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AMYCN-driven de-differentiation profile
identifies a subgroup of aggressive
retinoblastoma
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Retinoblastoma are childhood eye tumors arising from retinal precursor cells. Two distinct

retinoblastoma subtypes with different clinical behavior have been described based on gene

expression and methylation profiling. Using consensus clustering of DNA methylation analysis from

61 retinoblastomas, we identify a MYCN-driven cluster of subtype 2 retinoblastomas characterized

by DNA hypomethylation and high expression of genes involved in protein synthesis. Subtype 2

retinoblastomas outside theMYCN-driven cluster are characterized by high expression of genes from

mesodermal development, includingNKX2-5. Knockdown ofMYCN expression in retinoblastoma cell

models causes growth arrest and reactivates a subtype 1-specific photoreceptor signature. These

molecular changes suggest that removing the driving force of MYCN oncogenic activity rescues

molecular circuitry driving subtype 1 biology. The MYCN-RB gene signature generated from the cell

models better identifiesMYCN-driven retinoblastoma thanMYCN amplification andcan identify cases

that may benefit from MYCN-targeted therapy. MYCN drives tumor progression in a molecularly

defined retinoblastoma subgroup, and inhibiting MYCN activity could restore a more differentiated

and less aggressive tumor biology.

Retinoblastomas are retinal tumors originating from postmitotic cone
photoreceptor precursor cells1–3. Most retinoblastomas are characterized by
a biallelic inactivation of RB1, the RB transcriptional corepressor 1, and
~45%ofpatientswith retinoblastomacarry a constitutional, pathogenicRB1
variant4. Early diagnosis of intraocular retinoblastoma leads to high survival
rates in high-income countries, while metastatic retinoblastoma is rare
because the natural boundaries of the eye prevent metastatic spread in early
disease stages5. In low and middle income country, metastatic spread of
retinoblastoma is more common and leads to significantly lower survival
rates5. Intraocular retinoblastoma can be treatedwith enucleation of the eye
or, especially in patients with bilateral disease, with a range of therapies to
preserve the eye globe and vision. Biopsies of intraocular retinoblastoma are
obsolete, so that samples from early disease that received eye-preserving
therapy are scarce. Advances in and increasing use of eye-preserving
therapies complicate retinoblastomamolecular genetic characterization and
development of innovative targeted therapies, although there is hope that
this may be overcome by serial liquid biopsies in the future6.

Recurrent genetic alterations other than RB1 are rare in
retinoblastoma7–10, while copy number aberrations of chromosomes 1, 6,
and 16 are characteristic11. DNA methylation-based clustering combined
with gene expression profiling have distinguished two retinoblastoma
subtypes with differences in clinical characteristics, genomic alterations,
and, potentially, prognoses12–14. Subtype 1 retinoblastomas (equivalent to
cluster 2 in Kooi et al.13) are characterized by few genetic and chromosomal
alterations, mostly limited to RB1 loss and 6p gain, and show gene
expression resembling signatures ofmaturing photoreceptor cells that Kooi
et al. termed a “photoreceptorness signature”13 and Liu et al. termed a “cone
marker signature”12. Subtype 2 retinoblastomas (equivalent to cluster 1
described byKooi13) are geneticallymore heterogeneous, carrymore genetic
and chromosomal alterations than subtype 1 retinoblastomas and express
high levels of neuronal markers and genes for stemness with low levels of
photoreceptor-related genes12. High TFF1 expression has been described as
a surrogate marker for subtype 2 retinoblastoma12,15. Preliminary clinical
data suggest that subtype 2 retinoblastomas are more aggressive and at
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higher risk for metastasis12,15 and, consequently, may require higher treat-
ment intensity. To tailor treatment accordingly in the future, further char-
acterization of themolecular and biological characteristics of each subtype is
warranted.

MYCN oncogene amplification has been observed in a small subgroup
of retinoblastomas grouped into subtype 2 retinoblastoma12,13,16. The MYC
protein family are basic helix-loop-helix (bHLH) transcription factors
regulating proliferation, differentiation, cell-cycle progression, protein
synthesis,metabolism, and apoptosis17–21. Amplifications ofMYCNorMYC
occur, respectively, in the childhood cancers, neuroblastoma, and medul-
loblastoma, and the resulting protein overexpression is associated with
aggressive growth and poor clinical outcome22–24. In retinoblastoma,MYCN
amplification (MYCNA) occurs in RB1−/−MYCNA retinoblastomas and the
rare, RB1-proficient MYCNA retinoblastomas. RB1-proficient MYCNA

retinoblastomas are currently considered a separate disease entity with very
aggressive behavior, in which MYCN is thought to exclusively drive
tumorigenesis25,26. RB1-proficientMYCNA retinoblastoma could potentially
arise from a different cell of origin or at a different maturation stage than
RB1−/− retinoblastomas.

Here we aimed to define the impact ofMYCNactivity in the context of
retinoblastoma subtypes 1 and 2 in a cohort of 61 retinoblastoma samples
enriched by six RB1-proficient MYCNA and two extraocular metastatic
relapse samples. Genome-wide DNA methylation profiling was used to
molecularly classify the 61 primary retinoblastomas. We sought circuitry
defining the molecular phenotypes through bioinformatics analyses on
RNA sequencing datasets from 52 samples. Our aimwas to precisely define
the molecular patterns of retinoblastoma with oncogenic MYCN activity
within subtype 2. We generated MYCN-knockdown retinoblastoma cell
models to assess functional effects and define a MYCN-RB signature, as a
potential application to identify patients with retinoblastomas driven by
oncogenic MYCN activity who could benefit from MYCN-directed
treatment.

