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s u m m a r y   

The sustained circulation of H9N2 avian influenza viruses (AIVs) poses a significant threat for contributing 
to a new pandemic. Given the temporal and spatial uncertainty in the antigenicity of H9N2 AIVs, the im-
mune protection efficiency of vaccines remains challenging. By developing an antigenicity prediction 
method for H9N2 AIVs, named PREDAC-H9, the global antigenic landscape of H9N2 AIVs was mapped. 
PREDAC-H9 utilizes the XGBoost model with 14 well-designed features. The XGBoost model was built and 
evaluated to predict the antigenic relationship between any two viruses with high values of 81.1 %, 81.4 %, 
81.3 %, 81.1 %, and 89.4 % in accuracy, precision, recall, F1 value, and area under curve (AUC), respectively. 
Then the antigenic correlation network (ACnet) was constructed based on the predicted antigenic re-
lationship for H9N2 AIVs from 1966 to 2022, and ten major antigenic clusters were identified. Of these, four 
novel clusters were generated in China in the past decade, demonstrating the unique complex situation 
there. To help tackle this situation, we applied PREDAC-H9 to calculate the cluster-transition determining 
sites and screen out virus strains with the high cross-protective spectrum, thus providing an in silico re-
ference for vaccine recommendation. The proposed model will reduce the clinical monitoring workload and 
provide a useful tool for surveillance and control of H9N2 AIVs. 

© 2024 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association. This is an 
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).   

Introduction 

The H9N2 influenza virus is an important pathogen impacting 
both animal and human health. Since the H9N2 AIVs were first 
isolated in 1966, this subtype of low pathogenicity AIVs has been 
prevalent in various countries and regions globally over the sub-
sequent decades.1–3 Their most significant impact in chicken is a 
sudden decrease in appetite at a large scale, resulting in secondary 
bacterial infections and finally leading to egg drop up and economic 
losses of up to 30 %.4 Notably, in China, H9N2 has replaced H5N1 and 
became the most dominant subtype in domestic poultry since 2016.5 

As of September 14, 2023, there have been 127 reported human 
cases of low pathogenic avian influenza (LPAI) H9N2 worldwide, 
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characterized by flu-like symptoms.6 Over the past three decades, 
more than 100 human infection cases have been recorded in China. 
Confirmed cases have shown a rising trend in recent years, with 14 
from 1998 to 2012, 37 from 2013 to 2019, and 63 from 2020 to 
September 2023.6 As the clinic symptoms of most H9N2 human 
infection cases were mild and self-limited, public as well as clinical 
physicians tend to pay relatively less attention compared with H5N1 
and H7N9 human infections. However, serological evidence has 
shown a higher prevalence of H9N2 in poultry workers compared 
with H5N1 or H7N9 subtypes.7,8 Additionally, H9N2 AIVs have 
played an important role in the evolution of AIVs by providing var-
ious internal genes required for gene reassortment, leading to the 
emergence of novel AIVs (including H5N1,3 H5N6,9 H7N9,10,11 and so 
on). Therefore, H9N2 is listed by the WHO as one of the most likely 
pathogens to cause a pandemic.12 

Antigenic shifts in influenza viruses pose a significant threat 
since they can result in novel viruses to which populations have no 
immunity.13,14 Three of the four pandemic influenza outbreaks in the 
20th century were the result of antigenic shift events that involved 
AIVs.14,15 H9N2 AIVs have experienced multiple antigenic drifts and 
caused outbreaks in poultry flocks. In 2013, antigenically mutated 
strains of H9N2 viruses caused a large outbreak in Chinese chickens 
and created precursor conditions for the subsequent generation of 
H7N9 viruses.16 In recent years, H9N2 continues to mutate and 
generate novel antigenic variants,17–19 causing co-prevalence of 
multiple antigenic strains.20,21 Although vaccination is currently a 
commonly used prevention and control strategy in poultry farms, 
the protective efficiency of vaccines continues to be challenged as 
the antigenicity of the virus evolves. Effective prevention strategies 
against H9N2 AIVs, such as rapid production of matching vaccine 
strains and expanded vaccine protection range, are urgently 
needed.2 

To help achieve this strategy, it is crucial to understand the an-
tigenic evolution pattern of the H9N2 AIVs and to identify the newly 
emerging antigenic clusters. However, the traditional method of 
determining influenza antigenicity through hemagglutination in-
hibition (HI) assay is impractical for large-scale screening of AIV 
strains due to their time-consuming, labor-intensive, and de-
manding experimental conditions. In this study, we developed an 
antigenic relationship machine-learning prediction model based on 
H9N2 HA sequencing data and HI data. This allowed us to rapidly 
infer the antigenic pattern of H9N2 AIVs and improve vaccine strain 
recommendations. 

