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Abstract: Machine learning research focuses on the improvement of prediction performance. Progress
was made with black-box models that flexibly adapt to the given data. However, due to their increased
complexity, black-box models are more difficult to interpret. To address this issue, techniques for
interpretable machine learning have been developed, yet there is still a lack of methods to reliably
identify interaction effects between predictors under uncertainty. In this work, we present a model-
agnostic hypothesis test for the identification of interaction effects in black-box machine learning
models. The test statistic is based on the difference between the variance of the estimated prediction
function and a version of the estimated prediction function without interaction effects derived via
partial dependence functions. The properties of the proposed hypothesis test were explored in
simulations of linear and nonlinear models. The proposed hypothesis test can be applied to any
black-box prediction model, and the null hypothesis of the test can be flexibly specified according to
the research question of interest. Furthermore, the test is computationally fast to apply, as the null
distribution does not require the resampling or refitting of black-box prediction models.

Keywords: prediction models; interpretable machine learning; model-agnostic; hypothesis tests;
interaction effects

1. Background

In the context of machine learning, one of the main goals is to estimate and tune
prediction models in order to optimize predefined performance criteria [1]. In the ongoing
academic debate, [2] argued that the attribution of causal factors may require a larger
sample size than estimating a prediction model. This is in line with [3], who showed
that causality can be linked with prediction robustness. The research area of interpretable
machine learning (IML) tries to bridge the gap between prediction and classical statistical
inference by making complex black-box predictions more understandable [4]. A black-
box model is characterized by an input—output relationship between covariates and a
response [5]. In this approach, the internal structure of the box is not explicitly modeled
and is regarded as unknown. The Rashomon effect [6] originates from a Japanese movie
from 1950. The main plot is about a crime happening in the 12th century, which is shown
from the perspectives of multiple people. Differences in those experiences show that
it is hard to uncover later what really happened because, for a given set of facts, there
are a multitude of compatible stories. Analogously, in machine learning, there are many
different models that explain the observed data equally well. The problem of empirical
induction has a long history in the philosophy of science. For example, the skepticism
of David Hume, dating back to the 18th century [7], or Duhem’s theses stated that the
falsifiability of a single hypothesis is inconclusive [8]. This work will not address this
philosophical problem, but it takes instead a pragmatic approach [9]. It is assumed that
the primary goal is to optimize prediction performance [10] in a given context. There is
some evidence of a trade-off between prediction performance and interpretability in the
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literature [11-14]. However, prediction can benefit from interpretability as well because a
deeper qualitative understanding of why a model produces a given output and not another
can help generate more robust out-of-sample predictions. Therefore, it is recommended
to use interpretability approaches that do not harm prediction performance but help
incorporate human considerations into explainable artificial intelligence [15].

IML allows a researcher to benefit from advances in machine learning research and still
explore the properties of the model afterwards to increase the interpretability of the model.
Example applications include designing regulatorily compliant, fair [16], transparent, and
trustworthy prediction models [17]. Another area of IML focuses on the interpretation of the
effects of covariates on prediction [18-20]. Here, the focus is on global model interpretability,
which means that the prediction function over the whole covariate distribution is the focus
of interest instead of explaining single local predictions for specific covariate values [21].

The following sections, Sections 1.1-1.3, introduce the background knowledge required
to understand the new proposed interaction difference hypothesis test for prediction models
that is defined in Section 2. Firstly, a measure of how a prediction function changes, on
average, for different values of a given set of covariates is introduced in Section 1.1. This
measure is an essential component used in the definition of interaction effects. Secondly,
Section 1.2 describes a general definition of interaction effects for black-box models, which
is based on an additive decomposition of the predictions. The decomposition is illustrated
using a linear regression example. Thirdly, Section 1.3 provides an overview of existing
approaches to quantify interaction effects. Finally, the last introductory section, Section 1.4,
describes the null hypothesis of the interaction test and the disadvantages of the previously
described, existing approaches that will be addressed in this work.

1.1. Partial Dependence Functions

A global summary of the impact of one covariate on the predictions is the partial
dependence (PD) plot [22]. Let X € R"*F be the observed matrix of p covariates with
n independent observations of the multivariate random vector x € R? and f(x) be the
estimated predictions of a statistical model of the prediction function f(x) on the population
level. f(x) does not necessarily equal the covariate-response relationship in the data-
generating process. It is assumed that f(x) was estimated, as well as tuned, prior to IML
analysis with respect to prediction performance with the test data. Define S = {1, ... , p}
to be the set of all indices of covariates, and the set s © S corresponds to indices of chosen
covariates of interest. The term Ey, (xs) is defined as the expectation over the marginal
(joint) distribution of all variables not in set s (denoted as xg,,) for fixed values x; of the
variables in set s (for a comparison, see [22] Section 8.1). Note that multiple column indices
are denoted using set brackets in the subscript; for example, s = {1,2} yields x(; 5;, and
empty subscripts describe all available indices (for example, the second column with all
observations, X 7). The PD function is given via

PD(x5) = Ex,, (f (xs, xs\s) ) and estimated by (1)

PD(xs) = %if(xSrXi,S\s)' @
i1

For example, in the case of p = 5,5 = {1, 2, 3}, the function PD (x {1,2,3}) is the expected
value of the predictions with respect to the covariate distribution x(4 5}, given the observed
covariate values X (1 3. If s = ¢J; then, PD (xg) corresponds to the expected marginal
prediction over all covariates, x(; 53 45, Note that, in the case of s = S, the PD function
equals the original model predictions, PD(xs) = f(x), and the function argument x; values
do not necessarily need to correspond to training data.
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1.2. Interactions in Black-Box Models

First, we briefly recap what interaction effects are in a linear model context [23].
Consider the simple case of a linear model prediction function with two independent
covariates, x1, xy, main and interaction effects:

f(x) = Bo+x1B1 + 2282 + x1x2B1 2. 3)

The main effects, f1 and By, represent how the prediction function changes linearly, given
B12 = 0, if the covariate of interest is increased by one unit. In contrast, the interaction effect
B12 # 0 of covariates x; and x; contributes additional flexibility that goes beyond the main
effects and the global intercept By. Let the difference term be dyipear = f(x) — X181 — X282 —
Bo = x1x2B1 . If the interaction effect is 1, # 0, then the variance of the difference term
Vary (djinear) is greater than zero. Similarly, if B1 # 0, then Var,(x181) > 0 follows.