Results
A distinct hypomethylated DNA pattern characterizes MYCN-

driven retinoblastomas

Weexamined epigenetic and genomic levels for a detailedmolecular viewof
subtypes 1 and 2 in a cohort of 61 primary retinoblastoma samples enriched
by 6 RB1-proficient MYCNA retinoblastoma samples (4 previously
described25) and 2 samples of relapsed, extraocular retinoblastomas (Sup-
plementary Data 1, 2). RB1 status was derived from routine diagnostic
sequencing and MYCN amplifications were derived from global DNA
methylation profiles using whole-genome Illumina 450k or EPIC (850k)
arrays (61 samples). We applied an unsupervised DNA methylation-based
cluster assembly and increased the robustness of this clustering using a beta-
value discretization approach27 in a consensus clustering of 8857 unsu-
pervised clusterings (k-means and agglomerative or hierarchical), affinity
propagation, mean-shift, DBSCAN, and spectral clusterings, each with
various sets of hyperparameters (Fig. 1a). In contrast to the previously
described 2 retinoblastoma subtypes, our consensus clustering dis-
tinguished 3 retinoblastoma groups: cluster A (n = 35, included 2 datasets
from 1 sample), cluster B (n = 17) and cluster C (n = 10, Fig. 1b). The Liu
et al. 9-CpG classifier12 designed for 450kmethylation array data (and based
on 8 probes also used in the EPIC array) showed a correspondence between
cluster A and subtype 1 retinoblastoma, and between clusters B and C and
subtype 2 retinoblastoma (Fig. 1c, Supplementary Fig. S1a). In linewith this,
the CpG subsets defined by Li et al.28 for each cluster correspondedwith our
clusters (Supplementary Fig. S1b).

More CpGs were differentially methylated between clusters C and A
(33462 probes) than between clusters B and A (2776 probes, Fig. 1d),
emphasizing a distinct methylation pattern in cluster C retinoblastomas.
Hypomethylation was characteristic for differentially methylated CpGs
in cluster C (Fig. 1e), while most differentially methylated CpGs in cluster
B retinoblastomas were hypermethylated (Fig. 1e, Supplementary
Fig. S1c). Cluster C-specific hypomethylation and cluster B-specific

hypermethylation occurred both inside and outside CpG islands (Fig. 1f).
Only 8.4% of CpGs differentially methylated in cluster C were within
islands, while 33.5% of differentially methylated CpGs in cluster B were
in CpG islands. AllMYCNA retinoblastomas (6 RB1-proficientMYCNA, 2
RB1−/−MYCNA) clustered together with 2 RB1−/−retinoblastomas lacking
MYCN amplifications as cluster C (Fig. 1c). The 2 retinoblastomas
lacking MYCN amplifications had aberrations that could trigger onco-
genic MYCN activity through other routes. The focal 13q31.3 amplifi-
cation in 1 retinoblastoma harbored MIR17HG, a microRNA known to
activate MYC(N) signaling, and part ofGPC5 (Supplementary Fig. S2a, c,
Supplementary Data 3). The other retinoblastoma had multiple genomic
abnormalities on chromosomes 6, 7, and 8, in line with chromothripsis,
chromoanasynthesis or chromoplexy including an amplification con-
taining the downstream MYC(N) signaling component, BRAF (Supple-
mentary Fig. S2b, c, Supplementary Data 3).

Children with cluster A retinoblastomas were significantly younger at
diagnosis (median: 0.87 years) than patients with cluster B retinoblastomas
(median: 2.36 years, p-value (p)Wilcoxon rank test = 5.785e−08; Fig. 1c, Sup-
plementaryFig. S2d, SupplementaryData1).The age atwhich childrenwere
diagnosedwithRB1−/− retinoblastomas in clusterC (median: 2.86 years) did
not statistically differ from childrenwith cluster B retinoblastomas (median:
2.36 years, pWilcoxon rank Test = 0.83; Supplementary Fig. S2d), while the 6
patients with RB1-proficient retinoblastomas in cluster C were significantly
younger (median: 0.38 years, vs cluster B pWilcoxon rank test = 0.006961;
Supplementary Fig. S2d). Classification separated the 2 extraocular relapsed
retinoblastomas, grouping 1 in cluster A (subtype 1) and the other in cluster
B (subtype 2).Gainof 6pwasobserved in all 3 clusters,while 1qgain and16q
loss were observed predominantly in cluster B, and 2p gain was exclusive to
cluster C (Fig. 1c, Supplementary Fig. S2e). Genetic mutations (whole-
exome sequencing) other thanRB1were rare, apart from somaticmutations
in BCOR and the ARID family genes, ARID1A and ARID4A, as previously
reported7,12 (Supplementary Data 4, 5). Consensus clustering subdivided
subtype 2 retinoblastomas into 2 clusters, B and C, with distinct patterns in
MYCN amplification, genomic rearrangements, and methylation profiles.

NKX2-5 andMYCN are the transcription factors best demarcat-

ing clusters B and C

We applied RNA sequencing to the 52 samples from the 61-retinoblastoma
cohort (Supplementary Data 2). To characterize the activated signaling
pathways in each cluster, we compared the RNA sequencing datasets from
the 52 primary retinoblastomas cluster-wise (31 cluster A, 15 cluster B, 6
cluster C retinoblastomas) using sleuth29. Comparing gene expression from
retinoblastomas in cluster A (subtype 1) with clusters B|C (subtype 2)
retrieved 4887 differentially expressed transcripts corresponding to 3109
protein-coding genes (2403 upregulated genes in cluster A, 706 upregulated
genes in clusters B|C, |b|> 0.3; Fig. 2a, Supplementary Data 6). Gene-set
enrichment analysis (GSEA) showed that more strongly expressed genes in
cluster A retinoblastomas were involved in inflammatory and interferon-
gamma responses (Supplementary Fig. S3a, Supplementary Data 7). Clus-
ters B and C shared high expression of genes from signatures defined for
photoreceptor-poor, undifferentiated retinoblastoma (Liu score12:
pAvsB = 3.1e−09, pAvsC = 2.2e−05, pCvsB = 0.78; Kooi Score13: pAvsB =
1.3e−08, pAvsC = 4.6e−05, pCvsB = 0.78; Wilcoxon rank-sum test;
Fig. 2b). In line with this, pairwise comparisons of clusters B and C with
clusterA (SupplementaryData 8, 9) showedthat themajorityofupregulated
genes in cluster B (73%) and cluster C (82%) belonged to genes previously
shown to be representative of photoreceptor-poor, undifferentiated
retinoblastoma12,13 (Supplementary Fig. S3b). Clusters B and C shared 41
upregulated genes and 113 downregulated genes that included TFF1, EBF3,
BCL11A, and SOX11 (Supplementary Data 10, Supplementary Fig. S3c).
High-level MYCN expression characterized cluster C, while strong
expression of the NKX2-5 and GATA4 transcription factors characterized
cluster B (Fig. 2c, Supplementary Fig. S3d, Supplementary Data 8, 9).
However, transcription factors co-expressed with MYCN or NKX2-5
(Supplementary Data 11) were not mutually exclusive. Only MYC
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expression showeda trend toanti-correlatewithMYCN itself and factors co-
expressed withMYCN (Fig. 2d).

