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Abstract

Objectives Risk calculators (RCs) improve patient selection for prostate biopsy with clinical/demographic information,
recently with prostate MRI using the prostate imaging reporting and data system (PI-RADS). Fully-automated deep
learning (DL) analyzes MRI data independently, and has been shown to be on par with clinical radiologists, but has yet
to be incorporated into RCs. The goal of this study is to re-assess the diagnostic quality of RCs, the impact of replacing
PI-RADS with DL predictions, and potential performance gains by adding DL besides PI-RADS.

Material and methods One thousand six hundred twenty-seven consecutive examinations from 2014 to 2021 were
included in this retrospective single-center study, including 517 exams withheld for RC testing. Board-certified
radiologists assessed PI-RADS during clinical routine, then systematic and MRI/Ultrasound-fusion biopsies provided
histopathological ground truth for significant prostate cancer (sPC). nnUNet-based DL ensembles were trained on
biparametric MRI predicting the presence of sPC lesions (UNet-probability) and a PI-RADS-analogous five-point scale
(UNet-Likert). Previously published RCs were validated as is; with PI-RADS substituted by UNet-Likert (UNet-Likert-
substituted RC); and with both UNet-probability and PI-RADS (UNet-probability-extended RC). Together with a newly
fitted RC using clinical data, PI-RADS and UNet-probability, existing RCs were compared by receiver-operating
characteristics, calibration, and decision-curve analysis.

Results Diagnostic performance remained stable for UNet-Likert-substituted RCs. DL contained complementary
diagnostic information to PI-RADS. The newly-fitted RC spared 49% [252/517] of biopsies while maintaining the
negative predictive value (94%), compared to PI-RADS ≥ 4 cut-off which spared 37% [190/517] (p < 0.001).

Conclusions Incorporating DL as an independent diagnostic marker for RCs can improve patient stratification before
biopsy, as there is complementary information in DL features and clinical PI-RADS assessment.

Clinical relevance statement For patients with positive prostate screening results, a comprehensive diagnostic
workup, including prostate MRI, DL analysis, and individual classification using nomograms can identify patients with
minimal prostate cancer risk, as they benefit less from the more invasive biopsy procedure.
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Key Points

● The current MRI-based nomograms result in many negative prostate biopsies. The addition of DL to nomograms with clinical

data and PI-RADS improves patient stratification before biopsy.
● Fully automatic DL can be substituted for PI-RADS without sacrificing the quality of nomogram predictions.
● Prostate nomograms show cancer detection ability comparable to previous validation studies while being suitable for the

addition of DL analysis.

Keywords Prostatic neoplasms, Multiparametric magnetic resonance imaging, Risk assessment, Deep learning,
Nomograms

Introduction
Recently, multiparametric magnetic resonance imaging

(mpMRI) has been established for identification and for

targeted prostatic lesion biopsy through cognitive fusion

[1], the stereotactic fusion of transrectal ultrasound

(TRUS), and MRI [2], or in-bore MRI techniques [3].

With this approach, detection of significant prostate

cancer (sPC) and enrollment into active surveillance have

improved [4], while the approach promises to spare

biopsies altogether in certain men [5, 6]. With growing

evidence for the benefits of prostate MRI in prospective

multi-center trials [7–9], guidelines increasingly recom-

mend mpMRI prior to biopsy in biopsy-naïve or pre-

biopsied men [10]. The decision whom to biopsy can be

supported by risk calculators (RCs) incorporating demo-

graphic and clinical information such as age, digital rectal

exam (DRE), prostate-specific antigen (PSA), and prostate

volume, e.g., RCs from the European Randomized Study

of Screening for Prostate Cancer (ERSPC) combine this

information in logistic regression models [11] and visua-

lize it using nomograms [12]. The positive predictive

value (PPV) of clinical radiologist prostate MRI assess-

ment using the prostate imaging reporting and data sys-

tem (PI-RADS) [13] is limited, variable, and typically

reported between 30% and 50% across different centers

[14–16], resulting in many negative biopsies. RCs promise

to improve patient selection before biopsy, which carries

the risk of infection, bleeding, and hospitalization [17].

Recently, it has been shown that RCs benefit from the

addition of PI-RADS [18]. Several such RCs have been

proposed, none of which exhibits clear advantages over

another at the current time [10], while there are concerns

about calibration shifts over time and across institutions,

reducing their benefits. Simultaneously, fully-automated

analysis of prostate MRI using machine learning in the

form of deep learning (DL) by convolutional neural net-

works has recently been demonstrated to provide sPC

detection similar to clinical PI-RADS assessment by

radiologists [19, 20]. Self-configuring network archi-

tectures for semantic image segmentation [21] and object

detection [22] can adapt to a wide range of medical

imaging modalities. The UNet DL architecture [23] has

become especially popular in medical image segmentation

[19–21]. Resulting networks indicate the spatial location

of identified suspicious findings, allowing comparison to

radiologist-identified regions [21, 22]. DL-based prostate

MRI assessment carries the potential to make risk

assessment tools more reproducible and to foster more

widespread application of fully automatic image analysis.

