNA ligase 1 NEB Cat# M0204S

T4 polynucleotide kinase NEB Cat# M0201S

Critical commercial assays

RNeasy Mini Kit Qiagen Cat#74104

TruSeq Stranded mRNA Library Prep Illumina Cat#20020595

Deposited data

mRNA sequencing data melanoma lines This paper GEO: GSE210999

Ribosome profiling data melanoma lines This paper GEO: GSE210998

Source data and analyses This paper Zenodo: https://doi.org/10.5281/zenodo.

11151263

Experimental models: Cell lines

SK-MEL-95 Memorial Sloan Kettering

Cancer Center

RRID:CVCL_6064

M026.X1 Netherlands Cancer Institute,

Daniel Peeper Group

Ref. 55

NKIRTIL006 Netherlands Cancer Institute,

Ton Schumacher Group

Ref. 56

Software and algorithms

STAR aligner Ref. 57 https://github.com/alexdobin/STAR

Salmon Ref. 58 https://github.com/COMBINE-lab/salmon

Ribomap Ref. 59 https://github.com/Kingsford-Group/ribomap

Proteome Discoverer 1.4 Thermo Fisher https://www.thermofisher.com/nl/en/home/

industrial/mass-spectrometry/liquid-

chromatography-mass-spectrometry-lc-ms/

lc-ms-software/multi-omics-data-analysis/

proteome-discoverer-software.html

netMHCpan 4.1 Ref. 7 https://services.healthtech.dtu.dk/services/

NetMHCpan-4.1/

coRdon Ref. 60 https://github.com/BioinfoHR/coRdon
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Data and code availability

d Transcriptomic and ribosome profiling data presented in this manuscript have been deposited to GEO and can be accessed

under the accession number GSE211000. Mass spectrometry data have been deposited to the ProteomeXchange Consortium

via the PRIDE partner repository with the dataset identifier PXD036277. All statistical source data of the figures presented in this

study are provided with this paper. Transcriptomic data of the Sarkizova study41was accessed fromGEO under the accession

number GSE131267. HLA ligands from the Sarkizova study41 were downloaded from the publisher’s website.

d This paper does not report original code.

d Any information required to reanalyze the data reported in this work, and source data underlying the figures, have been up-

loaded to Zenodo: https://doi.org/10.5281/zenodo.11151263. All scripts used to perform the analyses included in this manu-

script have been uploaded to GitHub: https://github.com/kasbress/HLA_Ligandome_Analyses. Any additional information

required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient-derived melanoma cell lines

Patient-derived melanoma cell lines were cultured in RPMI (Gibco) supplemented with 8% fetal calf serum (FCS, Sigma), 100 U/mL

penicillin (Gibco) and 100 mg/mL streptomycin (Gibco) at 37�C and 5%CO2. SK-MEL-95 and M026.X155 were a kind gift from Daniel

Peeper (Netherlands Cancer Institute). SK-MEL-95 was originally established in the Memorial Sloan Kettering Cancer Center (RRID:

CVCL_6064). M026.X1 was originally established in the lab of Daniel Peeper as a xenograft-derived melanoma cell line. NKIRTIL006

was established in house.56

METHOD DETAILS

Patient-derived melanoma cell lines

SK-MEL-95 andM026.X155were a kind gift fromDaniel Peeper (Netherlands Cancer Institute). SK-MEL-95 was originally established

in the Memorial Sloan Kettering Cancer Center. NKIRTIL006 was established in house.56

Cell culture

Patient-derived melanoma cell lines were cultured in RPMI (Gibco) supplemented with 8% fetal calf serum (FCS, Sigma), 100 U/mL

penicillin (Gibco) and 100 mg/mL streptomycin (Gibco) at 37�C and 5%CO2. For mRNA sequencing and ribosome profiling, cell lines

were cultured to a density of 70–90% on 150mm Corning tissue-culture treated culture dishes (Merck). For HLA ligandome LC-MS,

approximately 1$109 cells were cultured in Corning CELLSTACK Culture Chambers (Corning, 05-539-096).