HighMYC(N) target gene expression characterized clusterC, aswell as
heightened gene activity for ribosomal function and protein synthesis and
low expression of genes involved in cilia function (GSEA, Supplementary
Data 12). Cluster B was characterized by low immune-related gene activity

and high target expression for a component of the RB-like, E2F and multi-
vulval class B (DREAM) complex, hydroxysteroid dehydrogenase and
polycomb repressive complex 2 (PRC2, Supplementary Data 13). Com-
pared to cluster C, a subset of immune response-specific signatures was
depleted and genes involved in transcriptional regulation were over-
represented in cluster B (Supplementary Fig. S3d, Supplementary Data 14).
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These data implicate distinct pathways in clusters C and B, with both routes
leading to retinoblastoma de-differentiation.

We selected differentially expressed gene signatures defining either
clusterCorB tobetter understanddifferences in cluster expression circuitry.
A step-wise statistical filtering approach was applied to genes differentially
expressed among clusters A through C to obtain signatures specific to
clusterBorC.The signaturedefining clusterCcontained fewerdifferentially
expressed transcripts (cluster C: 372, cluster B: 1886, Supplementary
Data 15, 16). Among the top 15 genes strongly expressed in only cluster C
were several encoding bHLH transcriptions factors, including MYCN,
NHLH1, and NEUROG1, while the developmentally regulated homeobox
transcription factors,NKX2-5,ONECUT1, and GSC were among the genes
defining cluster B (Fig. 2e). No other transcription factor was more abun-
dant (transcript level) than MYCN in MYCNA retinoblastomas. The sig-
nature defining cluster C is expressed at a low level in cluster B (Fig. 2f,
Supplementary Fig. S3e), and vice versa. GSEA recapitulated the expression
signatures in pairwise comparisons of clusters B and C against A. Notably,
retinoblastomas in both clusters B and C strongly expressed genes from a
stemness signature and genes associated with neuroblasts and neuronal
progenitors. Retinoblastomas in clusters B and C appear to share tran-
scriptional characteristics, but be driven by distinct molecular circuitry
indicated by their specific transcriptional hallmarks.

CpGsdifferentiallymethylated inclustersBandCare localized to

genes defining these clusters

We detected hypermethylation in cluster B and hypomethylation in cluster
C retinoblastomas (Fig. 1e, f). Differentially methylated genes in cluster B
were 97% hypermethylated (compared to A│C) and in cluster C were 99%
hypomethylated (compared to A│B). The presence of specific transcrip-
tional hallmarks of clusters B and C suggested a correlative connection
between our DNA methylation-based clustering and defining molecular
circuitry in the retinoblastomas. To explore processes that DNA methyla-
tion could regulate, we analyzed enrichment of gene ontology (GO) terms
corresponding to differentially methylated CpGs in each cluster. Hyper-
methylated genes in cluster B were involved in camera-eye development,
regulating neuronal function and synapse organization (Fig. 3a). Cluster C
was enriched with hypomethylated genes involved in smell perception
(Fig. 3a, Supplementary Fig. S4a). Minimal regions around hypermethy-
lated CpGs, distinguishing cluster B, were enriched for binding motifs
specific for homeodomain and zinc-finger transcription factors (HOMER
analysis, Fig. 3b, Supplementary Data 17). In contrast, the E-box (bHLH-
binding motifs) variants, CACCTG and CATCTG, were enriched in
minimal regions around hypomethylated CpGs in cluster C (HOMER
analysis, Fig. 3b, Supplementary Data 18), indicating a potentially more
open chromatin configuration for MYCN-driven gene regulation. Our
results suggest that bHLH factors, such as MYCN, are highly expressed in
cluster C retinoblastoma.

We integrated our RNA sequencing and DNA methylation data to
explore local regulation of gene expression via autosomal CpGs (in and
outside islands) annotated to the protein-coding genes in each signature
(Fig. 4a). The proposed surrogate marker for subtype 2 retinoblastoma,
TFF1, was hypomethylated and strongly expressed in clusters B and C
(Fig. 4a, b). The bHLH transcription factor, NHLH1, was hypomethylated
and strongly expressed in cluster C (Fig. 4a, b). The majority of genes with
differentially methylated CpGs (6320 CpGs of 2465 genes) negatively

correlated with expression (R ≤ 0.4, Fig. 5a), while 2261 CpGs of 992 genes,
including NKX2-5, positively correlated with gene expression (R ≥ 0.4;
Fig. 4a, b, Supplementary Data 19–23). GO enrichment analysis revealed
enrichment of neuronal development and function for negatively correlated
hypomethylated genes in clusters B and C (Fig. 4c). Negatively correlated
hypermethylated genes in clusters B and C were enriched for cell-to-cell
communication and neuronal development terms (Fig. 4c). Positively
correlated genes in cluster B and cluster C were enriched for the GO terms,
muscle tissue development, mesenchyme development and mesenchymal
cell differentiation (Fig. 4d). Our comparisons of differentially methylated
CpGs between clusters (Fig. 1d) also identified 28% of CpGs analyzed in
correlation analysis. Genes associated with enhancer elements previously
annotated in developing retina or retinoblastoma30,31 were hypomethylated
andhighly expressed inour cohort (SupplementaryData24, Supplementary
Fig. S4b). Yet, enhancer elements, with the exception of hypomethylated in
cluster C enhancers associated with MYCN and NHLH1, lacked cluster-
specific differences in methylation (Supplementary Data 24). Our methy-
lation and expression data confirm the previous association of TFF1 with
subtype 2 retinoblastoma, provide further support for the defining role of
MYCN activity in cluster C.