We hypothesized that risk estimation with logistic

regression models based on demographic and clinical data

but with the addition of fully-automated DL image

assessment would be capable of performing similarly to

previously established risk models using clinical PI-RADS

assessment. The goal of our study was to re-evaluate

established RCs for prostate cancer risk assessment using

a large consecutive cohort from our institution to deter-

mine if clinical PI-RADS assessment and fully-automated

DL prostate MRI assessment perform similarly in such

models, and whether the additional benefit is obtained

when both are combined.

Material and methods
Study sample

Multiparametric prostate MRI examinations between

September 2014 and June 2021 were consecutively

included in this retrospective single-center study if

patients received combined extended systematic and tar-

geted prostate biopsy and mpMRI at our institutions in

Heidelberg, Germany. The institutional ethics committees

approved the study and waived informed consent (S-164/

2019). Exclusion criteria were (1) prior therapy for PCa

(e.g., radiation therapy, ultrasound ablation); (2) previous

or ongoing androgen-depriving treatment; (3) severe

imaging artifacts; (4) previous prostate biopsy < 2 months

ago or interval between MRI and subsequent biopsy

> 6 months; and (5) unusually rare histopathology. Exams

with any previous diagnosis of prostate cancer, including

exams under Active Surveillance, were excluded from the

risk calculator evaluation.

MRI protocol

Multiparametric MRI was performed using two 3.0 Tesla

scanners (Megnetom Prisma, Biograph mMR; Siemens
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Healthineers) and one 1.5 Tesla MRI scanner (Magnetom

Aera, Siemens Healthineers) based on PI-RADS recom-

mendations [13, 24] and guidelines of the European

Society of Urogenital Radiology [25, 26]. Examinations

used the standard multichannel body coil and integrated

spine phased-array coil. MRI acquisition parameters are

detailed in Supplemental Table 1.

Biopsy scheme, PI-RADS assessment, and image

segmentation

Radiologists assessed mpMRI according to PI-RADS v2.1

guidelines [13] during a clinical routine with access to

previous reports, PSA levels, and dynamic contrast-

enhanced T1-weighted images (DCE). After the multi-

disciplinary conference discussion, patients received

extended systematic and targeted transperineal MRI/

ultrasound-fusion biopsies matching the Ginsburg pro-

tocol [27]. For older cases, where only clinical PI-RADS v1

[25] assessments were available, previously-biopsied

lesions from the original clinical report were reassessed

with PI-RADS v2 by a board-certified radiologist without

reviewing the biopsy result and with knowledge of the

prior report, thus generating a consensus score using PI-

RADS v2 criteria and preserving the relationship between

MRI lesion and targeted biopsy result. Biopsies were

guided by rigid or elastic software registration. Histo-

pathology was assessed by a dedicated uropathologist with

18 years of experience (A.St.) and graded according to

International Society of Urological Pathology (ISUP)

standards [28]. sPC was defined as ISUP grade ≥ 2.

DL model configuration, training, calibration, and inference

Modified nnUNet models were trained for prostate and

lesion segmentation with configuration details given in

Supplemental Material S-1. Models use whole prostate

bpMRI images for predictions and provide nnUNet soft-

max maps which provide voxel-based tumor probability

and thus indicate both, lesion presence and localization.

Activation maps were interpreted as the voxel-wise

probability of finding sPC, with the maximum prob-

ability representing the patient-wise sPC probability score

(UNet-probability). The continuous values of the UNet-

probability were converted to a 5-point Likert scale

(UNet-Likert). UNet-Likert thresholds were dynamically

chosen [29] to target sensitivities or specificities similar to

PI-RADS, as described in Supplemental Material S-2.

RCs and decision strategies

Patient age, DRE, PSA, fully automatic T2-weighted seg-

mentation-based prostate volume, and previous biopsy

results were available for analysis on each case so that data

imputation was not necessary. RCs evaluated included

Radtke et al [30], van Leeuwen et al [31], and Alberts et al

[32] (MRI-ERSPC). For MRI-ERSPC and Radtke 2017,

individual models for biopsy-naïve and previously-

biopsied patients were considered. The PI-RADS/PSAD

strategy defined low-risk exams as PI-RADS ≤ 2, or PI-

RADS 3 with PSA density (PSAD) < 0.1 ng/mL [33] for

comparison. To evaluate whether UNet-Likert provides

comparable value to clinical PI-RADS assessment, PI-

RADS was substituted by UNet-Likert in the RCs (UNet-

Likert-substituted RCs), and for comparison in PI-RADS/

PSAD (UNet-Likert/PSAD). As PI-RADS and DL may

extract complementary information from image data,

models combining DL with PI-RADS were calculated

(UNet-probability-extended RCs), by estimating two-

parameter logistic regression models including the RC

score and UNet-probability, similar to the addition of age

and PI-RADS to the ERSPC score [32]. Finally, to evaluate

the most flexible parametrization, we fitted new multi-

variate logistic regression models not relying on fixed

coefficients or parameter transforms (see Supplemental

Material S-3 and Supplemental Table 2). We then used

repeated 10-fold cross-validation on the training set to

choose the candidate model with the highest cross-

validation performance named the newly-fitted PI-

RADS+UNet probability RC. Table 1 shows the para-

meters for each model.