Materials and methods 

HA sequence and structure data 

The HA1 protein sequence of H9N2 AIV, the main immunogen of 
influenza virus, was obtained from the NCBI Influenza Virus 
Resource and the Global Initiative on Sharing All Influenza Data 
(GISAID),22 covering the period from 1966 to 2022. The HA1 dataset 
comprised a total of 10,289 sequences, with each sequence con-
sisting of 317 amino acids. Multiple sequence alignment was per-
formed using the MAFFT,23 and sequences with a proportion of 
missing or aberrant amino acids exceeding 10 % (i.e., “-”, “X”) in the 
HA1 domain were excluded. Subsequently, the missing or aberrant 
amino acids in the remaining sequences were filled. Specifically, 
these positions were filled with the mode of the amino acid types 
from the top ten sequences that exhibited the highest similarity to 
the target sequence. 

Furthermore, the structural data for the H9N2 HA monomer, 1JSD 
(strain A/Swine/Hong Kong/9/1998), was downloaded from the 
Protein Data Bank (PDB) database.24 The structure data of H9N2 HA 
trimer, P03457 (strain A/Turkey/Wisconsin/1/1966), was obtained 
from the SWISS-MODEL website.25 

HI data for H9N2 AIV 

We collected and combined datasets of HI measurements from 
various literature sources, and standardized log-transformed titers26 

were used to measure the antigenic distance between viruses A and 
B. The distance is defined as follows: 

=dHI
T

T
log

b

a
2

(1) 

Here, dHI is standardized HI titer of a test virus a using antiserum 
raised against the reference virus b. Tb represents the homologous 
titer of virus b detected by antiserum . Ta represents the hetero-
logous titer of virus a detected by antiserum . A pair of viruses were 
considered antigenically different if dHI| | ≥2, otherwise, they were 
considered antigenically similar.27 Considering the different experi-
mental conditions in different laboratories, we took the median titer 
results for the same pair of strains in different HI test tables.28 

Overall, we obtained 2388 (57.3 %) antigenic variant pairs and 1773 
(42.6 %) antigenic similar pairs. 

Extension of antigenic sites of H9N2 AIV 

Like human influenza viruses, avian H9N2 viruses mainly change 
the major antigenic sites of their HA proteins to evade antibody at-
tacks. To predict the protein-antibody binding sites, we utilized the 
Spatio-Chemical Arrangement of Neighbors Network (ScanNet) 
webserver,29,30 which provides a high level of accuracy, speed, and 
coverage compared to previous approaches. Firstly, we utilized the 
P03457 trimer protein structure25 as input and selected the top 150 
residues for each monomer based on the probability of binding sites 
extracted from the output file. Secondly, we took the intersection of 
the residue positions from the three monomers. Thirdly, we manu-
ally checked the position of residues on the protein structure and 
removed stem residues. Fourthly, previous studies have defined four 
potential antigenic epitopes for the H9N2-subtype hemagglutinin: 
Site I, Site II, H9-A, and H9-B, collectively comprising a total of 26 
residues.31–34 Of these 26 residues, 23 were included in the previous 
step, and we added the remaining three to obtain a final count of 96 
residues (Fig. S3). Lastly, we clustered the 96 residues into six anti-
genic epitopes, which we named H9_A, H9_B, H9_C, H9_D, H9_E, 
and H9_F, using the K-means clustering algorithm and calculating 
Euclidean distances between each residue (as demonstrated in Fig. 
S3 and Table S2). 

A feature-based model for antigenic relationship prediction 

To predict the antigenic relationship between two viruses, we 
have developed a machine-learning approach. The method consists 
of three steps, which are described below: 

We selected 14 features that are likely to be informative for 
predicting the antigenic relationship between H9N2 viruses.35–37 