MYCN knockdown rescues molecular circuitry driving subtype I

in retinoblastoma cell models

We profiled 9 previously described retinoblastoma cell lines32 (Supple-
mentary Fig. S5a, Supplementary Data 2) with our multi-omics approach.
The RB1-proficient cell lines, RB522 and RB3823, and the RB1−/−MYCNA

cell line, Y79, expressed the highest MYCN mRNA and MYCN protein
levels and showed the highest proliferation rates (Fig. 5a, Supplementary
Fig. S5b).Applying the Liu et al. 9-CpGclassifier12 to these data groupedall 9
cell lines with subtype 2 retinoblastoma (Supplementary Fig. S5c). The 4
MYCNA cell lines comprised a separate branch closer to cluster C than B
based on hierarchical clustering of mRNA expression of transcription fac-
tors expressed in these 2 retinoblastoma clusters (Supplementary Fig. S5d,
e). The highest expression scores for cluster C signature genes were detected
in the fast-growing, MYCNA RB3832, RB522 and Y79 cell lines (Supple-
mentary Fig. S5f). Since no cell lines are derived from subtype 1 retino-
blastoma, we explored the functional effects of MYCN in the subtype 2
background by generatingMYCN knockdownmodels from these cell lines.

To define molecular and functional changes driven by MYCN in
subtype 2 retinoblastomas, inducible knockdown models were generated
from 4 retinoblastoma cells lines. We selected the 2 RB1 proficientMYCNA

cell lines (shRNA-basedMYCN knockdown in RB522, RB3832) because of
highMYCNRNAandprotein expression and twoRB1−/− cell lineswith and
withoutMYCN amplification (shRNA-basedMYCN knockdown in RB355
MYCNA cell lines and theMYCN-diploidWERI-Rb1 cell line). Knockdown
reduced MYCN levels by 50–65% in cell models (Fig. 5b, Supplementary
Fig. S6a). The proportion of cycling cells and the ability to formcolonieswas
reduced in culture (Supplementary Fig. S6b, c, Fig. 5c, Supplementary
Fig. S6d, e) and tumor growth was reduced in the in vivo chorioallantoic
membranemodel (Fig. 5d).Analysis ofRNAsequencingdata across all 4 cell
models identified a common set of 477 genes that were differentially
expressed (93 upregulated, 385 downregulated, Storey-Tibshirani p ≤ 0.1;
Supplementary Data 25). More than 50% of commonly downregulated
genes (n = 244) were knownMYC(N) targets23,33–35 and define aMYCN-RB
signature (Fig. 6a, Supplementary Data 26). MYCN knockdown

Fig. 1 | MYCN-driven retinoblastomas have distinct molecular (epi)genetic and

clinical features. a Flowchart displaying method of DNA methylation data clus-

tering. The flowchart summarizes the steps performed to build a threshold graph

reflecting consensus clustering of the DNA methylation data from 61 retino-

blastomas. b Separation of 3 retinoblastoma clusters by global DNA methylation-

based consensus clustering (62 datasets of retinoblastomas), cluster A (n = 35,

green), cluster B (n = 17, turquoise) and cluster C (n = 10, magenta). MYCN-driven

cluster retinoblastoma included RB1−/−MYCNA (pink, n = 2), RB1-proficient

MYCNA (purple, n = 6), and RB1−/−non-MYCNA (maroon, n = 2). cHowmolecular

tumor and clinical characteristics in the 61 patients with retinoblastoma differed in

between the 3 clusters and correlation of clustering with the 2 subtypes grouped by

the 8-CpG classifier12 (Supplementary Data 1). d The numbers of differentially

methylated CpG sites (Welsh t-test; abs.diff 0.2; Benjamini–Hochberg adjusted

p < 0.001) in and outside of CpG islands (CpGi) are listed. e Differentially methy-

lated CpGs in cluster C compared to cluster A|B and in cluster B compared to cluster

A|C are depicted in the 2 heatmaps. f Density plots for DNA methylation levels

(ß-values) of differentially methylated probes in cluster C vs. cluster A|B (left) and

cluster B vs. cluster A|C (right). Inlet plots representmedian density plots per cluster.
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downregulated expression of genes involved in protein synthesis and cell
metabolism (Supplementary Data 27, second most common func-
tional group).

Genes known to be markers for photoreceptor cells (NRL, OPTN,
SLC17A7, PLEKHB1, GNGT2, ATP2B1, and BAZ2B) were among those
upregulated in models afterMYCN knockdown (Supplementary Data 25).

MYCNknockdownupregulated genes descriptive of thephotoreceptor-rich
cluster A retinoblastoma (Fig. 6b) and downregulated genes representative
of the photoreceptor-poor, undifferentiated and cluster C retinoblastoma
(Supplementary Fig. S7a, b) in cell models. None of the genes defining
cluster B were regulated by MYCN knockdown (sleuth-modeled MYCN-
knockdown expression profile, Fig. 6b; pairwise non-induced/induced cell
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model comparisons, Supplementary Data 28), indicating MYCN plays no
role in the molecular circuitry driving cluster B retinoblastoma. We con-
firmedupregulationof clusterAexpressedOPTNonprotein level usingflow
cytometry analysis (Fig. 6c, Supplementary Fig. S7c). Notably, pathways
associatedwith genes downregulatedbyMYCNknockdownwere consistent
across all 4 cell models (Fig. 6d). The pathways associated with upregulated
genes were similar within each of the 2 RB1−/− cell models (RB355 and
WERI-Rb1) and RB1-proficient cell models (RB522 and RB3832), but
differed between the 2 groups (Fig. 6e). In the absence of functional RB1,

MYCN knockdown upregulated more genes encoding photoreceptor or
ciliary proteins (compared with RB1-proficient cell lines; Fig. 6f, Supple-
mentary Data 29), suggesting a stronger redifferentiation of the cells.