One advantage of black-box models (for example, neural networks) is their capacity
to fit higher-order interaction effects in a data-driven way without the need to explicitly
prespecify them. Knowledge of the presence of such interaction effects would increase the
scientific understanding of a given phenomenon, and the absence of interaction effects could
be used to simplify black-box prediction models with little degradation in performance. In
this context, interaction effects can be defined within the functional ANOVA decomposition
framework [24]. The prediction function f(x) is decomposed into a sum of additive
orthogonal terms, f(xs), of sets 5. Each term recursively subtracts all respective previously
derived lower-order terms within set 5. In this work, we use PD functions to define the
functional ANOVA terms f(xs). In the simple linear regression example in Equation (3),
the first ANOVA term would correspond to the expected value of the prediction

f(xz) = PD(xg) (4)
= Bo + p1P1 + p2Pa + p12B1,2 (5)

with p; being the expected value of the covariates or, in the case of y, the expected
value of the product of the covariates. By definition, the functional ANOVA main effects,

f(x1), f(x2), consist of the PD functions of x1, xp, minus the sum of all possible respective
lower-order effects. In the case of one covariate, only the empty set needs to be subtracted:

f(x1) = PD(x1) — f(xg) and (6)
flx2) = PD(x2) — f(xgz). 7)
In the concrete scenario, the functional ANOVA main effects are given by
PD(x1) = Bo + x1B1 + p2f2 + x1112P1,2 (8)
= f(x1) = x1(B1 + p2Pr2) — p1pr — p1,2P12 and ©)
PD(x2) = Bo + p1p1 + x2P2 + p1x2P1,2 (10)
= f(x2) = x2(B2 + p1Pr2) — H2P2 — H12P12- (11)

If B1, = 0, then f(x;) and f(x;) correspond analogously to centered main effects in
the linear model. In the case of the second-order functional ANOVA term f (x {1,2}), two

first-order terms that are contained in set {1,2} need to be substracted, as well as the empty
set, to ensure the orthogonality of second- and first-order ANOVA terms. The second-order
interaction effect in terms of the functional ANOVA is, then,

f(x{m}) = PD(x{l,Z}) — f(x1) = f(x2) = f(xg), (12)
PD(x{Lz}) = f(x) and (13)

= f(x{u}) = x1%2B12 — H1P12 — H2P12 + H1.2P12- (14)
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If B1o # 0, then Vary [ f (x{l,Z})] > 0, similar to the linear model context. If 1, = 0,

the functional ANOVA main effects have the property Vary [ f (x { j})] > 0forj={1,2},

which is also shared within the linear model. Note that, if 81, # 0, then the functional
ANOVA main effects include part of the linear model interaction effect in term x;p1(1 o312 :
j € {1,2}. Therefore, we analogously define Vary[f(xs)] > 0 : s* = SA|s*| > 2 as
interaction effects of at least order |s*| of the covariates in set s* of black-box models.

One disadvantage of functional ANOVA is that those derived terms are estimators
based on data, and this uncertainty has to be taken into account when conducting inference.
A distribution of the functional ANOVA terms under the null hypothesis of no interaction is
not available. A second disadvantage is that the complexity to compute the decomposition
grows exponentially with the number of covariates to 27 possible elements. Furthermore,
this concept works best with independent covariates, which is unrealistic in practice. A
generalized functional ANOVA [25] includes covariate dependencies but requires solving
a system of equations that is even more computationally demanding than the functional
ANOVA decomposition. This limits the practical application to lower-order interaction
terms [18].

1.3. Interaction Measures Based on PD Functions

Based on the concept of PD functions, [22] derived the H? statistic to analyze interac-
tion effects. The H? statistic measures the variance in the differences between a prediction
function and its restricted form under a given null hypothesis normalized by the variance
of the prediction function to detect specific interaction effects. Note that the concrete form
of H? depends on the null hypothesis. For example, to test whether covariates in set s
interact with any other covariates of set S, the statistic Hsz, is defined as

, Vara (f(x) - PD(¥5,.) ~ ¥e PD () )
s Vary (PD(x))
o it [ f(Xis) — I%(Xi,S\s> — 2jes 1ﬁ)(xz}j)]

s Y [ﬁ)(xi,S)]z

H

and estimated by (15)

2

(16)

assuming centered PD functions. Equation (15) is an extension of Equation (45) in [22] to
multiple covariates. It was derived by repeatedly applying Equation (42) in [22] for each
element of s. Note that the difference of Equation (15) to Equations (43) and (46) by [22]
is the hypothesis that is being tested. In the latter case, the hypothesis is to test for the
presence of the specific three-way interaction between covariates x;, x¢, x; that allows any
two-way interaction to be present in the prediction model. This work focuses on testing
any interaction effects of covariates in the prediction model specified in set s. In Section 1.4,
the hypothesis of this work is described in more detail.

The statistic (15) was developed in the context of rule ensembles, and the flexible
specification of interaction effects can be evaluated. The derived hypothesis test is a
parametric bootstrap approach that simulates artificial data sets with a prediction model
restricted to the null hypothesis of no interaction effects (Section 8.3 in [22]). Rule ensembles
can be restricted to not include interaction effects by limiting the tree depth to one, but
it does not work for different types of prediction models. Furthermore, the approach is
computationally expensive due to the need to refit prediction models to artificial data sets,
and the accuracy of the simulated p-value depends on the number of bootstrap replicates.
The computational costs rise further due to the tuning process of hyperparameters, which
are usually based on resampling methods like k-fold cross-validation. For an overview of
recent developments in the field of hyperparameter optimization, we refer to [26].

Another measure to quantify interactions was developed by [27] that quantifies inter-
actions between two covariates, x; and xy, by estimating the standard deviation of the PD
function of the x; conditional on values of x;. This approach is restricted to two-way inter-
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actions. Generalizing this to scale higher-order interaction effects than two would reduce
the number of available samples for estimating the standard deviation, and the number
of possible combinations of the conditional covariates would increase exponentially. Note
that there are also graphical tools to assess interaction effects, for example, [28,29]; however,
these can only be meaningfully applied to illustrate lower-dimensional covariate inter-
action effects than three, and they do not quantify their method uncertainty analytically.
Thus, an uncertainty assessment of these methods requires the usage of computer-intensive
resampling methods that are not feasible with a large number of covariates.

1.4. Scope of Research

This work explored an interaction hypothesis test in model-agnostic form, meaning
that it can be used with any kind of prediction model. It was assumed that the prediction
model has enough capacity to potentially estimate interaction effects. In particular, consider
the following null hypothesis that there is no interaction effect in the population involving
any variable in s:

Hp: f(x) =PD (xs\s) + > PD(x/) and respectively (17)
j€s

Hi: f(x) # PD(xg,,) + >, PD(x;). (18)
j€s

The set s describes the covariates of interest. For example, if s = {1,3} and S = {1, 2,3},
then it tests whether there is any interaction involving the first and third covariates. In
this special case, the statistical test includes second- and third-order interaction effects. In
general, the number of elements, |s|, determines the highest order of interaction effects
considered in the hypothesis test.