Table 1 Overview of the existing RCs and the clinical, demographic, and imaging variables used by them

Age DRE PSA Prostate volume Biopsy-naïve/prebiopsied PI-RADS

Radtke 2017 + + log (PSA) + + +

Leeuwen 2017 + + 1/PSA 1/√Volume + +

MRI-ERSPC + + log (PSA) Volume class + +

PI-RADS/PSAD + + +

Newly fitted PI-RADS+ UNet probability RC + + log (PSA) 1/√(0.01 × volume) + +

Note that for PSA and prostate volume, models also differ in their parametric transformations: Radtke 2017 and MRI-ERSPC use a logarithmic rescaling for PSA values.
Leeuwen 2017 used the reciprocal of PSA and the reciprocal square root for prostate volume. MRI-ERSPC used three discreet volume classes instead of a continuous
scale of volumes for backward compatibility to volume estimations by transrectal ultrasound or DRE. PI-RADS/PSAD describes the strategy of sparing biopsies for
exams PI-RADS ≤ 2 or PI-RADS 3 with PSA density < 0.1 ng/mL2

Plus signs (+) indicate that the model is relying on the parameter without transformations
PI-RADS prostate imaging reporting and data system, PSA prostate-specific antigen, DRE digital rectal examination
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Statistical analysis

Logistic regression models have been shown to be sus-

ceptible to calibration shifts when applied to datasets

from new institutions [18, 34], thus, after establishing

original and UNet-Likert-substituted model performance,

adjustment of these models by intercept-only recalibra-

tion (a.k.a. recalibration in the large) and intercept/slope

recalibration (logistic recalibration) on the training set

was implemented [34–36]. In the UNet-probability-

extended RCs, slope, and intercept were necessarily fit-

ted as detailed in Supplemental Material S-4. As Radtke

2017 and MRI-ERSPC consist of separate models for

biopsy-naïve or previously-biopsied patients, intercept-

only recalibration, intercept/slope recalibration, and

UNet-probability extension were done separately for each

group. The newly-fitted PI-RADS+UNet probability RC

is necessarily calibrated to the training data by its deri-

vation. The exam-level predictive performance of Radtke

2017, Leeuwen 2017, and MRI-ERSPC-RCs was evaluated

on the test set and compared to the UNet-Likert-

substituted RCs, UNet-probability-extended RCs, and

newly-fitted PI-RADS+UNet probability RC. Receiver

operating characteristics (ROC) were used to evaluate

calibration-independent sPC discrimination with area

under the curve (AUC) comparisons. The Brier score was

used for combined calibration-dependent evaluation of

model calibration and discrimination. Calibration was

further assessed using calibration plots and the

ratio of average predicted risk to observed sPC rate

(Exp/Obs-Ratio). Decision curve analysis (DCA), follow-

ing the interpretation recommendations by Van Calster

et al [37] for the opt-in decision to undergo targeted

biopsy, was used to weigh the calibration-dependent

benefit of correctly diagnosing a patient with sPC against

the harm of over-diagnosing patients without sPC [38],

with details given in Supplemental Material S-5. The

p values were adjusted for multiple testing by

Holm–Bonferroni correction. Statistical analysis was

performed in R version 4.1.0.

Results
Study sample characteristics

In total, 1627 MRI examinations were included which

were temporally split in November 2018 into a training

set of 1021 exams, used for DL training in 5-fold cross-

validation, and 606 exams for independent testing. 834

exams in the training set and 517 exams in the test set had

no previous prostate cancer diagnosis and were used for

risk model estimation in cross-validation and subsequent

testing. Figure 1 shows inclusion/exclusion criteria as a

flowchart. Table 2 gives demographic and clinical char-

acteristics. 1610 exams have been reported in previous

publications on DL and radiomics [19, 20, 39], however,

data have not been used for systematic clinical RC

assessment or development. Regarding the PI-RADS/

PSAD strategy, the test set of a previous study overlaps

with 101 exams from biopsy-naïve patients with PI-RADS

3 lesions in the current study [33].

Imaging-based performance (PI-RADS, DL) and PSA-heuristics

On the test set, clinical PI-RADS achieved 14% [44/317]

specificity at 98% [197/200] sensitivity for PI-RADS ≥ 3,

and 56% [178/317] specificity at 94% [188/200] sensitivity

for PI-RADS ≥ 4. The PI-RADS/PSAD strategy achieved

39% [124/317] specificity at 97% [194/200] sensitivity.

UNet-probability alone achieved an AUC of 0.89 (95%

CI: 0.86-0.92). UNet-Likert alone achieved 30% [94/317]

specificity at 97% [194/200] sensitivity for UNet-Likert ≥ 3

and 57% [180/317] specificity at 92% [184/200] sensitivity

for UNet-Likert ≥ 4. UNet-Likert/PSAD strategy achieved

45% [142/317] specificity at 96% [193/200] sensitivity.