We applied the MYCN-RB signature to our RNA sequencing dataset
from52primary retinoblastomas.MYCN-RBexpression scoreswere lowest
in cluster A and highest in cluster C (pAC = 0.00058, pAB= 0.00016,
pBC = 0.02; Fig. 6g), peaking in MYCNA retinoblastomas (pMYCNnon-A-
MYCNA

Wilcoxon rank sum test = 3.694e−06) and correlating with MYCN
expression (R = 0.69, RMYCNnon-A = 0.60, p < 0.00001). We also assessed the

Fig. 2 | Transcriptomic landscape in clusters B and C retinoblastomas (including

RB1-proficient retinoblastoma). a Volcano plot of differentially expressed tran-

scripts between cluster A and cluster B|C. Up- and downregulated transcripts are

plotted in violet and green, respectively. Key transcripts are plotted with the cor-

responding annotated gene symbols (Supplementary Data 6). b Box plots showing

distribution of expression scores from genes representative of photoreceptor-poor,

undifferentiated retinoblastoma (Liu score12: 3105 genes positively expressed; 3088

genes downregulated, adjusted p ≤ 0.05; or Kooi-score13: 3425 genes upregulated;

3477 genes downregulated, adjusted p ≤ 0.05) in 52 retinoblastomas. c Box plots

showing aggregated log1p-transformed transcript tpm (transcripts per kilobase

million) values and combined Storey-Tibshirani-adjusted p forMYCN andNKX2-5

expression (left) and associated gene sets (right) in 52 retinoblastomas. d Expression

of transcription factors correlating with NKX2-5 and MYCN is illustrated in the

circle plot. Color and size of the circles represent the correlation coefficients.

e Schemes showing expression of genes defined for cluster B and C gene signatures.

The top 15 upregulated and downregulated genes within these signatures are listed

with the corresponding cytobands (complete outputs, Supplementary Data 15, 16).

Genes encoding transcription factors are in bold. f Scatter plot demonstrating the

differentially expression of genes from cluster B (524 transcripts, x-axis) and cluster

C (117 transcripts, y-axis) signatures in 52 retinoblastomas. The average of log1p-

transformed tpm values for a gene set was used as a signature score of each reti-

noblastoma sample. Boxes show upper and lower quantile and median. Whiskers

extend from the hinge to ±1.5 times the interquartile range.

Fig. 3 | Differentially methylated CpGs in retinoblastoma clusters B and C.

aBiological processes retrieved from gene ontology enrichment analysis of the genes

matching to differentially methylated CpGs between clusters B and A|C (left) and

differentially methylated CpGs between clusters C and A|B (right). Dot size and

color represent the number of genes and enrichment significance, respectively.

x-axis indicates the gene enrichment ratio (GeneRatio) of a biological process GO

term. b Selected motifs identified in 50-bp sequences surrounding CpGs that are

hypermethylated in clusters B vs. A|C (4109 sequences, left) or hypomethylated in

clusters C vs.A|B (25073 sequences, right) identified byHOMERknownDNA-motif

enrichment (complete outputs, Supplementary Data 17, 18).
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Fig. 4 | Integrative analysis of DNA methylation and gene expression in reti-

noblastoma clusters B and C. a Volcano plot for Pearson correlations between

mRNAs and methylation values of corresponding local CpGs in CpG island (left)

and non-CpG island (right) contexts in 52 retinoblastomas (SupplementaryData 19,

20). Y-axes represent logarithm of p-value of each correlation coefficient. X-axes

represent the Pearson correlation coefficient, r. Selected highly correlated CpG-

mRNA pairs are labeled in blue (negative correlation) and red (positive correlation).

b Relationship between gene expression in log1p-transformed tpm values and DNA

methylation of CpGs (β-values) for selected genes in 52 primary retinoblastomas.

Y-axes represent mRNA expression. X-axes represent DNA methylation. Each dot

corresponds to a retinoblastoma sample and is color-coded by retinoblastoma

cluster (green, cluster A; turquoise, cluster B; magenta, cluster C). Pearson (R) and

Spearman (rho) coefficients with corresponding p-values, linear regression line and

confidence interval are indicated for each comparison. Box plots showing average of

log1p-transformed tpm values of negatively (c) and positively correlated (d) genes in

retinoblastoma clusters (upper panels) and dot plots showing biological processes

associated with these genes (lower panels). Boxes show upper and lower quantile and

median. Whiskers extend from the hinge to ±1.5 times the interquartile range or the

highest/lowest value.
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opposite picture of expression (genes upregulated by MYCN knockdown)
from our sleuth-modeled MYCN-knockdown expression profile in the 52
primary retinoblastomas. Retinoblastomas lacking MYCN amplifications
strongly expressed this gene group (pMYCNnon-A-MYCNA

Wilcoxon rank sum

test = 0.0002623), and expressionwashighest in clusterA, followedby cluster
B (pAC=0.00058, pBC=0.00227, pAB=0.37503;Wilcoxon rank-sum test;
Fig. 6h). In our cohort of primary retinoblastoma, theMYCN-RB signature

generated in the cell line model was able to identify MYCN-driven retino-
blastomas with and without MYCNA, which cluster separately based on
methylation as cluster C retinoblastomas. To validate this finding, we rea-
nalyzed the DNAmethylation array data of the Liu et al. cohort12 using our
subsets of cluster B- and cluster C-specific CpGs, which revealed two cluster
C retinoblastomas (Supplementary Fig. S8a, b). Based on Liu et al. RNA
expression data, these two cluster C retinoblastoma and one retinoblastoma
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without methylation data showed the highest MYCN-RB signature scores
(Supplementary Fig. S8c). These three tumors were identified as MYCNA,
supporting the validity ofMYCN-RB signature to identifyMYCN-amplified
retinoblastomas.

Likewise, the expression of genes descriptive of the photoreceptor-
rich retinoblastoma in the cell line models after MYCN knockdown
shows that MYCN is involved in maintaining undifferentiated state of
retinoblastoma cells.

Discussion
Here, we first define a MYCN-driven group of subtype 2 retinoblastoma
characterized by hypomethylation and high expression of MYCN target
genes. This subtype 2-MYCN (cluster C) comprises not only the rare RB1-
proficient MYCNA retinoblastoma but also RB1−/− retinoblastomas with
overactive components of MYCN signaling. Knockdown of MYCN in cell
models reactivated the differentiated subtype 1 photoreceptor signature,
suggesting a transition between the differentiated subtype 1 retinoblastoma
and the more aggressive subtype 2 retinoblastoma that can potentially be
reversed via targeting MYCN. We also defined and validated a MYCN-RB
gene signature to identify retinoblastomas that could benefit fromMYCN-
targeting treatment.

In contrast to the previously described hypermethylation pattern12,16 of
subtype 2 retinoblastoma, this subtype 2-MYCN (cluster C) was char-
acterized by hypomethylation and showed distinct patterns of genomic
rearrangements, gene expression profiles and clinical characteristics to
cluster B, underlining biological differences between these two clusters
within subtype 2 (Fig. 7). Our data identify cluster C as a subgroup with
different defining molecular circuitry and hallmarks in subtype 2
retinoblastomas12. Yet, the absence of anti-correlated gene expression
between cluster B- and cluster C-specific transcription factors indicate that
expression programs in cluster B and C retinoblastomas are probably not
mutually exclusive. However, correlation of gene expression and methyla-
tion clearly confirmedMYCN as the transcription factor best demarcating
cluster C from B.