Generally, one could consider H2; however, using measure H? as the basis for the
interaction test would have some disadvantages in practice:

e  Simulations of Hg show increased false positive rates [27,30].

*  There is no asymptotic null distribution of the hypothesis test of [22] for the presence
of interactions available in model-agnostic form.

e The H? interaction test is based on Monte Carlo simulations to quantify uncer-
tainty [31], which are computationally runtime-intensive.

¢  To the best of the authors” knowledge, no systematic power simulation in hypothesis
interaction tests based on H? was conducted.

This work addresses all of these issues. Furthermore, none of the existing IML ap-
proaches provide error-rate control [32], and thus, no severe testing is possible. Ref. [33]
developed a statistically sophisticated philosophy of science in which the problem of induc-
tion is reduced to the practice of severe testing. To believe in a hypothesis is not only a function
of the method or data used but also concerns how well the method was critically tested to
rule out potential flaws. This work is a first step towards embedding IML methods into this
statistical testing framework.

As an alternative to H2, the interaction difference (IAD) and the corresponding hypoth-
esis interaction test are introduced in Section 2. It is shown how the IAD can be transformed
into a test statistic that can be embedded into a two-sided, one-sample Z-test. Then, in
Section 3, the asymptotic distribution of the test statistic based on test data is derived.
Simulations of the proposed method are given in Section 4, which include the distribution
of the proposed test statistic (Section 4.1), type 1 error, and power in linear (Section 4.2)
models. The advantage of those simulation scenarios is that interaction effects can be more
easily incorporated than in more complex black-box models in the design. Section 4.3
covers simulations of 24 based on a random forest model. This situation is more realistic
than the previous sections because, in linear models, one would not need this interaction
test in practice. However, it is harder to control interaction effects in nonlinear simulation
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designs. The data analysis example in Section 5 focuses on a variant of the test statistic that
includes covariate information.

2. Hypothesis Test of Interactions in Prediction Models

The concept of the proposed statistical test is to compare variances in the estimated
prediction model f and the estimated prediction model without interactions represented
by PD functions. That means both variances are derived from the same data and, hence,
dependent. Here, we follow the framework of [34] for robust tests of scale in paired samples.
Those tests convert the hypothesis to allow standard asymptotical tests to be used. An
advantage of this approach is that these are far more computationally efficient than Monte
Carlo permutation tests. This is especially important in high-dimensional prediction tasks
to be able to analyze a larger subspace of the exponentially growing number of all possible
interaction effects. The key idea is to test whether the interaction difference

IAD; = Vary(f(x)) — Vary | PD (xs\s) + Z PD(x]-) (19)
IAD Jes
fis
T1ADpp5

equals zero. IAD; measures the deviation of variability between the original prediction
model, f(x), and the prediction model under the null hypothesis. Following [22], the

prediction model f(x) can be decomposed under Hy into PD (xs\s) + Yjes PD(x;) if the

covariates in set s do not contribute to interaction effects. Proof of this statement based on
the functional ANOVA framework is given in Supplementary Materials Section S1. The
decomposition of the prediction model for the purpose of testing IAD; is given via

f(x) = PD(x5.,) + D, PD(x)) + (). (20)

j€s

The term {(x) includes, for example, additional interaction terms of set s that are
not included in IADpp,. Under Hy, it holds that Vary({(x)) = 0 and analogous terms
in the Hy scenario, Vary({(x)) # 0. For example, in the context of a linear prediction
model, f(x) = By + x1 81 + x2B, + X385 + x2x3 B, 5, under Hy with no interaction effect of x;
(Supplementary Materials Section S2.1), the error term {(x) consists of a linear combination
of coefficients and their respective expectations of the covariate terms.

Not all possible specifications of set s are meaningful. For example, using the empty
set would give IADpp s = Var,(PD(xg)) = Vary(f(x)), which results in IAD; = 0. This case is
excluded. Furthermore, the cases with a number of elements |S\s| = 1 and |S\s| = 0 are equivalent.

Consider the specific case S = {1,2,3}. Then, IADpp_(15) = Vary (PD(xg) + 2]2:1 PD (xj)) =

Vary (213»21 PD (xj)) that is equal to TADpp ;1 5 33 because PD(x5) does not depend on covariate

values and is constant. In this specific case, all combinations of the set s with two covariates are
excluded. Instead, the set is described as s = {1,2,3}.

Consider the following specific example of IAD;: assuming a linear regression model
with three independent, multivariate, standard, normal, distributed covariates and all
possible interaction effects under restrictions of Hy, the value of IAD; is zero, regardless
of the set s (see Supplementary Materials Section S2 for details). Deviations from zero in
IAD; are in favor of the alternative hypothesis Hj. In the scenarios under the alternative
hypothesis Hj, the test statistic equals the sum of all quadratic interaction coefficients that
include the covariates of set s (Supplementary Materials Section 52.5).

To test the condition under Hy that IAD; = 0, the difference in variances in Equation (19)
can be rewritten as covariance using

21 = f(x) + PD(x5,) + Y PD(x}) and 1)

j€s
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zy = f(x) = PD (xs\s) - 2 PD(x;) it follows that (22)

j€s
IAD; = Covy(z1, 22). (23)

Proof of this equivalence is given in Supplementary Materials Section S3 that was
based on the idea of [35]. The covariance in Equation (23) is the expectation of z3 =
(z1 — Ex(21))(z2 — Ex(22)). Let 23 ; be the estimated value of z3 evaluated at the i-th observed
value in the data set, and 23 = (£31,232,...,23). The modified Pitman test [34] then
evaluates a null hypothesis E(z3) = 0 in the framework of a one-sample, two-sided Z-test,
which is equivalent to testing whether the difference of variances in Equation (19) is zero.
In particular, the test statistic is given via

\/nz3
\/% i (23— 23)°

I )
Z3 = — Z 23 ; that estimate the term
n -
i=1
E(z3)

A/ Var(Z3) '

Small absolute values around zero indicate Hy, and large absolute values favor H;. For
testing, the value of 24 is compared to the respective quantiles of a standard normal distribution.