There are six antigenic epitope features, five physicochemical 
properties of amino acids features, the receptor binding site feature, 
and two kinds of glycosylation site features. We measured the dif-
ferences in the 14 features between HA pairs. As for HA epitope 
features, we calculated the number of differences in each epitope for 
each pair of strains. As for the physicochemical properties of amino 
acid features, we calculated the average change between strain pairs. 
We obtained the quantitative values of the five physicochemical 
properties for the 20 amino acids from the Amino Acid index data-
base38 (the database entries FASG890101, GRAR740103, ZIMJ680104, 
CHAM820101, and JANJ780101 recorded quantitative descriptions of 
hydrophobicity, volume, charge, polarity and ASA of the 20 amino 
acids, respectively). If the number of residues with amino-acid 
changes were greater than three, only the top three residues with 
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maximal changes were considered in the calculation. As for the re-
ceptor binding site feature, we used the structure of A/swine/Hong 
Kong/9/98 as a template (PDB: 1JSD) to calculate the average of the 
shortest Euclidean distances between the residues with amino-acid 
changes and the three receptor-binding regions. The Euclidean dis-
tance between two residues was calculated between their respective 
Carbon-α atoms. If more than three mutations occurred, only the top 
three shortest Euclidean distances were considered in the calcula-
tion. As for glycosylation site features, we calculated the number of 
changed glycosylation sites as predicted using NetNGlyc39 and Ne-
tOGlyc.40 

To construct the antigenic prediction model, 14 relevant features 
were used as model features, and the antigenic relationships (si-
milarity or distinction) of HI pairs were treated as model labels. Five 
classic machine-learning classification models were constructed by 
the Python package sklearn to predict the relationship between each 
strain pair, namely Logistic Regression, Support Vector Machine, K- 
Nearest Neighbor, Random Forest, and XGBoost. To validate the 
model, 70 % of the collected HI pairs were randomly selected as the 
training set, and the remaining 30 % were used as the test set, and a 
five-fold cross-validation was performed. 

The accuracy, precision, recall, and F1 score were introduced to 
evaluate the model performance as formula (2), (3), (4), and (5) il-
lustrated. 

=
+

+ + +

Accuracy
TP TN

TP TN FP FN (2)  

=

+

Precise
TP

TP FP (3)  

=

+

Recall
TP

TP FN (4)  

= ×
×

+

F
Precise Recall

Precise Recall
1 2

(5) 

Here TP indicates true positive samples, TN indicates true negative 
samples, FP indicates false positive samples, and FN indicates false 
negative samples. 

Antigenic network construction 

Based on the classification probabilities determined by the 
model, we calculated the logarithm of the ratio of the probability of 
being predicted to be antigenically similar to the probability of being 
predicted to be antigenically different to denote the extent of anti-
genic similarity. If the logarithm of the ratio is > 0, the antigenic 
relationship of the two viruses is considered antigenically similar; 
otherwise, it is considered antigenically distinct. The greater the 
logarithm of the ratio, the more likely it is that the two viruses are 
antigenically similar. Cytoscape41 was used to construct and visua-
lize the antigenic correlation network. All viral pairs predicted to be 
antigenic similar were connected to generate the network. The 
nodes in the network are H9N2 strains, and the edge between 
the two nodes refers to the antigenic similar relationship. Subse-
quently, to infer antigenic clusters, viruses with similar antigenicity 
from the ACnet were grouped using the Markov clustering algorithm 
(MCL),42 which is designed for network clustering (Fig. S6). 

Identification of the cluster-transition determining sites 

In this study, we identified antigenic critical positions by con-
sidering positions with both highly antigenic discriminating scores 
and high genetic diversity.43 To measure the genetic diversity of an 
amino acid position i ( =i 1 317) with 20 amino acid types, we 
used Shannon entropy and it is defined as: 

= = =

=

H i P X T P X T( ) ( )log( ( ))
i

i i

1

20

(6) 

where =P X T( )i represents the probability of the position i with 
amino acid type T . Information gain measures the score of amino 
acid positions on the HA1 and is used to distinguish between two 
adjacent antigen clusters. The IG of the position i associated with the 
antigenic cluster Y is defined as 

=IG i Y H Y H Y i( , ) ( ) ( | ) (7)  

H Y( ) is the entropy of antigenic cluster Y (i.e., adjacent cluster C1
and C2), H Y( ) is defined as 

= = =H Y P Y T P Y T( ) ( ) log ( ( ))
T C C{ , }1 2 (8)  

H Y|i( ) is the conditional entropy of Y when the position i is given, 
H Y|i( ) is defined as 

= = =H Y i P Z A P Y Z A( ) ( )log( ( | ))
A M N

i i

{ , } (9)  

=P Z A( )i is the probability when the amino acid position i is in 
state A. =P Y|Z A( )i is the probability of Y when the amino acid 
position i is in state A. 