Fig. 1 Diagram showing the cohort selection processing with inclusion
and exclusion criteria according to STARD guidelines [53]. HIFU, high-
intensity focused ultrasound; TULSA, transurethral ultrasound Ablation;
STUMP, stromal tumor of uncertain malignant potential
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UNet-Likert ≥ 3 showed significantly higher specificity

compared to PI-RADS ≥ 3 (p < 0.001) at similar sensitiv-

ities (p= 0.32). There was no significant difference in

sensitivity or specificity between PI-RADS/PSAD and

UNet-Likert/PSAD (p= 0.74 and p= 0.1, respectively), or

between PI-RADS ≥ 4 and UNet-Likert ≥ 4 (p= 0.39 and

p= 0.86, respectively).

Risk calculator performance (original, UNet-Likert-substituted)

Leeuwen 2017, Radtke 2017, and MRI-ERSPC original

RCs achieved AUC of 0.90 (95% CI: 0.87–0.92), 0.89 (95%

CI: 0.87–0.92), and 0.88 (95% CI: 0.85–0.91), while UNet-

Likert-substituted RCs achieved 0.90 (95% CI: 0.88–0.93),

0.90 (95% CI: 0.87–0.93), and 0.90 (95% CI: 0.87–0.92),

respectively (Fig. 2A, B). There was no significant differ-

ence in AUC between the three original RCs (p= 0.20) or

UNet-Likert-substituted RCs (p= 0.26) in global testing,

so neither Leeuwen 2017, Radtke 2017 nor MRI-ERSPC

showed superior AUC. Also, the original and UNet-

Likert-substituted versions of each RC showed no sig-

nificant difference in AUC (p= 1.00).

Risk calculator calibration (original, UNet-Likert-substituted)

Original Leeuwen 2017, Radtke 2017, and MRI-ERSPC

RCs had Brier scores of 0.14 (95% CI: 0.12–0.16), 0.22

(95% CI: 0.19–0.24), and 0.20 (95% CI: 0.17–0.22),

respectively, with Leeuwen 2017 significantly better cali-

brated than MRI-ERSPC (p < 0.001) and Radtke 2017

(p= 0.001) (Fig. 3, top, lower is better). After intercept-

only calibration, Brier scores of all RCs improved to 0.12

(95% CI: 0.10–0.14, p < 0.001), 0.13 (95% CI: 0.11–0.15,

p < 0.001), and 0.13 (95% CI: 0.11–0.15, p < 0.001),

respectively (Fig. 3, middle). Intercept/slope recalibration

led to only minor statistically insignificant improvements

over the intercept-only calibration, at 0.12 (95% CI:

0.11–0.14, p= 0.90), 0.13 (95% CI: 0.11–0.15, p= 1.00),

and 0.13 (95% CI: 0.11–0.15, p= 0.61), respectively (Fig. 3,

bottom). The Exp./Obs.-Ratio the ratios for the original

RCs were 1.29, 1.69, and 0.48, respectively, indicating

Radtke 2017 and Leeuwen 2017 overestimated sPC risk

while MRI-ERSPC was underestimated. After intercept-

only or intercept/slope calibration, Exp./Obs.-Ratio

improved to 1.04, 0.99, and 1.02, respectively, with

diminishing differences in over- or underestimation

between the models. UNet-Likert-substituted RCs

improved Brier scores for all RCs, however, only the

improvement for MRI-ERSPC was statistically significant

(p < 0.001) (filled triangles in Fig. 3, top). Supplemental

Fig. 1 shows calibration plots before and after intercept-

only calibration.

Performance of combined DL and PI-RADS (UNet-probability-

extended RCs, newly-fitted PI-RADS+UNet probability RC)

UNet-probability-extended RCs for Leeuwen 2017,

Radtke 2017, and MRI-ERSPC achieved AUC of 0.92 (95%

CI: 0.89–0.94), 0.92 (95% CI: 0.90–0.95), and 0.92 (95%

CI: 0.90–0.94) (Fig. 2C), respectively, and resulted in a

significant improvement to the original Radtke 2017

(p < 0.001), Leeuwen 2017 (p < 0.01), and MRI-ERSPC

(p < 0.01). The coefficients for UNet-probability-extended

RCs are given in Supplemental Table 3.