A related but different question than testing interaction effects is how these influence
the prediction performance of the prediction model. Here, we introduce a variant of 2,
that includes response information. Equation (19) is extended to interaction-difference
performance (IADP)

with

24 =

Z4 = (24)

IADP; = Var,(y(x) — f(x)) — Vary | y(x) — PD (xs\s) ~Y'PD(y)) |. (25)

j€s

IADP;

TADPpp

The term IADP ¢ is the mean squared error of the prediction model with a quantitative
response, y(x), or the Brier score in the case of a binary response scale. IADPpp  is the
mean squared error (MSE) of the restricted prediction model under a null hypothesis of no
interaction effects of covariates in set s. A one-sided test is more appropriate here because
the interest is whether the interaction effects of covariates s decrease MSE (alternative
hypothesis). The terms zp1,zpp,zp3,zp4 for the construction of the interaction test are
analogously derived to z1, z2, z3, z4 via a plugin of Equation (25).

3. Asymptotics of Test Statistics

This section summarizes the asymptotic properties of 2;[ evaluated on test data. The
PD functions and the prediction model are estimated from the training data. Let f denote
the target function and f the corresponding estimate. Moreover, denote

g(x) = PD(x5;) + }, PD(x))
j€Ss

and let g denote the corresponding estimate. Then, following (Equation (1)) in Hooker
(2004) [24], it holds that Vary(f(x)) = Vary(g(x)) and Vary(f(x)) = Varx(g(x)) if and only if
g(x) = f(x) almost everywhere. Hence, testing the equivalence of the variances is, indeed,
equivalent to testing f(x) = g(x) almost everywhere.
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Theorem 1. Let n7 denote the sample size of the test set, and let n denote the sample size of the
training set. Assume that 0 = Vary(f(x)) satisfies 0 < szf < 0. Moreover, if Vary(f(x)) =

Vary(g(x)), then assume that, for n7 — oo and some a € (1,2),

lim (nT)a Vare(f(x) — 3(x)) L (26)
nT —a0
with 0 < ¢ < 0. Define
21 = f(X;) +8(Xi),
and R
22 = f(X;) — 8(X;).
(i) If Varx(f(x)) = Varx(g(x)), then
T T T
11/2 n e 1 n e e 1 n e P
("T) Z (Zl,i T Z Zl,i) (ZZ,i T Z ZZ,i) — N(O/CU%)
i—1 i=1 i=1
for some 0 < o7 < 0.
(i) If Vary(f(x)) # Varx(g(x)), then
T T T
2~ 1 AN~ 1~
("T) Z (Zl,i - —F Z Zl,i) (Zz,i - —F Z ZZ,i) L 0
i=1 g i
Proof. (ii) is trivial. For (i), note that
T T
1l N~ e
= (211—7 Zli)(zz,i—ﬁzzzl)
i=1 i=1
1 nT nT
= (Zz,i —— Zz:) +2 (Zz,i =, Zz,i>§(Xz)
i=1 i=1

It follows from Equation (26) that

T T
a2 B, 1 & _\2 p
(nT) Z (Zz,i -7 Z?.,i) — 0.

i= =
Moreover, the CLT and Slutzky’s lemma yield the result that

nT T

(nT)a/Z (@ B niT 3y @)gA(Xi,) - <n7>”/2 (Z/z\,i - ,%T nZ Z/Z\,i) 3(X;)

i=1 i=1

converges to a normal distribution with variance ¢ UJ%. The crucial assumption of the above

theorem is that the convergence rate of the variance of the differences between f and § is
faster than (n7)~1, where n” is the size of the test set. For most models, this will be the
case when the size of the training set goes to infinity faster than the size of the test set, i.e.,
nT/n — 0 for n,n” — 0. A similar result can be derived for the test based on Zp 4, which
measures the differences in MSE performance (for a comparison, see Equation (25)). O
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Theorem 2. Let f : RF — Rand g : R? — R be two fixed prediction functions. Moreover, let
(X1,y(X1)), (X2,y(X2)),... (XnT,,y(XnT,)) denote i.i.d. samples in RP+1. Further, assume

Ex[f(x)z] < o,
Ex[g(x)?] < o0,
Ex[y(x)?] < oo.

(y(X;) - F(X;))* — 2, (v(Xi) —3(X:))* | = N (aigp, Oigp)s

where
paif = Exl(y(®) — £(%))*] = Exl(y(x) — g(x))*],

and o3, £ can be estimated from the given sample.

If we are interested in showing that f has a smaller expected squared prediction error
than g, we can consider the testing problem

Ho : paifr =2 0.

In particular, in the setting of the paper, we set

f=Ff  8(X;)=PD(X;s,) + > PD(X;)

j€s

in the above theorem.

Then, the rejection of the null hypothesis provides evidence that the original prediction
function, f, has a smaller prediction error than the “prediction function without” interactions,
PD(X;\s) + 2jes PD(Xj). This, in turn, suggests that there is a meaningful modeling of

interaction in ]A‘ and that there are interactions in the target function f. It has to be noted
that testing

Hy : Interaction effects of f do not improve MSE performance

is not guaranteed to control the nominal level for the two-sample problem. However,
simulations indicate that it will typically do so (and even be rather conservative).

4. Simulation

This section summarizes simulation results with the proposed interaction test of
Section 2. All simulations use independently generated test data sets to evaluate the in-
teraction test with the same sample size and data-generating process as the respective
simulated training data sets. The first simulation analyzes the distribution of 24 in the context
of linear models while increasing the number of variables (Section 4.1). The second simulation
conducts an analysis of type 1 error and power in the context of linear models (Section 4.2).
Linear models were used in the first two simulations to demonstrate the empirical behavior
in easy-to-understand scenarios where the model allows for the specification of the type of
estimated interaction effects. Note that, in practical applications with estimated linear models,
there would be no need to conduct the proposed interaction difference test. On the other hand,
24 was developed for model-agnostic prediction models, and as such, it is desirable to check
whether 24 is well behaved in these scenarios, too. Then, in the third simulation, nonlinear
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models were explored based on a real data set (Section 4.3). Last but not least, we investigated
the proposed modification 2p 4 of the interaction test with responses.

The programming language R for the source code of the complete simulation is
available as additional online supplementary material to enhance reproducibility (see
the reference after Section 6). The interaction test for prediction models was imple-
mented in the R-package IADT 1.2.1, available in the comprehensive R archive network
(https:/ /cran.r-project.org (accessed on 26 May 2024)).