For example, in the process of antigen cluster transfer from SS94 
to JX13, there are 4073 sequences of antigenic cluster SS94 and 1338 
sequences of antigenic cluster JX13. The number of mutations and 
non-mutations at position 150 are 1890 and 3521. Among the 1890 
mutation sequences, the number of cluster SS94 and cluster JX13 are 
552 and 1338, respectively; among 3521 non-mutation sequences, 
all the sequences belonged to antigenic cluster SS94. According to 
these data, we can calculate that =P Z M( )150 is 0.35 and =P Z N( )150

is 0.65. Finally, we obtained =H Y i( ) 0.09 and =H Y( ) 0.81, which 
make the =IG Y(150, ) 0.72. The values of information gain and en-
tropy of 317 HA positions are normalized in the range from 0 to 1. 
Given that single amino acid substitutions at critical positions can 
lead to antigenic changes,44 we defined “high entropy” as an entropy 
value greater than 0.8 and “high information gain” as an information 
gain value greater than 0.7. These thresholds were established to 
identify 1–3 amino acid positions that are significant for antigenic 
variation. 

PREDAC-H9-based vaccine strain recommendation strategy 

For H9N2 AIVs, we predicted pairwise antigenic relationships for 
any two viruses using the PREDAC-H9 approach and connected 
viruses with similar antigenicity to construct the ACnet. 
Subnetworks containing strains from the same year were extracted 
and the degree value (Di) was calculated for each strain in the sub-
network, which represents the number of strains similar to strain i in 
antigenicity. All Di values were sorted in descending order to select 
the recommended strain 1 with the largest antigenic coverage rate. 
The antigenic coverage rate Ci is defined as follows: 

=C
D

N
i

i

(9) 

where N represents the total number of strains in a given year. The 
recommended strain 1 will be considered as the candidate vaccine 
strain. When encountering the recommended strain 1 with a low 
antigenic coverage rate, it is possible to remove the recommended 
strain 1, and its antigenically similar strains from the subnetwork, 
and the abovementioned steps were repeated to choose re-
commended strain 2 with the maximum coverage rate. These two 
strains will be considered as the vaccine strain candidate combina-
tion for the current year. If the antigenic coverage rate of the com-
bination remains low, the recommended strain 3 can be selected, 
and so on, in a similar manner. In this study, we have provisionally 
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established the cut-off threshold for antigenic coverage at 80 %. 
Instances falling below this threshold are deemed to necessitate 
further recommendation and evaluation. 

Phylogenetic analysis 

The phylogenetic tree was constructed using Fasttree45 version 
2.1.11 based on the maximum likelihood model and was visualized 
using Figtree46 version v1.4.4. 

Results 

Model and determinants for antigenic relationship prediction 

In order to simulate the antigenic pattern of influenza A (H9N2) 
virus, we refined the PREDAC method47 for H9N2 AIVs, denoted as 
PREDAC-H9, to rapidly identify the antigenic variants of the H9N2 
virus. The workflow of the method is illustrated in Fig. S1. Five 
machine learning models integrating 14 structural and physico-
chemical features of HA sequences were tested to maximize pre-
diction accuracy. These 14 features could be divided into 4 groups, 
namely newly inferred epitopes (H9_A, H9_B, H9_C, H9_D, H9_E and 
H9_F), physicochemical properties (Hydrophobicity, Polarity, Charge, 
Volume and Accessible surface area (ASA)), glycosylation sites (N- 
Glycosylation, O-Glycosylation), and receptor binding sites (RBS), 
which have been demonstrated to correlate with influenza anti-
genicity in past studies.47 Model training, verification, and prediction 
were conducted on the divided training set and test set. In order to 
compare the performance among the machine learning models, we 
calculate the prediction accuracy, precision, recall, F1 score, and AUC 
values of each model (Table 1), and the detailed ROC curves are 
depicted in Fig. S2. In conclusion, the nonlinear ensemble method 
XGBoost achieved an accuracy of 81.1 %, precision of 81.4 %, recall of 
81.3 %, and F1 score of 81.1 % on the test dataset, and we take this 
method’s results as the final output. The XGBoost algorithm is a 
scalable decision tree-based boosting algorithm that is an ideal 
candidate for nonlinear, sparse, and class-imbalanced classification 
data.48 It is widely used to solve problems regarding regression, 
classification, and ranking. 