The highest test-set cross-validation performance of the

candidate models was provided by candidate model #3

which thus was selected as the newly-fitted PI-RADS+

UNet probability RC (see Supplemental Table 2). Optimal

parameters in this model included age, DRE, reciprocal

square root of prostate volume, natural logarithm of PSA,

Table 2 Demographic and clinical characteristics of the training
and test cohorts

Training,

(n= 834)

Test,

(n= 517)

Demographics

Exams 834 (100) 517 (100)

Age*, y 64 (58–70) 66 (59–72)

PSA*, ng/mL 7.6 (5.3–11.1) 7.2 (5.4–11.0)

Prostate volume*, mL 51 (37–71) 57 (39–78)

PSA density*, ng/mL² 0.14 (0.10–0.22) 0.13 (0.09–0.21)

Suspect DRE 218 (26) 126 (24)

Significant PC (≥ ISUP 2) in

systematic/targeted biopsy

321 (38) 200 (39)

No previous biopsy 542 (65) 352 (68)

Previous negative biopsy 292 (35) 165 (32)

PI-RADS, highest lesion per exam

PI-RADS 1–2 132 (16) 47 (9)

PI-RADS 3 190 (23) 143 (28)

PI-RADS 4 331 (40) 205 (40)

PI-RADS 5 181 (22) 122 (24)

ISUP grade, highest per exam

No prostate cancer 388 (47) 240 (46)

ISUP grade 1 125 (15) 77 (15)

ISUP grade 2 188 (23) 97 (19)

ISUP grade 3 51 (6) 39 (8)

ISUP grade 4 32 (4) 27 (5)

ISUP grade 5 50 (6) 37 (7)

Location of targeted lesions

Any location 1540 (100) 918 (100)

Peripheral zone 959 (62) 581 (63)

Transition zone 553 (36) 299 (33)

Multifocal 28 (2) 38 (4)

Values represent a number of cases with percentages of the total shown in
parentheses
PI-RADS prostate imaging reporting and data system, ISUP International Society
of Urological Pathology, IQR interquartile range, PSA prostate-specific antigen,
DRE digital rectal examination, PC prostate cancer
*The median with an inter-quantile range from the 25th to 75th percentile is
shown in rows with asterisks
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biopsy status, PI-RADS score, and UNet-probability

resulting in AUC of 0.93 (95% CI: 0.90–0.95)

(Fig. 2D–F) and Brier score of 0.10 (95% CI: 0.09–0.12).

While the AUC improvements of the newly-fitted PI-

RADS+UNet probability RC compared to the UNet-

probability-extended RCs were not statistically significant

(p > 0.12), there was a minor improvement. The nomo-

gram for the newly-fitted PI-RADS+UNet probability

RC is given in Fig. 4, with model parameter significance

and odds ratios given in Table 3 indicating the indepen-

dent contribution of PI-RADS and UNet-probability.

Benefit of avoiding biopsies through risk stratification

Net benefit curves from DCA are given in Fig. 5. Leeuwen

2017 was on par with the PI-RADS/PSAD strategy for

thresholds below 20% and showed improved net benefit

above that threshold. Radtke 2017 showed benefits against

the default strategies in the relevant range while MRI-

ERSPC appeared harmful for thresholds below 20%

(Fig. 5A). With prevalence adjustment by intercept-only

recalibration, Radtke 2017 and MRI-ERSPC compensate

for their miscalibration and consequently closely

approximate Leeuwen 2017 such that there is no longer a

clear benefit for a single RC. UNet-Likert-substituted RCs

provide higher net benefits than their respective original

RCs. UNet-probability-extended RCs improve over the

original RCs with intercept/slope recalibration, UNet-

Likert-substituted RC counterparts, and the PI-RADS/

PSAD strategy for risk thresholds above 10%. The newly-

fitted PI-RADS+UNet probability RC shows further

minimal improvement over the UNet-probability-

extended RCs, but not over the entire range of relevant

thresholds.

Comparison of the absolute number of examinations

receiving a recommendation to avoid biopsy by different

decision strategies demonstrates that PI-RADS ≥ 4 cut-off

spares 37% [190/517] of biopsy sessions at the cost of

missing sPC in 12 of 190 spared sessions, which corre-

sponds to a negative predictive value (NPV) of 94%. By

adding PSAD through the PI-RADS/PSAD decision

strategy, biopsy avoidance is reduced to 25% [130/517]

while only 6 sPC are missed in 130 spared biopsies (NPV

95%). The newly-fitted PI-RADS+UNet probability RC

at the 15% threshold can spare 49% [252/517] of biopsies,

12% more than the PI-RADS ≥ 4 cut-offs (p < 0.001) and

24% more than the PI-RADS/PSAD strategy (p < 0.001),

Fig. 2 ROCs indicating discrimination ability of RCs. Classification models with no skill would lie on the identity bisector (gray). A Original RCs (Leeuwen
2017 (red), Radtke 2017 (black), and MRI-ERSPC (green), compared to UNet-probability (yellow)); B UNet-Likert-substituted RCs compared to UNet-
probability (yellow); C UNet-probability-extended RCs compared to UNet-probability (yellow); D, F differences between original (black), UNet-Likert-
substituted (red), and UNet-probability-extended (green) variants of Radtke 2017 (D), Leeuwen 2017 (E), and MRI-ERSPC (F) compared to the newly-fitted
PI-RADS+ UNet probability RC (purple)

Schrader et al. European Radiology (2024) 34:7909–7920 7914



while missing 16 sPC out of 252 spared biopsies, main-

taining the NPV of the PI-RADS ≥ 4 cut-off at 94%

(p= 0.98) and staying comparable to 95% NPV of PI-

RADS/PSAD (p= 0.24). These improvements indicate the

contributory effect of the UNet-derived information to PI-

RADS and clinical information for patient stratification.