HLA class I peptide isolation and LC-MS/MS

HLA class I-associated peptides were isolated by immunoprecipitation of HLA class I complexes using themousemonoclonal IgG2a

antibody W6/32, as described previously.61 Peptides were eluted from HLA class I protein molecules using a 10% acetic acid (v/v)

solution, and subsequently separated using a 10 kDa molecular weight cutoff filter. Obtained solution was then desalted into 3 frac-

tions using in-house made c18 STAGE (STop And Go Extraction) tips, eluted with 20%, 30% and 50% acetonitrile, respectively. The

resulting fractions were injected on an Agilent 1290 system using a 120-min gradient coupled to an Orbitrap Fusion mass spectrom-

eter (Thermo Fisher Scientific). Fractions 1 and 2 were injected in triplicate, whereas fraction 3 was injected in duplicate. The LC sys-

tem comprised of a 20 3 0.1 mm i.d. trapping column (Reprosil C18, 3 mm; Dr. Maisch) and a 50 3 0.005 cm i.d. analytical column

(Poroshell 120 EC-C18; 2.7 mm). An LC resolving gradient of 13–43% Solvent B (80% acetonitrile, 20%water, 0.1% formic acid) was

used. The Top Speed method was enabled for fragmentation, where the most abundant precursor ions were selected in a 3 s cycle

for data-dependent EThcD. MS1 and MS2 spectra were acquired at a resolution of 60,000 (FWHM at 400m/z) and 15,000 (FWHM at

400m/z), respectively. RF lens voltage was set to 60. Dynamic exclusion of 18s was used. Peptide precursors of charges 2 to 6 were

fragmented, if accumulated to aminimum intensity of 4$105within 50ms. InMS2, amaximum injection time of 250mswas usedwith a

minimum intensity filter of 5$104.

HLA class I peptide analysis

RAW data files were analyzed using the Proteome Discoverer 1.4 software package (Thermo Fisher Scientific). MS/MS scans were

searched against the human Swissprot reviewed database (accessed in September 2015; 20,203 entries), with no enzyme specificity

using the SEQUEST HT search engine. Precursor ion and MS/MS tolerances were set to 10 ppm and 0.05 Da. Methionine oxidation

was set as variable modification. The peptides-to-spectrum matches were filtered for precursor tolerance 5 ppm, <1% FDR using

Percolator, XCorr >1.7, and peptide rank 1. Peptides that were between 8 and 14 amino acid long were selected for further analysis.

The mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the

dataset identifier PXD036277.

Replicate injections displayed an overlap of approximately 70% (shared between at least 2 replicates). Consistent with their shared

tissue origin, a large part of peptides detected across the melanoma lines mapped to a core group of proteins (47.6% shared
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between at least 2 lines). In contrast, theMS detected peptides exhibited a small degree of overlap (12.4% shared between at least 2

lines), in line with their difference in HLA haplotype.

mRNA sequencing

Cells were cultured to an approximate density of 80%, and 1$107 cells were subsequently dissociated using a cell-scraper in cold

(4�C) PBS, centrifuged for 10 min at 3003 g, and snap-frozen in liquid nitrogen. RNA was extracted from the frozen pellets using

the RNeasy Mini Kit (Qiagen). Whole transcriptome sequencing samples were prepared using the TruSeq Stranded mRNA Kit (Illu-

mina). Single-end 65 bp sequencing was performed on a HiSeq 2500 System (Illumina). Obtained reads were aligned to the GRCh38

reference (gencode release 21) using STAR aligner57 (version 2.5.2b), and transcripts were quantified using Salmon58 (version 0.7.0).

Transcript counts belonging to a single consensus coding sequence were summed.

Ribosome profiling

Cells were cultured to an approximate density of 80%, and 5$107 cells were subsequently treatedwith 100 mg/mL cycloheximide for

5 min at 37�C. Cells were then washed once in cold (4�C) PBS containing 100 mg/mL cycloheximide, dissociated using a cell-

scraper in cold (4�C) PBS supplemented with 100 mg/mL cycloheximide, centrifuged for 10 min at 3003 g, and snap-frozen in liquid

nitrogen. Frozen pellets were resuspended in lysis buffer (20 mM Tris–HCl, pH 7.8, 100 mM KCl, 10 mM MgCl2, 1% Triton X-100,

2 mM DTT, 100 mg/mL cycloheximide, 13 Complete protease inhibitor), and incubated on ice for 20 min. Lysates were sheared

using a 26G needle, centrifuged for 10 min at 1,3003 g, and supernatants were transferred to a clean tube. Supernatants were

treated with 2 U/ml of RNase I (Ambion) for 45 min at room temperature, with rotation. Next, lysates were fractionated on a linear

sucrose gradient (7%–47%) using the SW-41Ti rotor (Beckman Coulter) at 221,6333 g for 2 h at 4�C, without brake. Obtained

sucrose gradients were then divided in 14 fractions, and fractions 7–10 (cytosolic ribosomes) were pooled and treated with PCR