The MYCN-driven cluster C included not only MYCN-amplified
retinoblastomas, but two samples with high MYCN target expression that
lacked MYCN amplifications, suggesting alternative ways of activating
MYCN-driven tumor progression in retinoblastoma. Gene amplification is
one of several mechanisms that lead toMYCN deregulation and activation
of MYCN targets36. Several microRNAs, includingMIR17HG, are involved
in the complex regulation of MYC(N) signaling37, so that it is plausible that
MIR17HG amplification drives MYCN signaling in the selected cluster C
retinoblastoma. The high expression ofMYC andother bHLH transcription
factors (NHLH1 and NEUROG1) was similar among cluster C retino-
blastomas, regardless of MYCN amplification status. The enrichment of
CACCTG and CATCTG E-box variants, which are the preferred by
TWIST, NEURO, and TCF/LEF family transcription factors and can bind
MYCNunder deregulated conditions38, emphasize the importanceof bHLH
transcription factors for cluster C retinoblastomas. Remarkably, hypo-
methylationof several olfactory receptor geneswas characteristic for subtype
2-MYCN (cluster C). The olfactory receptor gene family is the largest in the
human genome39. Ectopically expressed olfactory receptor genes have been

linkedwith differentiation of cancer cells and prognosis in various cancers40.
Activation of olfactory receptor genes may reflect de-differentiation of
subtype 2-MYCN (cluster C) retinoblastoma. As MYCN amplification
alone was insufficient to identify MYCN-driven retinoblastomas, we
defined the MYCN-RB signature using data fromMYCN-knockdown cell
models. The MYCN-RB signature identified cluster C retinoblastomas and
can be used to identify retinoblastoma cases that may benefit fromMYCN-
directed therapies.

MYCN is a known oncogene in various embryonal tumors andMYCN
amplification is a well-known prognostic factor for patients with
neuroblastoma41. A previous study demonstrated that MYCN oncogenic
programs differed between retinoblastoma and neuroblastoma42. In con-
trast to neuroblastoma43, the MYCN-associated methylation pattern was
characterized by hypomethylation in our retinoblastoma cohort, but results
from our MYCN-knockdown cell models support a significant overlap
between MYCN targets in retinoblastoma and known MYCN and MYC
targets. Genes involved in protein synthesis appeared to be controlled by
MYCN in retinoblastoma, consistent with previous findings in other
cancers44,45. This supports the idea of MYCN cooperation with translation
processes in retinoblastoma and opens up perspectives for new drug targets
inMYCN-driven retinoblastomas. In retinoblastoma,MYCN amplification
occurs in both the more common RB1−/− and rare RB1-proficient
backgrounds25,46. RB1-proficient retinoblastoma has been described as a
separate retinoblastoma entity with very aggressive behavior, in which
MYCN is thought to be the exclusive driver of tumorigenesis25,46. Our
consensus clustering based on genome-wide methylation did not distin-
guish between RB1-proficient and RB1−/− MYCN-amplified retino-
blastomas, as other groups have reported16. While this is a relatively large
group of the exceedingly rare RB1-proficient retinoblastomas, the com-
parison is limited by small cohort size, such that batch effects cannot
completely be excluded. Apart from the previously reported very young age
of diagnosis for RB1-proficient retinoblastoma, we did not observe differ-
ences in gene expression, chromosomal or genetic features between the
RB1−/− and RB1-proficientMYCN-amplified retinoblastomas. Only in our
cellmodels diddifferences becomeapparent afterMYCNknockdown,when
RB1−/− cell lines showedmore pronounced expression of the photoreceptor
signature than RB1-proficient retinoblastomas. DNAmethylation and gene
expression profiling in further RB1-proficient MYCN-amplified retino-
blastomas will help to better characterize differences in molecular circuitry
in RB1−/− and RB1-proficientMYCN-amplified retinoblastoma.

MYCN knockdown in our cell models caused a partial growth arrest
and reactivated the photoreceptor gene signature of subtype 1 retino-
blastoma in the subtype 2 cell lines. These observations can be explained by
differentiation of retinoblastoma cells along a cone photoreceptor cell tra-
jectory, and can be interpreted as a dynamic connection between subtype 2
and subtype 1 retinoblastoma. MYCN blocks differentiation pathways and
maintains pluripotency during development and cancer pathogenesis47–49.
Enforced reduction of MYCN expression in neuroblastoma cells is also
associated with cell differentiation50. Kapatai et al.14 has suggested subtype 2
retinoblastoma originates from an earlier retinal lineage or an early
uncommitted cell type, but subtype 2 retinoblastoma could alternatively
originate from subtype 1 retinoblastoma via acquiring additional genetic

Fig. 5 | MYCN knockdown reduces clonogenicity and tumor formation in

MYCN-knockdown retinoblastoma cell models. aMYCN mRNA expression in

retinoblastoma cell lines determined by RNAseq. b Flow cytometry analysis of

MYCN protein expression in RB355, RB522, RB3823, and WERI-Rb1 cell lines

transduced with doxycycline-inducible lentiviral shMYCN expression vector.