Table 4 compares the number of biopsies spared by each

decision strategy, with the finer histopathological strati-

fication given in Supplemental Table 4. An exemplary

case for the clinical benefit of the newly-fitted PI-

RADS+UNet probability RC at the 15% risk threshold is

shown in Fig. 6.

Discussion
We find that fully-automated DL biparametric MRI

assessment by UNet-Likert scores can substitute for

clinical PI-RADS assessment without performance

deterioration. After recalibration by adjusting the models’

intercept, all RC models exhibited similar net benefits.

Substitution of PI-RADS by UNet-Likert scores demon-

strated tendencies for improvement but combining PI-

RADS with UNet-probability demonstrated improved

discrimination and net benefit, suggesting extraction of

complementary information from imaging. Diagnostically

important information appears to be present in dis-

cordant MRI readings of radiologists and DL. However,

DL systems trained with radiologist PI-RADS assessment

instead of histopathologically proven sPC as ground truth

may not provide similar complementary information. Our

results suggest that DL may be able to support diagnostic

assessment in settings with limited experience in prostate

MRI, as it provided on par performance with experienced

radiologists in the current study.

We demonstrated that nearly half of biopsies may

spared by the newly-fitted PI-RADS+UNet probability

RC while providing an NPV of 94%, which lies above the

expected NPV of 86% (95% CI: 0.79–0.91) for mpMRI at

this prevalence [16]. Almost doubling the number of

spared biopsies comes at the cost of missing 16 sPC cases

when using the 15% threshold, compared to six missed

sPCs for PI-RADS/PSAD or 12 missed sPCs for PI-

RADS ≥ 4. While this increase in false negative cases did

not result in a significantly lower NPV, clinicians should

critically weigh the decreased morbidity of spared prostate

biopsies against the possibility of missing a small number

of sPC. For risk-averse patients, establishing a follow-up

plan to delay the biopsy instead of avoiding it has the

potential to mitigate the consequences of missing sPC and

should be investigated further. Being able to quantify and

Fig. 3 Brier scores, measuring both discrimination and calibration, for
original versions w/o recalibration (top), after intercept-only recalibration
(middle), and after intercept and slope refitting (bottom). Lower Brier
scores indicate better fit. RCs were analyzed with PI-RADS (hollow circle)
or UNet-Likert (filled triangle) as their MRI assessment method. As models
show no significant difference in discrimination, Brier scores vary mostly
due to calibration. Leeuwen 2017 shows the best out-of-the-box
calibration, followed by MRI-ERSPC and Radtke 2017. Substitution with
UNet-Likert worsens calibration for Leeuwen 2017 and Radtke
2017 slightly but results in an improvement for MRI-ERSPC. After intercept-
only calibration, the Brier scores of all models improve drastically, as the
worst re-calibrated model has lower scores than the best-uncalibrated
model. The effect of UNet-Likert substitution on Brier scores is minimal
after intercept-only recalibration. Fitting the model’s slope in addition to
the intercept does not lead to improved Brier scores overall and does not
decrease Brier score differences between original and substituted models

Fig. 4 Nomogram for calculating the probability of finding sPC from
demographic data, clinical data, radiologist’s mpMRI assessment (PI-
RADS), and the predictions of a fully-automated DL system (UNet-
probability). Each parameter is projected orthogonally onto the points
scale, then points for all parameters are summed. The predicted
probability is obtained by orthogonal projection of the total points scale
onto the sPC probability scale
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visualize the risk before undergoing an invasive procedure

is an additional tool for shared decision-making with the

patients about the benefits and harms of the procedure.

The models showed varying degrees of miscalibration

when applied to our consecutive test set, but improved

substantially by adjusting only the model’s intercept,

shown by Brier scores and calibration curves. Leeuwen

2017, the uncalibrated RC from van Leeuwen et al [31],

showed the best calibration overall. Leeuwen 2017 and

Radtke 2017 slightly overestimated sPC risk while MRI-

ERSPC consistently underestimated it before recalibra-

tion, which was already observed in previous studies

[18, 34, 35, 40, 41] and can reduce their net benefit in

DCA. The net benefit of an overestimating model always

remains higher than the biopsy-all strategy if the risk

threshold remains lower than the cohort prevalence,

meaning an overestimating model cannot be harmful at

low thresholds. The net benefit of underestimating

models approaches the biopsy-none strategy with

increasing miscalibration, so they can be harmful to risk

thresholds below the cohort prevalence. As current

practice favors biopsy for most patients [10], we assume

that reasonable risk thresholds lie below the cohort pre-

valence, so overestimating models (Leeuwen 2017 und

Radtke 2017) have an advantage benefit over under-

estimating MRI-ERSPC ones (MRI-ERSPC), which are

potentially harmful in DCA. Deniffel et al [34] raised

concerns over the potential miscalibration of RCs and

Table 3 Odds ratios and model coefficients for each parameter of newly fitted PI-RADS+ UNet probability RC