To investigate how the 14 structural and physicochemical char-
acteristics contribute to the antigenic variation of H9N2 AIV, feature 
importance analysis was performed using Shapley Additive 
exPlanations (SHAP) value. The epitopes (49.44 %) were considered 
the main factors contributing to the altered antigenicity of the H9N2 
AIV, while other groups, physicochemical properties, glycosylation 
sites, and RBS, contributed 34.34 %, 10.60 %, and 5.62 %, 
respectively. Epitope features, specifically H9_C, H9_B, and H9_F, 
were found to contribute most to the model. This highlights the 
crucial role of antigenic epitopes in predicting antigenic variation 
and is consistent with the previous research.47 Among epitope fea-
tures, H9_C exhibited the strongest predictive power in antigenic 
variation. Conversely, epitope H9_A demonstrated the weakest 
predictive ability. This discrepancy may stem from the fact that H9_C 
encompasses multiple amino acid positions and is located at the 
head of the HA protein, while H9_A has fewer amino acid positions 

and is situated furthest from the head of the HA protein (Fig. S3). 
Among the physicochemical property features, the polarity of the 
amino acid was considered the most important (Fig. 1a). 

In the prediction of antigenic relationships between H9N2 AIVs, 
the effective SHAP values (mean SHAP value) of six epitopes features 
(H9_A, H9_B, H9_C, H9_D, H9_E, and H9_F) and three physico-
chemical properties of amino acids (volume, charge, and polarity) 
were found to be less than zero. These features have a significant 
negative impact on the prediction of antigenic variation, and the 
larger the values of these features, the greater the likelihood that 
they will be predicted as variants in the antigenic relationship 
model. Conversely, hydrophobicity, ASA, glycosylation sites, and RBS 
features have a significant positive impact, and the larger the values 
of these features, the greater the likelihood of predicting to be si-
milar (Fig. 1b). 

Antigenic variation of the avian influenza A (H9N2) virus from 1966 

to 2022 

In order to better understand the antigenic variation and trans-
mission of H9N2 viruses globally, a total of 10,289 HA sequences of 
H9N2 viruses isolated from different countries and regions from 
1966 to 2022 were downloaded. Using the PREDAC-H9 model, the 
antigenic relationships between all pairwise combinations of H9N2 
viruses were predicted, and the similar antigenicity virus pairs were 
connected to construct an ACnet (Fig. 2a). Then, the predicted anti-
genic clusters could be identified from the ACnet. A total of 24 an-
tigenic clusters were identified, among which 10 major antigenic 
clusters included more than 10 % of the viruses in at least one year. 
As shown in Fig. 2a and b, the ACnet and phylogenetic tree vividly 
depict the antigenic patterns of H9N2 viruses globally. 

We used the short name of the earliest strain that belongs to 
every major antigenic cluster as the name of this antigenic group 
(WC66, SS94, CB97, IR98, DE03, SK06, JS13, JX15, GZ16 and GD17). In 
terms of the four traditional global epidemic lineages of H9 (h9.1- 
American lineage, h9.2-Y439 lineage, h9.4-G1 lineage and h9.3-BJ94 
lineage), each lineage has at least one corresponding independent 
antigenic cluster. The WC66 antigenic cluster is the only major an-
tigenic cluster in the h9.1-American lineage, and even though it is 
the oldest prevalent lineage, no significant antigenic variation has 
been observed yet, probably due to the low prevalence and nearly 
only transmission in wild birds.31 The antigenic clusters DE03 and 
SK06 both belong to the h9.2-Y439 lineage, but there is no direct 
evolutionary relationship between them. In the prevalence of the 
h9.4-G1 lineage, two distinct antigenic clusters can be observed, 
CB97 and IR98. While in the h9.3-BJ94 lineage, which has the largest 
number of strains, multiple antigenic drifts occurred. The SS94 an-
tigenic cluster appeared earliest but continued to be prevalent until 
now. Based on the SS94 cluster, four novel antigenic clusters, 
namely, JS13, JX15, GZ16, and GD17, gradually evolved and be-
came prevalent. 

To investigate the detailed antigenic patterns in different regions, 
we also depicted the antigenic dynamics of AIV in Asia, Africa, 
Europe, and the Americas from 1966 to 2022 (Figs. 2c and S4). No-
tably, significant variations were observed in the antigenic patterns 
of H9N2 AIV across these continents. Among the four continents, 
Asia had enough sampled sequences and exhibited the most in-
tricate antigenic pattern, characterized by the presence of all the 10 
major antigenic clusters with regional heterogenicity (Fig. 2c). In 
Africa, the predominant antigenic cluster was IR98 (Fig. S4). Despite 
the low number of strains, the Americas and Europe experienced a 
long-term predominance of antigenic cluster WC66 (Fig. S4). Among 
regions in Asia, China played a pivotal role in driving the antigenic 
dynamics with 9 major antigenic clusters (Fig. 2c). There was co- 
circulation of both dominant and non-dominant antigenic clusters in 
Asia and China. Moreover, we have observed the re-emergence of 

Table 1 

Model performance metrics.        