4.1. Test Statistic Distribution in Linear Models

To investigate the behavior of the test statistic Z; in the context of a linear model, the
following data-generating process was specified: The p covariates

x € R? ~ N(0, Z)follow a multivariate normal distribution with correlations

Plow,jx = 0.25 over the set {j, ke 1,...,p:j # k},

pmedium,j,k =0.5and
Phigh,jik = 0.75 (equi-correlation). The hypothesis is specified with

S={1,...,p}, s = {1} and the true linear model with one interaction term is

fx) =x1By + ...+ xpB, + X127 5 + € with € ~ N(0,0?). (27)

This setting was chosen under the alternative hypothesis with a minimal number of
interaction terms such that the test statistic was expected to be closer to zero compared
to settings with more interaction terms. This simulation was conducted with a different
numbers of covariates, p = {5,10,...,100}. The sample size was fixed with 1000 for both
simulated training and test data sets. In each scenario, the variance ¢ of the error term
€ was set to 0.8 based on prior simulations with n = 10°. The coefficients of the data-

generating process were set to = (,81, s By /31,2) = (1,...,1) e RP*! to study power

and B = (1,...,0) to investigate the type I error. The linear model was correctly specified
to include all covariates of the data-generating process. Each scenario was independently
repeated 100 times. All together, 57,600 test statistics were simulated.

Here, the simulation results are shown for the null hypothesis that covariate one does
not contribute to interaction effects (s = {1}). Figure 1 shows the difference d(2;) defined
by £4, minus the normalized rank quantile of the standard normal distribution on the left
side. d(24) was estimated based on 100 independent replicates of 24, given the number of
covariates and the correlation of each scenario. All boxplots fluctuate around the value
of zero across different number of covariates. Furthermore, the boxplots on the left side,
d(24), of Figure 1 are comparable to those on the right side, d(®), which used a standard,
normal, distributed random variable, ®, instead of Z4. Note that the volatility in boxplots
occurs due to the estimation of ranks, and with increasing sample sizes, the differences in
d(®) would converge to zero. The Shapiro-Wilk test [36] is considered the most powerful
in detecting non-normality according to [37]. If all 288 scenarios were evaluated with
the Shapiro-Wilk test and adjusted for multiple comparisons with a false-discovery rate
approach [38] of 0.05, then there would be no case that significantly departed from the
normality distribution assumption.

The results for the alternative hypothesis specified in Equation (27) are shown in
Figure 2. There is a decreasing trend to shift the distribution of £, more towards zero
the higher the number of covariates. With low covariate correlation, the lower quartile
of the distribution crosses the zero line with about 30 covariates. When the covariate
correlation is higher, this happens with about 20 covariates. In such cases, it is expected that
power is reduced because the H; distribution becomes more similar to the Hy distribution.
After about 30 covariates, the median of Z; does not decrease further. For comparison, the
same simulation was conducted using the ¢-statistic in a linear model of the interaction
effect in Figure 3. This figure shows a decreasing trend in the location of the simulated
t-value distribution, but the gap of the medians to zero is larger than in Figure 2, and more
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covariates are needed so that the lower quartile of the simulated distribution crosses the
zero line. The model-specific hypothesis test that was explicitly developed for linear models
can be expected to be more efficient in terms of power than a model-agnostic hypothesis
test if the assumptions are justified. In conclusion, the proposed test statistic is empirically
good when approximated with a normal distribution under Hy, and small effects under H;
result in similar behavior to t-tests with linear models.

d(zs)

Figure 1. The boxplots on the left side show the distribution of d, defined according to Z4, minus the
normalized rank transformation of Z4 to the standard normal distribution. Instead of Z4, the standard,
normal random variable ® was used on the right side. The graphs represent different correlation

scenarios: low, medium, and high.
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Figure 2. Boxplots of the distribution of Z; based on linear models under Hy,s = {1} with one inter-
action term, .31,2~ The graphs represent different correlation scenarios: low, medium, and high.



Mach. Learn. Knowl. Extr. 2024, 6

1309

t statistic
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Number of variables

Figure 3. Boxplots of the distribution of the t-statistic of the interaction effect B, , in a linear model
under H;. The graphs represent different correlation scenarios: low, medium, and high.

4.2. Power Simulation in Linear Models

This section focuses on the power and type I error simulation in linear models. Due
to the linear structure of the models, interaction effects can be specified separately from
main effects, and thus, simulations under both hypotheses Hy and H; can be more easily
specified and verified than in more complex prediction models. Therefore, the setting of linear
models is a good starting point to explore the properties of the interaction test based on Z4.
Note that, in practice, the proposed interaction test is not needed in linear models because
ANOVA methods [23] were developed for the specific case of linear models to test whether
the coefficients are zero.

The simulation design of the covariate distribution was the same as in the previous
section, Section 4.1, with p = 5, except additionally considering the case of no correlation.
The data-generating model consisted of three different scenarios with the error term e ~
N(0,0?), and it was allowed to differ from the estimated prediction model specification:

4
flx) = Z xjB; + € (main effects),
j=1
p p—1
flx) = 2 X; /Sj + 2 2 xjxgP ikt € (main effects, all second order interactions) and
j=1 j=1k>j

14 p—1 p—2
Fooy =D xiBi+ 0 D eyt X, ), D, Xy e

j=1 j=1k>j j=1k>jl>jl>k

(main effects, all second and third order interactions).

The inference is about the population-model interaction effects (unknown in practice),
but in this simulation, the interaction effects are known. The alternative hypothesis is true
if the corresponding interaction effects are estimated in the prediction model and simulated
in the data-generating process. In the case of the misspecification of the linear predictor,
the estimated coefficients converge to the true coefficients of the data-generating process.

The error variance 02 was optimized on a data set with n = 10° prior to the simulation
to approximately yield an explained variance of 0.25, 0.5, and 0.75. Sample sizes varied with
n = {100,125, ...,300}. Lower and upper sample sizes were chosen to avoid instabilities
in the estimated coefficients and reach power levels of 1 in at least one scenario. Three
different null hypotheses, s = {1}, {1,2},{1, 2, 3}, were investigated. The linear model was
specified under H;j to estimate all possible main and interaction effects up to the third
order. In contrast, under Hj all interaction effects that included covariates of set s were
excluded from the data-generating process. Each combination of the scenarios was repeated
independently 1000 times.

The rows of plots in Sections 4.2.1 and 4.2.2 correspond to different covariate cor-
relations, 0,0.25, 0.5, 0.75, and the columns of plots display varying explained variances,
0.25,0.5,0.75. The dotted—dashed lines represent the upper and lower bounds of the exact
pointwise 0.95 Clopper-Pearson confidence intervals [39] that were calculated for the type
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I error and power proportions. The next two sections, Sections 4.2.1 and 4.2.2, summarize
the type I error and power simulation results consisting of 1.08 x 10° hypothesis tests.
Additional figures are available in Supplementary Materials Section S4.