grade proteinase K (Roche) in 1% SDS to release ribosome protected fragments. The resulting fragments were subsequently pu-

rified using Trizol reagent (Invitrogen) and precipitated in the presence of glycogen, following the manufacturer’s instructions. For

library preparation, RNA was gel-purified on a denaturing 10% polyacrylamide urea (7 M) gel. A section corresponding to 25 to 36

nucleotides—the region that comprises the majority of the ribosome-protected RNA fragments—was excised, and purified through

ethanol precipitation. RNA fragments were then 30-dephosphorylated using T4 polynucleotide kinase (New England Biolabs) for 6 h

at 37�C in 2-(N-morpholino)ethanesulfonic acid (MES) buffer (100 mMMES-NaOH pH 5.5, 10 mMMgCl2, 10 mM b-mercaptoetha-

nol, 300 mM NaCl). The 30 adaptor was added using T4 RNA ligase 1 (New England Biolabs) for 2.5 h at 37�C. Ligation products

were 50-phosphorylated with T4 polynucleotide kinase for 30 min at 37�C, and the 50 adaptor was added using T4 RNA ligase 1

for 2 h at 37�C. Sequencing was performed on a HiSeq 2500 System (Illumina). Ribosome occupancy was calculated using the

Ribomap pipeline,59 and was aligned to the GRCh38 reference (gencode release 21). Counts belonging to a single consensus cod-

ing sequence were summed.

Characterization of LC-MS detected peptides

For comparison of peptide length distributions, knownmelanoma HLA class I ligands were downloaded from the IEDBweb-interface

(https://www.iedb.org) in June 2021 using the following search filters: Epitope – Any; Assay Outcome – Positive; MHC restriction –

Class I; Host – Human; Disease – Melanoma.

To assess the amino acid positional biases of the LC-MS detected peptides, the dataset was filtered for 9-meric species, and the

occurrence of each amino acid on each peptide position was tallied. As a reference, all expressed proteins (TPM >0 in themRNA-seq

dataset) were selected for each melanoma line, and the number occurrences of each amino acid was calculated. Amino acid enrich-

ment was then defined as the fraction by which an amino acid occurred at a certain position divided by the fraction by which that

amino acid occurred in the reference. The positional bias was defined as the median of the absolute amino acid enrichment values

for each peptide position.

For binding motif analyses, 9-meric peptide sequences from each melanoma line were clustered using GibbsCluster 2.0 (com-

mand line options set to: -g 3–7 -C -D 4 -I 1 -S 5 -T -j 2 -c 1 -k 25), with the number of clusters for each melanoma line set to the

number of alleles expressed by that line. Sequence logos were generated using the R package ggseqlogo. To generate reference

sequence logos, all known human 9mers for each of the shown HLA class I alleles were downloaded from IEDB in June 2021.

Peptide database construction

To investigate characteristics of HLA class I ligands, a database consisting of LC-MS detected peptides (i.e., true HLA ligands) and

not-detected peptides (referred to as decoy peptides) was constructed. To this end, binding scores for the HLA class I alleles of each

melanoma linewere calculated for all 9-, 10-, and 11-mers that were detected by LC-MS using netMHCpan 4.1,7 and to each peptide,

the highest affinity rank score for the expressed HLA alleles was subsequently assigned. Separate databases were generated for

each melanoma line assigning each peptide the expression level (TPM) of its source protein. Each database was supplemented

with ‘decoy peptides’ at the indicated ratios, with decoy peptides being randomly sampled from the human proteome, at a length

distribution that was equal to the set of LC-MS detected peptides.
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Feature library construction

50 UTR, coding region (CDS) and 30 UTR nucleotide sequences were downloaded from ENSEMBL BiomaRt (release 104; accessed

September 2021) for all protein-coding transcripts. RNA-binding protein motifs were acquired from ATtracT62 (accessed June 2021)

and filtered for human RBPs (142 RBPs; 2,271 motifs). In each transcript region (e.g., 50 UTR, CDS, 30 UTR), motifs were searched

and counted using a custom script (see GitHub project), and GC content and nucleotide length were computed. Also included in the

sequence feature library were: Codon usage (applying coRdon60), amino acid usage within the CDS, miR-DB63 miRNA seed scores

(accessed August 2021 and filtered for miRNA expressed immune cells, based on previous analysis by Juzenas et al.64), sequence

homology between Human and Zebrafish (Danio rerio, obtained through Ensembl BiomaRt), predicted mRNA modification site occur-

rence per transcript region (obtained from the RMVar database,65 accessed at https://rmvar.renlab.org/in September 2021), and pre-

dicted post-translational modification (Acetylation, Amidation, Hydroxylation, Malonylation, Methylation, N-linked_Glycosylation,

O-linked_Glycosylation, Palmitoylation, Phosphorylation, S-nitrosylation, Succinylation, Sumoylation, Ubiquitination) site occurrence

(obtained from the dbPTM database,66 accessed at https://awi.cuhk.edu.cn/dbPTM/in February 2024).