Risk factor Transformation Coefficient OR (95% CI) p value

Age (years) Linear 0.03 1.03 (1.00–1.06) 0.050

DRE suspicious 0.69 2.00 (1.24–3.22) 0.005

PSA (ng/mL) lnðPSAÞ 1.08 2.95 (2.03–4.28) < 0.001

Prostate volume (mL) 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:01�volume
p 2.23 9.31 (4.60–18.85) < 0.001

Previous prostate biopsies ≥ 1 −0.59 0.55 (0.35–0.89) 0.015

PI-RADS= 3 0.92 2.51 (0.98–6.41) 0.054

PI-RADS= 4 1.64 5.18 (2.17–12.34) < 0.001

PI-RADS= 5 2.15 8.61 (3.25–22.81) < 0.001

UNet-probability from 0 to 1 × 10 0.28 1.33 (1.24–1.42) < 0.001

(Intercept) −10.35

Transformations for prostate volume were suggested by fractional polynomial analysis, where the model versions with the best AUC and Brier score were selected on
the training set in repeated 10-fold cross-validation. Odds ratios and their significance levels quantify their influence on sPC predictions. UNet-probability was scaled
to 10% increments
PI-RADS prostate imaging reporting and data system, OR odds ratio, CI confidence interval, PSA prostate-specific antigen, DRE digital rectal examination

Fig. 5 Decision curve analysis comparing existing RCs (Leeuwen 2017 (red), Radtke 2017 (black), and MRI-ERSPC (green)), and the newly-fitted PI-
RADS+ UNet probability RC (purple). The fixed biopsy decision strategy, where the threshold for biopsy is set at PI-RADS 3 with PSAD of ≥ 0.1 ng/mL2, is
shown in comparison (blue). A Shows the RCs performance as is (solid) or with intercept-only recalibration (dotted), B shows each strategy as is (solid)
and its UNet-Likert-substituted variant (dotted). Leeuwen 2017 shows achieves a net benefit comparable to the PI-RADS/PSAD strategy and can even
exceed it for risk thresholds above 20%, even if manual PI-RADS is substituted with DL image assessment. C Shows models after intercept/slope
recalibration (solid) and their UNet-probability-extended variants (dotted line) against the newly-fitted PI-RADS+ UNet probability RC (purple)
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argued that MRI-ERSPC and Radtke 2017 were not

clinically useful through DCA. Without calibration,

Radtke 2017 showed better clinical utility compared to the

default strategies for thresholds over 10% in this study,

and Leeuwen 2017 was on par with PI-RADS/PSAD and

can even surpass it. With recalibration, all RCs have a

higher net benefit than PI-RADS/PSAD.

Our study showed that DL image analysis, PI-RADS,

and clinical and demographic parameters have com-

plementary risk prediction values for sPC before biopsy.

Predictive performance is also expected to increase with

the addition of more risk factors, e.g., free-to-total PSA

ratio [42], family history [43], body-mass index [44], or

genomic markers [45–48]. DL should be further investi-

gated for clinical decisions after biopsy, as MRI

assessments are also a significant predictor for biochem-

ical recurrence and prostatectomy outcomes [48–50].

There are limitations to this study. The RCs shown here

are applicable for biopsy-naïve or previously negatively

biopsied patients, as these represent the typical screening

population. In active surveillance, the use of DL to predict

tumor progression risk remains to be investigated [46].

Transperineal MRI/TRUS fusion biopsy provided the

reference standard, while prostatectomy specimens would

allow for more detailed lesion localization and sPC diag-

nosis, but prostatectomy cohorts are biased toward sPC-

positive cases. As RCs are used in patient stratification

before any intervention, the cohort examined in this study

much more closely models a typical screening cohort in

which an RC would be used, while a prostatectomy cohort

Table 4 Comparison of the absolute number of biopsies affected by the decision strategies

Spared biopsies Performed biopsies

No. % of all No. sPC missed NPV No. % of all No. negative biopsies PPV

Biopsy none 517 100% 200 61% 0 0% 0 –

Biopsy all 0 0% 0 – 517 100% 317 39%

PI-RADS ≥ 4 190 37% 12 94% 327 63% 139 57%

UNet-Likert ≥ 4 196 38% 16 92% 321 62% 137 57%

PI-RADS/PSAD 130 25% 6 95% 387 75% 193 50%

UNet-Likert/PSAD 149 29% 7 95% 368 71% 175 52%

Newly fitted PI-RADS+ UNet probability RC

10% Risk threshold 193 37% 10 95% 324 63% 134 59%

15% Risk threshold 252 49% 16 94% 265 51% 81 69%

20% Risk threshold 281 54% 21 93% 236 46% 57 76%

25% Risk threshold 301 58% 25 92% 216 42% 41 81%

PI-RADS ≥ 4 recommends biopsies for PI-RADS 4 or PI-RADS 5 exams. PI-RADS/PSAD strategy recommends patients with PI-RADS ≤ 2; and patients with PI-RADS 3 and
PSAD < 0.1 ng/mL2 to skip biopsy. For the risk model, the threshold value is varied. The absolute number of biopsies avoided by the strategy is shown as “avoided
biopsies” with the percentage of the total cohort size given. “No. sPC missed” indicates the number of exams harboring sPC that are recommended to avoid biopsy.
“No. negative biopsies” indicates the number of biopsies that are performed without a diagnosis of sPC
No. number of exams, PI-RADS prostate imaging reporting and data system, PPV positive predictive value, NPV negative predictive value, PSA prostate-specific antigen,
sPC significant prostate cancer