Models Accuracy Precision Recall F1_score AUC  

SVM  0.716  0.731  0.720  0.714  0.790 
Logistic Regression  0.739  0.749  0.741  0.737  0.812 
KNN  0.782  0.791  0.784  0.781  0.857 
Random Forest  0.788  0.799  0.791  0.787  0.859 
XGBoost  0.811  0.814  0.813  0.811  0.894 

SVM, Support Vector Machine; KNN, K-Nearest Neighbor; AUC, Area Under the 
Receiver operating characteristic Curve.  
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the old dominant antigenic cluster SS94 after being replaced by the 
new antigenic cluster JS13, regaining its dominance over a period of 
time (Fig. 2c). South Korea, Vietnam, and Bangladesh with sufficient 
sequences were also investigated. South Korea is mainly prevalent in 
antigenic clusters WC66, SK06, and SS94 (Fig. 2c). Meanwhile, 
Vietnam was similar to China, which showcased four out of the five 
antigenic clusters within the h9.3-BJ94 lineage, while Bangladesh 
predominantly experienced the antigenic cluster IR98 (Fig. 2c). 

Cluster-transition determining sites 

To investigate the amino acid positions that play a role in anti-
genic cluster transition, the Shannon entropy and information gain 
(IG) were calculated for each amino acid on HA1 during the inter- 
cluster transitions. Amino acids with high IG at a specific position 
imply that the position is highly correlated with antigenic variation. 
Amino acids with high entropy imply that the position is frequently 
mutated in the dataset and has high genetic diversity. Given the 
diversity of antigenicity and the adequacy of data, we have focused 
our analysis on the determining sites within the antigenic evolution 
process of the h9.3-BJ94 lineage. Fig. 3 shows the relationship be-
tween IG values and entropies of 317 amino acid positions of HA1 
during four antigenic transitions within the h9.3-BJ94 lineage. All 
positions can be divided into four groups based on the values of IG 
(degree of antigenicity) and entropy (genetic diversity). Positions 
with high IG and high entropy (i.e. region I) are considered to be 
critical in the process of antigenic cluster conversion. 

In the four antigenic transitions, a total of 6 out of 317 positions 
were identified as potential determining sites of antigenicity, all 
located within the six defined antigenic epitopes: two in H9_B (180, 
183), two in H9_C (150, 153), one in H9_F (131) and one in H9_A (48). 
Specifically, three high entropy and high information gain positions, 
48, 150, and 180, were identified as potential determinants of tran-
sition from SS94 to JS13 (Fig. 3A); a single substitution of D183G led 
to the transition from JS13 to JX15 (Fig. 3B). Three high entropy and 

high information gain positions, 150, 153, and 183, were regarded as 
potential determinants of transition from JS13 to GZ16 (Fig. 3C); 
substitutions at positions 131, 150, and 183 resulted in the transition 
from JS13 to GD17 (Fig. 3D). Positions 48, 131, 153, and 180 were only 
involved in once cluster transition, while positions 150 and 183 were 
involved in three times. Furthermore, a single residue substitution 
could lead to cluster transition. In addition, the phylogenetic analysis 
verified the cluster-transition crucial positions identified in our re-
sults. For example, at position 183, the amino acid at this position 
was almost purely aspartic acid (D) at cluster JS13, while the amino 
acid at this position is almost all mutated to asparagine (N) when the 
cluster transfer to GZ16 (Fig. S5). 

Strategy for vaccine strain recommendation 

Considering the antigenic diversity of the H9N2 AIV in China and 
its significant role in the global spread of avian influenza, a vaccine 
strain recommendation strategy was developed using China as an 
illustrative example. This strategy aims to identify, on an annual 
basis, a strain or combinations of strains with a high antigenic 
coverage rate as potential candidate vaccine strains. Table 2 provides 
a comprehensive overview of the candidate vaccine strains (desig-
nated as “recommend strain 1″) offered each year from 2010 to 2022, 
along with their corresponding antigenic clusters, as well as their 
antigen coverage rate. Furthermore, for years with strains antigenic 
diversity, recommended strain 2 and strain 3 are provided, along 
with the corresponding cumulative antigenic coverage rate. Un-
fortunately, the H9N2 AIV sequencing data has experienced a sig-
nificant decline from 2019 to 2022, thereby resulting in suboptimal 
performance of the vaccine strain recommendation strategy. None-
theless, the vaccine strain recommendation was quite effective 
during the period from 2010 to 2018. Specifically, the recommended 
vaccine strains for the years 2010 and 2011 exhibited an impressive 
antigenic coverage exceeding 95 % against the detected viral strains 
for each respective year. 