MYCNproteinwasmeasured 48 h after adding doxycycline to themedia. The results

represent 3 experiments. c Soft agar colony formation analysis in retinoblastoma cell

lines. Plots (upper panel) show ratios of colony numbers in shNTC-expressing

(doxycycline-treated cells vs non-treated cells) and shMYCN-expressing (doxycy-

cline-treated cells vs non-treated cells) retinoblastoma cell lines from three inde-

pendent experiments. Data are from3 independent experiments, with average values

(blue bots) indicated and p-values calculated with Welch t-test reported. Density

plots (lower panel) for colony size in shNTC-expressing and shMYCN-expressing

retinoblastoma cell lines. Each line corresponds to one technical replicate. Repre-

sentative images from shMYCN-expressing non-treated and doxycycline-treated

cells are shown for each graph (shNTC-expressing non-treated and doxycycline-

treated cells are in Supplementary Fig. S6d). Combined p-values calculatedwith one-

sided Wilcoxon rank-sum test for the arbitrary difference in clone size (10% of

maximum clone size) are shown. d Effects ofMYCN knockdown in RB355 cells and

the chick chorioallantoic model. Photos and plots, respectively, show the tumors in

eggs at developmental stage E17 and the fraction of tumor cells and tumor area

in engrafted eggs at stage E17. The results represent 3 replicates with 10 eggs

for each condition.
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and chromosomal alterations3,13. All available retinoblastoma cell lines
grouped as subtype 2 retinoblastoma. This could either reflect that themore
differentiated subtype 1 retinoblastoma is not amenable to culturing or that
subtype 1 retinoblastoma acquire additional genetic and epigenetic altera-
tions in culture and advance to subtype 2 retinoblastoma. The differentia-
tion observed upon MYCN knockdown could hint that subtype 1

retinoblastoma is able to transition to subtype 2-MYCN (cluster C) retino-
blastoma uponMYCN activation.

The lack of serial tissue sampling during retinoblastoma treatment
leaves the question whether subtype 1 transitions into subtype 2 retino-
blastoma by acquiring additional mutations3,13 or whether both subtypes
arise independently from the same progenitor cell at different stages of
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maturationunresolved12,14. Subtype 2 occurs in older children, shows amore
undifferentiated gene expression profile and predominates in metastatic
cases12. One of the two extraocular retinoblastomas that we analyzed was
unexpectedly a cluster A, subtype 1 retinoblastoma without elevated TFF1
expression. Remarkably, this patient is a long-term survivor despite loca-
lized central nervous system metastasis.

Few extraocular cases have been subtyped because molecular genetic
analysis is conducted almost exclusively on cases treated in high-income
countries, where nearly all retinoblastomas are diagnosed and treated
during early intraocular stages. Accordingly, most primary retino-
blastomas in our cohort were subtype 1 retinoblastomas (35/61, 57%).
Countries with limited resources have high mortality rates from
retinoblastoma5 because cases most often progress to extraocular
metastasis. This implies that either geographic factors affect molecular
retinoblastoma subtype distribution or that subtype 1 retinoblastoma
can advance to subtype 2 retinoblastoma or take an aggressive clinical
course given time. Collaborative international research projects are

needed to answer this question and better define molecular retino-
blastoma subtypes.

Given its correlationwith rapid tumor progression and poor prognosis
in several embryonal cancers MYCN is considered an ideal therapeutic
target, but many direct or indirect MYCNmodulators failed to result in an
efficient MYCN specific therapy51,52. New approaches including histone
deacetylases inhibitors, AuroraKinase-A Inhibitors and Bromodomain and
extra-terminal domain family Inhibitors show promising interaction with
MYCN and its pathways51. As biopsies are obsolete in retinoblastoma, all
tissue samples in our study derived frompatients with advanced intraocular
disease treated with enucleation. Therefore, molecular genetic character-
istics of small intraocular retinoblastoma remain undetermined. This
potential bias may be overcome in the future by the use of liquid biopsies.
Results of molecular genetic characterization of cfDNA derived from aqu-
eous humor at diagnosis, during treatmentis promising to provide infor-
mation on smaller retinoblastoma, serial samples and correlation with
response to therapy53. Analysis of cfRNA from aqueous humor could in the

Fig. 6 | Gene re-expression representative of photoreceptor-rich retinoblastoma

inMYCN-knockdown cell models. a Volcano plot shows the MYCN-RB signature

of 244 genes derived from the overlap of previously identified MYCN targets and

sleuth-modeled MYCN-knockdown expression pattern (Supplementary Data 25).

Red dots correspond to significantly regulated MYCN targets (Storey-Tibshirani

adjusted p ≤ 0.1). Orange dots correspond to other MYCN targets (Storey-Tib-

shirani adjusted p > 0.1). Black dots represent non-MYCN targets significantly

downregulated in sleuth-modeled MYCN-knockdown expression pattern. b GSEA

showing genes overexpressed in cluster A, genes representative of photoreceptor-

rich retinoblastoma12,13 and the cluster B signature in the sleuth-modeled MYCN-

knockdown expression pattern. Y-axis indicates enrichment score (ES). X-axis

shows pathway genes. The dual-colored band represents the degree of correlation in

the expression of these genes with MYCN-knockdown (red, MYCN-knockdown;

blue, control). c Box plot (left) showing aggregated log1p-transformed transcript

tpm values for OPTN expression and combined Storey-Tibshirani-adjusted p in 52

retinoblastomas. OPTN protein expression (right) inMYCN-knockdown retino-

blastoma cell lines 48 h after doxycycline treatment. Dot plots show ratios of median

fluorescence intensity (MFI) for OPTN in shNTC-expressing (doxycycline-treated

cells vs non-treated cells) and shMYCN-expressing (doxycycline-treated cells vs

non-treated cells) retinoblastoma from three independent experiments. Data are

from 3 independent experiments, with average values (blue bots) indicated and

p-values calculated with Welch t-test reported. Representative plots of flow cyto-

metry for OPTN are shown in Supplementary Fig. S7c. Venn diagrams showing the

pathways (FDR adjusted p ≤ 0.05) associated with downregulated genes (d) and

upregulated genes (e) inMYCN-knockdown retinoblastoma cell lines. The 9 path-

ways depleted in all 4 cell lines are listed. f List of genes upregulated in both RB1−/−

cell lines. Box plots showing the expression scores of the MYCN-RB signatures (g),

and upregulated genes (h) afterMYCN-knockdown in each of the 3 retinoblastoma

clusters. Boxes show upper and lower quantile and median. Whiskers extend from

the hinge to ±1.5 times the interquartile range.

Fig. 7 | Overview of characteristics of 3 retino-

blastoma clusters (including RB1-proficient

retinoblastoma).
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future also allow to identify MYCN-RB signature in retinoblastoma treated
with eye-preserving therapy.

Our data suggest that de-differentiation from subtype 1 to subtype
2-MYCN (cluster C) retinoblastoma can be reversed by inhibiting MYCN.
The newly defined MYCN-RB signature supports identification of patients
who may benefit from MYCN-directed therapies, and presents a
biomarker-guided option for patient selection in clinical trials incorporating
agents targeting MYCN. Our data may also be applicable to MYCN sig-
naling pathways in other cancers in which RB1 inactivation occurs,
including lung, ovarian and breast cancers.