4.2.1. Type I Error Results

Figure 4 shows the results for the correctly specified linear model under Hy with
s = {1,2}. The estimated linear model includes the main effects of x(; 5 and additional
interaction effects of the covariates x(345) up to the third order. The type I error was
controlled with a significance level of « = 0.05 in all scenarios, and the hypothesis test is
robust to covariate correlations, as well as explained variances.

X correlation 0, explained variance 0.25

X correlation 0, explained variance 0.5

X correlation 0, explained variance 0.75
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Figure 4. Type I error simulations in scenario of correctly specified estimated linear model with null
hypothesis s = {1,2}. Dashed lines correspond to the standard alpha 0.05 threshold, dashed-dotted
lines represent pointwise 0.95 Clopper-Pearson confidence intervals and full lines show the estimated
Type I error.

4.2.2. Power Results

Figure 5 shows the power results under the alternative hypothesis based on s = {1, 2}
with correctly specified linear models. The hypothesis test reaches power levels around
0.8 in zero- to low-covariate correlation scenarios with at most n = 200. The figure shows
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that higher covariate correlations reduce the power levels, which are influenced by the
instability of the estimated linear models because of multicollinearity in this scenario.
Higher explained variances result in slightly higher power. Note that the functional
ANOVA decomposition theory [24] does not theoretically work well with strong covariate
correlations either because great emphasis is placed on regions with a low probability
mass [25].
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Figure 5. Power simulations with correctly specified estimated linear model, main effects, and all
possible interaction effects up to the third order (s = {1,2}). Dashed lines correspond to the standard
alpha 0.05 threshold, dashed-dotted lines represent pointwise 0.95 Clopper-Pearson confidence
intervals and full lines show the estimated Type I error.
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Figure 6 shows the power results under H; with s = {1,2} in the context of a misspeci-
fied linear model. The data-generating model consists of all interaction effects up to order
two, except those in s = {1,2}, but in the linear model, the main effects and all possible
interaction effects up to order three are estimated. Increasing covariate correlations reduces
the power, and higher explained variance scenarios yield a higher power. Additional power
scenarios are available in Supplementary Materials Section S54.2.
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Figure 6. Power simulations with a misspecified estimated linear model with the main effects and all
possible interaction effects up to the third order. The data-generating model consists of all interaction
effects up to order two except those of s = {1,2}. Dashed lines correspond to the standard alpha 0.05
threshold, dashed-dotted lines represent pointwise 0.95 Clopper-Pearson confidence intervals and
full lines show the estimated Type I error.
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4.3. Power Simulation in Nonlinear Models

In this section, we aim to explore the power of the interaction test in a simulation
study based on a data set. As an example data set, the credit approval data from the
machine learning repository OpenML-CC18 [40,41] was used. The response variable was
binary with categories for good and bad credit risks. The data set contains 1000 independent
observations, along with 7 numeric and 13 categorical covariates. A descriptive overview
of the data is given in Supplementary Materials Section S5.

The data-generating process of the simulation depends on the data set to be more
realistic. Covariates were simulated without (Xind) and with dependencies (Xdep). In the
former case, continuous covariates were randomly drawn from the marginal empirical
distribution functions of one covariate. Discrete covariates were sampled according to
observed relative frequencies. In the design Xdep, a Gaussian copula was used to simulate
all continuous covariates together, considering their dependencies. The discrete covariate
distribution was estimated using relative frequencies of multivariate contingency tables.

Ensemble methods like random forest were among the top-performing prediction
methods with tabular data in a recent comparison to deep learning [42], and results from
Kaggle competition challenges show similar trends (for example, [43]). Additionally,
random forests are easy to tune, and usually, tuning the number of randomly available
covariates at each split (mtry) suffices [44]. First, a random forest model was tuned via 10-
fold cross-validation of the original data regarding out-of-sample, binomial log-likelihood
function with the tuning parameter mtry (model RFjnteract). Then, the absolute values of
the interaction test statistic were evaluated for this model separately with each covariate.
The three covariates with the highest values were chosen (age, employment, and existing
credits). Among these sets, all possible pairwise sets with other covariates (excluding
age, employment, and existing credits) were analyzed to determine the strongest two-
way interaction effects in the data. These were “age of person interacts with housing
finance”, “employment status interacts with housing finance”, and “number of existing
credits interacts with job qualification”. The sets correspond to the covariates

s = {1} < “age of person”
s

s = {1,2} < “age of person”, “employment status”

v v

s ={1,2,3} < “age of person”, “employment status”, “number of existing credits”

To evaluate the power and type I error rates, it is necessary to be able to spec-
ify the data-generating process under both the Hy and H; hypotheses. It is known
that, if the random forests are restricted to only include tree stumps (only one covari-
ate split), then there are no interaction effects. In this simulation, all data-generation
processes were identical to the specification of the estimated random forest models. Un-
der H, all sets, s, were restricted to tree stumps depending on all covariates with the
tuned parameter mtry (RFy). For each strong interaction effect, separate random forests
(RFage, housings RFemployment, housings RFcredits, job) Were estimated with an unrestricted tree
depth but only including the two variables of the previously determined interaction effect
with mtry = 2. If there was a strong signal of two interaction covariates in the data and the
random forest model had only the option to estimate the response with those covariates,
then it was quite likely that the interaction effect would be estimated in the model. Under
Hj with set s = {1}, the predictions of RFj and RF,ge, housing Were averaged with the mean.
Analogously, in the case of s = {1,2}, the random forest models RF, RFge, housing and
RFemployment, housing Were averaged, and if s = {1,2,3}, then the average predictions of
RFy, RFage, housings RFemployment, housing and RFcredits, job Were calculated. After data genera-
tion, the estimated random forest models were tuned using simulated test data analogously
as model RFjpteract- All together, there were 120 scenarios (10 sample sizes, two covariate
designs, three sets s, and two different hypotheses) that were independently repeated
1000 times.
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4.3.1. Type I Error Results

In Figure 7, the estimated type I errors, based on random forests, are shown for
independent covariate simulation. The curves fluctuate around the prespecified alpha
level of 0.05. In the case of dependent covariates, Figure 8 shows that the type I error is
controlled for s = {1}. Larger sets indicate a small positive trend for increasing sample
sizes. This could indicate that covariate dependencies have a small influence on the type
I error in nonlinear models. This is in contrast to the observed results of Section 4.2.1,
where even strong covariate correlations overall did not have much of an effect on the
estimated type I errors. In the design Xdep, the strongest correlation in the Gaussian copula
between “credit amount” and “credit duration” was 0.6174 in the original data set. All
other numeric covariates had less absolute correlation than 0.3. The simulated interac-
tion effect between “employment” and “housing finance”, measured using the corrected
contingency coefficient [45], was 0.2909. The previous value is above the 0.95 empirical
simulated quantile 0.1527 under independence, and thus, this case can be interpreted as
low-dependency. Another difference compared to linear models is that random forests do
not have continuous predictions, which means that, for certain ranges of the covariates, the
prediction function stays constant.