Fig. 1. Feature importance based on SHapley Additive exPlanations (SHAP) values. (a) Ranking of the contributions of 14 features and the importance of the contribution of 4 
feature groups. (b) Effective SHAP values (mean of SHAP values) for each feature. 
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Fig. 2. Global antigenic evolution of the H9N2 virus. (a) Predicted ACnet and antigenic clusters for the sampled viruses. The predicted antigenic clusters are colored and named 
according to the representative strains contained in the clusters. (b) Phylogenetic tree of HA protein sequences of H9N2 AIVs. Different color represents a different antigenic 
cluster. (c) Comparison of antigenic patterns of H9N2 viruses from 1966 to 2022. Dynamic changes in the percentage of antigenic clusters were recorded by year for global, Asia, 
China, South Korea, Vietnam, and Bangladesh. Different colors represent different clusters. The number of sequences were shown in gray bars (JX, Jiangxi; JS, Jiangsu; IR, Iran; GD, 
Guangdong; GZ, Guizhou; WC, Wisconsin; CB, Chiba; SK, South Korea; DE, Delaware). 
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Since 1998, China has implemented H9N2 AIV commercial vaccine 
immunization in poultry to mitigate economic losses. We conducted 
calculations on the antigenic coverage rate of commercial vaccines. The 
specific data can be found in Table S1. The results indicate that the 
antigenic coverage rate of the recommended strains is significantly 
higher than that of the commercially available vaccine strains during 
the same period. Vaccines with high antigenic coverage are capable of 
recognizing and eliciting a more extensive antibody response, thus 
providing stronger immune protection. By monitoring and evaluating 
antigenic evolution, we can timely understand the variation of epi-
demic viral strains and update the vaccine strains annually. This 
practice helps ensure the sustained effectiveness of the vaccines in 
preventing viral infections and transmissions, thereby reducing the risk 
of disease outbreaks and safeguarding human and animal health. 

Discussion 

It is crucial to understand the antigenic evolution pattern of the 
H9N2 AIV and to identify the newly emerging antigenic clusters for 
effective vaccination strategies against avian influenza. Current 
studies have provided evidence supporting the ongoing antigenic 
evolution of the H9N2 AIV over time, resulting in the emergence of 
variant antigenic clusters within the virus.49–51 However, most re-
search on H9N2 antigenic evolution was based on hemagglutination 
inhibition assay results, which are subject to limitations in terms of 
temporal scale, spatial scale and sample size.50,52–54 In this study, we 
combine PREDAC-H9 with large-scale HA sequencing data to reveal a 
comprehensive landscape of H9N2 antigenic variation and dis-
tribution (Fig. 2). 

Fig. 3. The entropy and information gain of 317 amino acids on HA1 protein. (A) Entropy and information gain information of 317 amino acid sites in cluster SS94 to cluster JS13. 
“High entropy” was defined as an entropy value greater than 0.8 and “high information gain” was defined as an information gain value greater than 0.7. Points marked in the first 
quadrant are sites with high entropy and high information gain. (B) Entropy and information gain of transition of 317 amino acids on HA1 protein in cluster JS13 to cluster JX15. (C) 
Entropy and information gain of transition of 317 amino acids on HA1 protein antigenic cluster in cluster JS13 to cluster GZ16. (D) Entropy and information gain of transition of 317 
amino acids on HA1 protein antigenic cluster in cluster JS13 to cluster GD17. 
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Consistent with the previous research on the prediction of in-
fluenza virus antigenicity,47,55,56 we utilized features such as anti-
genic epitopes, physicochemical properties of the amino acids, 
receptor-binding sites, and glycosylation sites to predict antigenic 
relationships between H9N2 viruses. However, unlike more ex-
tensively studied viruses such as H3N2 or H1N1, the antigenic sites 
of H9N2 viruses have not yet been entirely characterized. In order to 
improve the accuracy of the antigenic relationship prediction model, 
we inferred a comprehensive set of antigenic sites based on the HA1 
protein structure using the webserver ScanNet,29,30 and built six 
antigenic epitopes for H9N2 virus, which played an important role in 
the model (Table S2 and Fig. 1). We found that the inferred antigenic 
epitopes H9_C, H9_B and H9_F, located on the head of HA, are in the 
top three in terms of their contribution to the antigenic variation of 
H9N2 viruses (Figs. 1 and S3). The importance of epitopes H9_C, 
H9_B and H9_F in antigenic variation is further supported by the fact 
that 21 of the 26 residues reported to be involved in antigenic var-
iation were distributed in these three epitopes, significantly higher 
than the ratio in other epitopes. (Binomial test, P-value = 
0.02674).31–34 