Fig. 6 Risk stratification example from the test cohort: a 66-year-old male presents with negative DRE, PSA elevation to 6.2 ng/mL, prostate volume of
82.5 mL, and PSAD of 0.075 ng/mL. The previous prostate biopsy did not find any prostate cancer but MRI uncovers a lesion in the posterolateral
peripheral zone with apparent diffusion coefficient restriction, categorized as PI-RADS 4. nnUNet co-detects the lesion and assigns a UNet-probability of
31%, corresponding to UNet-Likert 4. While Leeuwen 2017 and Radtke 2017 RCs follow the PI-RADS recommendation for biopsy with 20% and 45% sPC
risk, respectively, the newly-fitted PI-RADS+ UNet probability RC sets the sPC probability at only 10.5%, below the 15% threshold discussed for biopsy
recommendation. MRI-TRUS fusion biopsy did not find any prostate cancer in 30 systematic and nine targeted cores, confirming the newly fitted RCs
recommendation to spare the prostate biopsy in this case
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would exclude most of the patients who would benefit

most from the RC models due to their low-risk status and

potential decision to avoid biopsy. The biopsy scheme

used in this study has been shown to detect 97% of sPC

found at radical prostatectomy [2], providing high-quality

ground truth. DL image analysis was performed on bi-

parametric MRI, while radiologists interpreted mpMRI

including DCE. As the quality of predictions did not

decline after PI-RADS was substituted by DL, our data

suggest that bi-parametric MRI provides sufficient infor-

mation. Previous studies showed only minor contribu-

tions of DCE to MRI assessment as well [51]. PSA showed

a significant contribution to predictions, while PI-RADS

and DL image analysis contributed similarly, suggesting

that radiologists base their PI-RADS assessment primarily

on the mpMRI imaging appearance, although they have

access to PSA and PSAD, as intended by PI-RADS [24].

Radiologist-delineated lesions informed the reference

standard through targeted biopsy cores while suspicious

regions from UNet predictions could not be probed in a

retrospective analysis, potentially underestimating the

diagnostic potential of DL. However, at our institution,

prostate MRI was read by experienced radiologists

familiar with subtle manifestations of sPC and frequent

review of cases in interdisciplinary boards, and providing

high sensitivity at the PI-RADS ≥ 3 threshold of up to 98%

compared to extended systematic and targeted biopsies

[19]. The ground truth provided by sensitive clinical

imaging assessment and a high-quality biopsy scheme

leads to an exceptional targeted mapping quality of the

prostate while maintaining a clinical workflow. For some

of the examinations in the training set, only PI-RADS v1

was available. In these cases, post-hoc reassessment by a

board-certified radiologist was performed without

knowledge of the biopsy result. By considering the origi-

nal PI-RADS v1 score, the result was a consensus score,

which assured that a representative PI-RADS v2 score was

used for training, e.g., a score for which agreement of

image characteristics and score were further confirmed.

For DL training, this reassessment had only a minor effect

as training was based on histopathology from a systematic

and targeted prostate biopsy and not PI-RADS, affecting

only the ground truth if a lesion was not biopsied by using

PI-RADS v1 criteria, which would qualify for biopsy by PI-

RADS v2 criteria. As a sensitive approach to prostate

assessment was chosen, the probability of this effect with

regard to sPC was further minimized. For examinations in

the test set, reassessment was not necessary and did

therefore not affect performance comparisons. Logistic

regression models, as used in the analyzed RCs, enable

explainable nomograms but other classifiers should be

investigated further, such as support vector machines or

random forest classifiers, which have been successfully

applied to radiomics [39] and to assess biochemical

recurrence [52]. This study retrospectively evaluated cases

from a single high-volume tertiary-care center. The ben-

efit of DL-based and updated RCs should be further

validated in multi-centric studies.

In conclusion, fully-automated DL prostate MRI

assessment not only confirms its similar performance to

clinical PI-RADS assessment but also demonstrates

complementarity to the latter, with the effect of increased

predictive performance of logistic regression risk estima-

tion models utilizing both parameters, thus suggesting an

attractive approach for improvement of diagnostic quality

for patient stratification before biopsy.

Abbreviations

AUC Area under the receiver operating characteristics curve
DL Deep learning
DRE Digital rectal examination
ISUP International Society of Urological Pathology
mpMRI Multiparametric magnetic resonance imaging
PI-RADS Prostate imaging reporting and data system
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PSA(D) Prostate-specific antigen (density)
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ROC Receiver operating characteristics
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TRUS Transrectal ultrasound
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