Importance assessment of sequence feature classes

To assess the ability of sequence features to inform on HLA sampling, features belonging to five major classes (50 UTR, CDS, 30 UTR,

miR binding and PTM) were extracted from the sequence feature library. The 50 UTR, CDS, 30 UTR classes were filtered based on their

variance across the proteome using the nearZeroVar function in the caret R package (setting cutoffs at: freqRatio <500 and percen-

tUnique >0.05). All putative miR binding sites and PTMs in the library were used in the analysis. The number of features left after

filtering are shown in Figure 2A. 2,000 true HLA ligands and 4,000 decoy peptides were sampled from the peptide database of

eachmelanoma line, and subsequently used to train individual RandomForestmodels for eachmelanoma line and each feature class

to predict true HLA ligands (15models in total). The Random Forest models were generated using the R packages randomForest and

caret, using 10-fold cross validation optimizing the ROC metric. Number of trees in each forest was set to 5,000 and minimum ter-

minal node size was set to 2. The mtry parameter was set to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n features� 1
2
p

3 1:5. Feature importance (i.e., mean decrease in ac-

curacy) was calculated using the varImp function from the R package caret.

Analyses examining HLA ligand enrichment potential of individual sequence features (Figures 2D–2F and S2B) were focused on the

10 most important features in each class (defined as the highest mean importance score of the models trained for that feature class),

and were performed using 3,389 true HLA ligands and 13,556 decoy peptides per tumor line. For the analysis presented in Figures 2E

and 2F, A custom enrichment metric was calculated. In brief, 30% of the data was sampled and peptides were ranked either by the

occurrence of a sequence feature or at random. In both cases the total number of true HLA ligands within the top 50% ranked pep-

tides was tallied. Next, the percentage increase in true HLA ligands was calculated comparing the sequence feature ranked case

versus the randomly ranked case. This process was performed for all sequence features in the analyses, and was repeated 50 times.

XGBoost classifiers

The number of experimentally detected HLA ligands from each melanoma line was down-sampled to the number of HLA ligands in

the smallest dataset to ensure each melanoma line had equal weight during the analyses. LC-MS detected peptides were randomly

split into a training (80%) and a test (20%) set, and these setswere subsequently supplementedwith a 4-fold and 1,000-fold excess of

decoy peptides. XGBoost models were generated using the R packages xgboost and caret, using 2-times 10-fold cross validation

optimizing the accuracy metric. Learning rate was set to 0.3, minimum loss reduction was set to 1.0, maximum tree depth was set to

1, sub-sampling ratio of features for each treewas set to 0.5,minimum sumof instanceweight needed in a terminal leaf was set to 0.9,

number of rounds was set to 1,000.

External HLA ligandome data

Transcriptomic data of the Sarkizova study41 was accessed from the Gene Expression Omnibus (GEO) at GSE131267 and was

aligned to the GRCh38 reference (gencode release 21) using Salmon (quasi-mapping mode, version 0.7.0). Mean transcript counts

were calculated between replicates, and transcripts belonging to a single consensus coding sequence were summed. HLA ligands

from the Sarkizova study41 were downloaded from the publisher’s website. 350 LC-MS detected peptides (comprising 9-, 10- and

11-mers) were sampled from each of the 20 indicated mono-allelic cell lines. HLA ligandome data obtained from lung adenocarci-

noma,47 meningeal cancer lines, EBV immortalized B cells and tumor-infiltrating T cells, IFNg treated ovarian carcinoma lines,46

and HLA ligands derived from non-canonical open-reading-frames found in B721.221 cells48 were downloaded from the respective

publisher’s websites. Each of these datasets was down-sampled to 500–1,000 LC-MS detected peptides. A 1,000-fold excess of

length-matched decoy peptides randomly sampled from the human proteome was added to each dataset. Predicted HLA-peptide

affinity scores were calculated using netMHCpan 4.17 for all expressed HLA alleles, and to each peptide the highest affinity rank

score for the expressed HLA alleles was subsequently assigned.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using the rstatix package in the R programming language. All applied statistical tests, p values,

and confidence invervals are reported in the figures or figure legends.
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