s=({1, 2} s={1, 2, 3}

Type | error
Type | error

800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Sample size Sample size

Figure 7. Estimated alpha error of the interaction test based on random forests with independent simu-
lated covariates under different Hy hypotheses. The dashed line represents the standard 0.05 significance
threshold. Overall, the interaction test controls the prespecified alpha error. The dotted—dashed lines
represent the upper and lower bounds of the exact pointwise 0.95 Clopper—Pearson confidence intervals.
Full lines represent estimated type I error.
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Figure 8. Estimated alpha error of the interaction test based on random forests with dependent
simulated covariates under different Hy hypotheses. The dashed line represents the standard
0.05 significance threshold. The interaction test controls the prespecified alpha error in scenario
s = {1}. In the other two graphs, there is a slightly anti-conservative trend for higher sample
sizes. The dotted—dashed lines represent the upper and lower bounds of the exact pointwise 0.95
Clopper-Pearson confidence intervals. Full lines represent estimated type I error.

4.3.2. Power Results

Figure 9 shows the estimated power based on random forest models. Power increases
with the sample size, and the curve gradients decline. Several hundred observations
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are sufficient to ensure commonly used power levels of 0.8 [46]. In contrast to Figure 9,
the scenarios of ||s|| > 1 in Figure 10 show somewhat lower power levels at sample size
n = 1000. It is analogous to the previous section, Section 4.3.1, that the performance using
the Xdep design is a little bit worse than that using the Xind design.

s={1,2,3}
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Figure 9. Estimated power of the interaction test based on random forests with independent simulated
covariates under the H; hypothesis s. The dashed line represents a standard power level, 0.8, assumed
in sample-size planning. Two hundred to three hundred observations suffice for acceptable power
levels. The dotted—dashed lines represent the upper and lower bounds of the exact pointwise 0.95
Clopper-Pearson confidence intervals. Full lines represent estimated power.
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Figure 10. Estimated power of the interaction test based on random forests with dependent simulated
covariates under different null hypotheses, s. The dashed line represents a standard power level of
0.8 assumed in sample size planning. Two hundred and fifty to four hundred observations suffice for
acceptable power levels. The dotted—dashed lines represent the upper and lower bounds of the exact
pointwise 0.95 Clopper—Pearson confidence intervals. Full lines represent estimated power.

4.4. Interaction Test Statistic with Response

In this section, we explore the proposed extension in Equation (25) to include response
information in Zp4 as a sensitivity analysis. The simulation design was based on the
example given in [27,47]. The response function takes the form of Hy

g(x) = 5sin(mx;) + 5sin(7xy) + 20(x3 — 0.5)% + 10x4 + 5x5 + € and under H;  (28)
g(x) = 10sin(mrx1x7) + 20(x3 — 0.5)? + 10x4 + 5x5 + € (29)

withxe RYande ~ N (0, (72). Both under Hy and Hj, the error variance was set to achieve
an explained variance of 95% based on the average of 25 independent simulated data sets of
size 10°. The sample sizes varied from n = 100,200, ..., 1000. For each simulated training
data set, a multivariate adaptive regression spline (MARS) was fitted [47] with a maximal
degree of two. Type I error results are shown in Figure 11. Overall, the estimated type I
error held the specified alpha level 0.05, but it was slightly conservative. In this example, at
least 100 observations were sufficient to achieve power levels above 80% (Figure 12). The
results demonstrate that the modified test statistic with the response information Zp 4 is
also able to control the type I error, and it achieves reasonable power levels similar to Z4.
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Figure 11. Estimated alpha error of the one-sided interaction test Zp 4 based on MARS with s = 1.
The dashed line represents a standard alpha level of 0.05 assumed in sample size planning. The
dotted—dashed lines represent the upper and lower bounds of the exact pointwise 0.95 Clopper-Pearson
confidence intervals.
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Figure 12. Estimated power of the one-sided interaction test Zp 4 based on MARS with s = 1. The
dashed line represents a standard power level of 0.8 assumed in sample size planning. One hundred
observations suffice for acceptable power levels. The dotted—dashed lines represent the upper and
lower bounds of the exact pointwise 0.95 Clopper-Pearson confidence intervals.
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5. Data Analysis

This section summarizes the results of the data analysis example. The Boston Housing
prices data set from the US census in 1970 [48] was explored for comparison to the data set
investigated by [22]. The median value of owner-occupied homes in 1000s of USD was the
quantitative response. All available other variables were used as covariates in an extreme
gradient-boosting model [49]. The data set was split randomly into tuning data (50%) and a
test data set (50%). The tuning data were split again with five times repeated 25-fold cross-
validation to tune all possible pairs of the number of boosting iterations 1000, 1100, . . ., 2000
and the maximal tree depth 1,2,...,14. The learning rate was set constant to 0.01, and
subsampling of the rows and columns was done with a probability of 0.5. The tuning
parameters with the lowest MSE were 2000 boosting iterations and a tree depth of 4. Let the
performance measure (M) be the average absolute prediction error of the model M divided
by the average absolute prediction error of the median response. Evaluating {(M) on the test
set with the model results in 0.4323. Note that the mean of (M) over all tuning grid values,
0.3407, was comparable to the results of [22]. Testing the null hypothesis of no interaction
between all covariates gave a p-value of 0.0107. Thus, interaction effects have an impact. To
assess which covariates contribute to interaction effects, all sets [s = {1},5 = {2},...,5 = {14}]
were investigated in Figure 13. All covariates above or below the dashed line per capita crime
rate by town (CRM)), nitric oxides concentration with parts per 10 million (NOX), average
number of rooms per dwelling (RM), index of accessibility to radial highways (RAD), full-
value property tax rate per 10,000 USD (TAX), and the pupil-teacher ratio by town (PTRATIO)
contribute to interaction effects for Boston housing prices. All of those covariates have positive
values for the test statistic, which means that those interaction effects overall increase the
variability of the prediction model.
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Figure 13. Test statistic z4 values of the gradient-boosting model for each covariate separately. The
black bars highlight the passing significance threshold a < 0.05 of the two-sided test with the null
hypothesis that each covariate does not contribute to interaction effects. The dotted lines indicate
positive and negative Hy rejection thresholds.