Through an analysis of H9N2 HA sequence data isolated over the 
years 1966 to 2022, we have identified 10 major antigenic clusters 
(SS94, JX15, etc.). Based on this finding, we mapped the global an-
tigenic patterns, as well as the patterns specific to different con-
tinents and important regions. Unlike human seasonal influenza 
viruses, H9N2 AIVs have heterogenic regional epidemiological 
characteristics in poultry, and indeed different antigenic landscapes 
were observed in most countries. All 5 antigenic clusters under the 
h9.3-BJ94 lineage arose in China. Consistent with reported antigenic 
drift events,17,19,57 antigenic drift cluster, JS13, that occurred around 
2013 was accurately identified in our study, partly due to the stricter 
criteria in the model for determining antigenicity similarity. Multiple 
clusters were simultaneously cocirculating after 2015, which is 
supported by other reports.20,49 Interestingly, the h9.3-BJ94 lineage 
had developed five major antigenic clusters, whereas the G1 lineage, 
which was also widely prevalent in poultry, had developed only two 
major antigenic clusters. The quick antigenic drift of h9.3-BJ94 
lineage might be a result of multifactorial effects. It is likely, how-
ever, that the long-term vaccine immunity pressure to the h9.3-BJ94 
lineage is one of the important reasons.21 

Going a step further, we identified eight forms of mutations 
across six amino acid residues during the four serial cluster transi-
tions in h9.3-BJ94 lineage. Consistent with the findings of Yan 
et al.,18 our analysis identified mutations in three amino acid re-
sidues (A150/D/E, H48Q, and V/A180T) on HA protein. Additionally, 
we identified five previously unknown forms of mutations, including 
D150N, I153T, D183N, T131N, and D183G (Fig. 3). These variants, 
except H48Q, are all located on epitopes B, C, and F that we identi-
fied. This result is similar to what has been reported for other in-
fluenza virus subtypes, i.e., substitutions near the hemagglutinin 
receptor-binding site determine antigenic cluster transitions.44,58,59 

China implemented poultry vaccination to prevent the spread of 
H9N2 in 1998.21 However, due to the continuous antigenic variation 
of the H9N2 viruses and the slow renewal of vaccine strains, mis-
matches between vaccines and prevalent strains occasionally oc-
curred.60 Our previous studies have shown that antigenic drift of 
H9N2 is an important reason for the increase of H9N2 outbreaks in 
chickens.16,19 Therefore, H9N2 AIV requires an effective vaccine 
strain recommendation to rapidly curb its spread and minimize its 
negative impacts when novel antigenicity strains are prevalent. Our 
study provides an effective solution for vaccine strain matching and 
maximizing vaccine coverage. Based on continuous monitoring data, 
we have identified representative strains annually that exhibit 
strong antigenic similarity to the circulating viruses, suggesting their 
broad protective potential as ideal vaccine candidates. It is important 
to note that the success of our vaccine strain recommendation T
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strategy is greatly influenced by the quality and timeliness of the 
monitoring data. 

Although our study has made significant discoveries, there are 
several limitations that should be acknowledged. Firstly, the results 
are limited by the bias distribution of the sequence data in different 
regions, and the HI data in different periods and lineages. Unlike 
seasonal influenza, H9N2 AIVs exhibit strong regional epidemics and 
highly divergent lineages. High-quality clinical surveillance data is a 
prerequisite for a well-run model, although current data are enough 
for the model. Secondly, owing to the inherent uncertainties arising 
from potential inaccuracies in the experimental data and the in-
herent predictive accuracy of the model, it is possible that certain 
viral strains may be misclassified. Despite these issues, the overall 
classification of antigenic clusters was relatively reliable. The per-
centage of antigenically similar strains in the HI assay that were 
successfully clustered is 78.3 %. Lastly, the critical amino acid re-
sidues we identified through information entropy and information 
gain calculations still require experimental validation. Future studies 
may focus on testing these findings experimentally through func-
tional assays and structural analyses, which could provide additional 
insights into the mechanisms underlying antigenic variation. 

In summary, our study developed a specific model for the rapid 
identification of H9N2 antigenic variants, along with the elucidation 
of a comprehensive landscape of H9N2 antigenic patterns. We 
identified important sites for antigenic cluster transitions, as well as 
providing better vaccine strain recommendations for H9N2 AIVs, 
which is of significant importance in the better control and pre-
vention of H9N2 AIVs epidemics. 
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