In the next step, the impact of the previously identified covariate interaction effects
can be evaluated. First, covariates with interaction effects s = {1,5,6,9, 10,11} were tested
one-sided with the null hypothesis that the prediction model with possible interaction
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effects has an equal or higher MSE. Overall, the p-value was 0.0155, and we concluded that
the interaction effects of those covariates reduce the MSE. The MSE was reduced by 5.46%
relative to the prediction model without interaction effects. The next question is: Which
interaction effects associated covariates are responsible for this reduction? It is answered in
Figure 14. In this particular case of Boston housing prices, interaction effects with covariates
NOX, RAD, TAX, and PTRATIO led to statistically significant MSE improvements in the
prediction model. This means that the covariates influence the Boston Housing prices with
two-way or higher-order interaction effects, and those identified interaction effects improve
the prediction performance.

1 5

Test statistic

NOX
RM
RAD
TAX

=
4
O

Variable
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Figure 14. Test statistic z, values of the gradient-boosting model for each covariate separately. The
black bars highlight the passing significance threshold a < 0.05 of the one-sided test with the null
hypothesis that interaction effects associated with a specific covariate do not contribute to MSE
reduction. Dotted lines indicate Hy rejection thresholds.

6. Discussion

This work introduced a model-agnostic statistical interaction test that a hypothesis
set can be flexibly specified. An asymptotic distribution of the test statistic was derived
(Section 3). The interaction test neither required the refitting of the prediction model nor
the resampling of the original data. The low computational runtime cost of the interaction
test allows for the exploration of multiple sets of covariates. Our recommendation is to
evaluate the test statistic with test data. The distribution of the test statistic behaved well in
linear models even in the case of strong covariate correlations (Section 4.1). Simulations
with linear (Section 4.2) and nonlinear models (Section 4.3) show that, overall, the type
I error is bounded by the prespecified alpha level in most cases and that the test achieves
reasonable power levels for several hundred observations in the simulations. The interaction
test can be used for black-box models along with other measures of interpretability to better
understand interaction effects. Low deviations of the test statistic from zero may indicate that
the prediction model could be approximated well using a simpler model without covariate
interaction effects in set s.

In addition to Section 3, the evaluation of 24 under the training data X1, X», ..., X,
was discussed. In this case, the observations 231,235, . ..,23, are dependent because each
observed value of Z3; includes all training data in the estimation of the PD function in
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211,22, The prediction model f(x) is not constant and changes if the training sample size
increases because it is estimated from the same data. As such, the uniform convergence
speed of f(x) and the PD functions lgl\D(xs) would need to be faster than n~1/2, which
corresponds to the convergence speed of the mean according to the Berry—Essens theorem
(see, for example, [50]). However, especially nonparametric machine learning models
usually have a lower convergence speed than n~1/2 [51], and there is no guarantee that
multiplications of 2, Z; in Z3 yield faster convergence rates. Additionally, the CLT would
require extensions to work under dependence between observations such as those presented
in [52,53]. That specific theory would require the supremum of the maximal correlation
coefficient (SMCC) [54] for all possible sets of observations 23 ; , 23, with lag £ = [i; — 13|
to converge at least linearly to zero as £ — . This assumption is difficult to investigate
with simulations and, to the best of the authors” knowledge, impossible to prove because
the number of available observations with a specific lag depends on the sample size, while
the supremum of the maximal correlation depends on the number of comparisons. Note
that, in the case of iid random variables, higher dimensions of the covariate matrix (more
comparisons) affect the distribution of the maximal estimated Pearson correlation (see [55]
for asymptotic results).

Whether to use 4 or Zp 4 with a response should be decided according to the goals
of data analysis. The choice may also consider the characteristics of the data-generating
process of the application. For example, if the signal-to-noise ratio is low, then 2, would be
preferable to Zp 4 regarding statistical power because, in this case, the usage of the response
information would add more noise that would make it harder to differentiate between H
and Hj. In the reverse situation with a high signal-to-noise ratio, the additional information
of the response in Zp4 could reduce the variability of the terms IADP; and IADPpp s,
and thus, hypotheses Hy and H; could be more easily distinguished compared to the test
statistic Z;. Future research may investigate the behavior of both statistics, 24,24P, 4, in
other settings that were not considered in this work (for example, other data sets and
different black-box prediction models).

From a general perspective, the choice of whether to apply IML to training or test
data depends on the goals of statistical analysis [56]. If the influence of covariates on the
prediction model at the population level is the focus of interest, it does not matter whether
training or test data are used, as long as data sets originate from the same data-generating
process. The more data are available, the more powerful the proposed interaction test is,
provided that all other conditions stay constant. In contrast, if the goal is to analyze the
impact of covariates on prediction performance, then it is reasonable to apply IML methods
to test data sets. This is in line with [18], who recommends the usage of test data in the case
of permutation variable importance. Test data usage in the interaction difference test has
better theoretical properties and, thus, is recommended for applications.

An alternative to H2 was proposed by [57] that uses accumulated local effect functions
instead of PD functions. ALE curves are more computationally efficient and avoid the
extrapolation problem to non-observed covariate combinations. However, ALE curves
attribute part of the interaction effect to the main effect if there are interactions between
correlated features [58]. Extrapolations can be investigated graphically via the stratification
of PD plots regarding other covariates. Furthermore, PD plots can be enhanced using
individual conditional expectation curves [28], which plot each observed predicted value
to investigate variability and possible interaction effects. This graphical representation is
not available for ALE. Therefore, this paper focused on the analysis of PD functions.

7. Conclusions

This work has proposed a new model-agnostic hypothesis test to detect interaction
effects in prediction models. The null hypothesis states that a given set of covariates does
not contribute to any interaction effects. The concept is based on the interaction difference
between the variances of the original model predictions and predictions under restricted
interaction effects with the null hypothesis. The restricted form of the prediction model is
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given via functional ANOVA decomposition, combined with partial dependence functions.
The interaction difference was then embedded into the framework of a two-sided, one-
sample Z-test. The resulting test statistic is asymptotically normally distributed if it is
evaluated using test data. Various simulations showed that, in most cases, the type I error
was controlled, and several hundred observations yielded reasonable power levels.

The extended test statistic Zp 4 was explored to incorporate response information into
Z4. If interaction effects were detected with 24, the modification Zp 4 could be used to assess
whether these interaction effects contributed to MSE prediction performance. In this case,
the null hypothesis is that the MSE of the original model with interaction effects is equal to
or worse than the prediction model without those interaction effects.

Overall, this work has extended the existing IML methodology to better explain black-
box prediction models” interaction effects. It is computationally run time-efficient due to
the derived asymptotic distribution and available on CRAN as the R-package IADT.
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