Methods
Patients and samples

We selected a cohort of 61 intraocular primary retinoblastoma samples
from patients diagnosed and treated between 2007 and 2014 at the Uni-
versity Hospital Essen (written informed consent for use in research avail-
able). We enriched our cohort for the rare retinoblastoma types, RB1-
proficientMYCNA (DNA and RNA from 4 retinoblastomas that were first
described25was reanalyzed) and extraocularmetastatic relapses (patient and
tumor characteristics in Supplementary Data 1). The remaining 2 RB1-
proficient MYCNA samples lacked detected RB1 variants in routine diag-
nostics, raising the suspicion this case is RB1-proficientMYCNA. The data
from the 2 patients with relapsed extraocular retinoblastoma evaluated in
this studywas produced and kindly provided by the INFORMprogram54–57.
Selection criteria for all 59 primary retinoblastoma samples were: (1) con-
sent for researchprojects available, (2) adequateDNApurity andquality, (3)
no treatment prior to enucleation and (4) availability of sufficient tumor and
blood DNA. Samples were obtained after primary enucleation or resection
of themetastasis, directly frozen and stored at−80 °C until DNA and RNA
preparation. RB1 genotyping was performed within genetic testing on
matched blood and tumor samples at the request of individuals or their legal
guardians with the aim to identify oncogenic alterations in RB1.

Cell lines

WERI-Rb1 (RRID:CVCL_1792) and Y79 (RRID:CVCL_1893) cell lines
were purchased from the German Collection of Microorganisms and Cell
Cultures (DSMZ, Braunschweig, Germany). RB1021 (RRID:CVCL_S624),
RB247C (RRID:CVCL_2704), RB355 (RRID:CVCL_S611), RB383 (RRID:
CVCL_S626), RB3823 (RRID:CVCL_ZF07), RB522 (RRID:CVCL_ZF04)
were kindly providedby BrendaGallie (Department ofOphthalmology and
Vision Sciences, Hospital for Sick Children, Toronto). Rbl30
(RRID:CVCL_S621) was kindly provided by Ralf Küppers (University
Hospital Essen). Cell line identity was validated in-house (Institute for
Human Genetics) using RB1 mutational status and short tandem repeats.
All retinoblastoma cell lines are well established, and were previously
molecularly, cellularly and functionally characterized32. Cell lines were
cultivated in Dulbecco’s modified Eagle medium (ThermoFisher Scientific)
supplemented with 15% fetal calf serum (Thermo Fisher Scientific), 11 µM
β-mercaptoethanol (MilliporeSigma), and 100U/ml penicillin/streptomy-
cin (Thermo Fisher Scientific) in a humidified atmosphere with 5% CO2 at
37 °C. All cell lines except RB355 (adherent monolayer) were cultivated in
suspension.WERI-RB1, RB247C3, andRB1021 areRB1−/− cell lines lacking
MYCN amplifications. Y79, Rb383 and RB355 areRB1−/−MYCNA cell lines.
RB3823 and RB522 are RB1-proficient MYCNA cell lines with
functional RB1.

Generating doxycycline-inducible MYCN-knockdown

cell models

MYCN knockdown was achieved using the Dharmacon doxycycline-
inducible lentiviral SMARTvector system with PGK promoter, TurboGFP
and 3 human MYCN knockdown target sequences (CGAGCTGATCCT
CAAACGA targeting 3′-UTR and open reading frame, ACGTCCGCT
CAAGAGTGTC targeting 3′-UTR and open reading frame and CCACAT
AAGGGGTTTGCCA targeting only the 3′-UTR). The SMARTvector
Inducible lentiviral NTC PGK-TurboGFP served as non-targeting control.

TheMYCN-knockdownvector targeting only the 3′-UTRperformedbest in
all cell lines, and was used to generate all models. The polyethylenimine
(PEI) method was used to create and transduce Vesicular Stomatitis Virus
Glycoprotein-G (VSV-G)-pseudotyped replication-deficient lentiviral par-
ticles into HEK293T cells as described previously58. Briefly, 6 µg each of
envelope plasmid (pczVSV-G), helper plasmid (pCD/NL-BH) and
pSMART plasmids were mixed with 45 µg PEI and incubated with
HEK293T cells. After 24 h, medium was changed to Iscove’s modefied
Dulbecco’s medium (MilliporeSigma) supplemented with 10% FCS, 1%
penicillin/streptomycin. Lentiviral supernatant was harvested at 24 h, fil-
tered (0.45 µm filters) and added (1:2 dilution) to retinoblastoma cell cul-
tures with protamine phosphate (final concentration 5 µg/mL medium,
Millipore Sigma).Mediumwas aspiratedoff cells after 24 h, andcellswashed
once with phosphate-buffered saline (PBS, ThermoFisher Scientific) before
culturing in complete medium for 7 days. Transduced cells were selected
with 1 µg/mL puromycin (ThermoFisher Scientific). Cells were cultured in
medium containing 0.5 µg/mL doxycycline (STEMCELL Technologies) for
24–72 h to establish a MYCN-knockdown population prior to further
analysis.

Protein staining for flow cytometry

MYCN protein staining was performed using AlexaFluor 647-labeled
antibodies againstMYCN(sc-53993, SantaCruzBiotechnology) andmouse
IgG2a (sc-24637, Santa Cruz Biotechnology). OPTN protein staining was
performed using non-conjugated antibodies (#70928, Cell Signaling) and
secondary Alexa Fluor 647-labeled antibody (A-21244, Rabbit IgG (H+ L)
Cross-Adsorbed SecondaryAntibody, Thermo Fisher Scientific, andRabbit
mAb IgG XP®Isotype Control (#2975 Cell Signaling). Cells (106) were
prefixed with 4% paraformaldehyde (Morphisto) for 15min at room tem-
perature, resuspended in ice-cold methanol and fixed overnight at−20 °C.
For immunostaining, cells were washed in PBS, incubated for 30min in 1%
bovine serum albumin (Roth) and 0.1% Triton X-100 in PBS (Milli-
poreSigma) then incubated 1 h at room temperature with the antibody
(0.5mg per sample). Then washed and if required incubated for 1 h with
secondary antibody (dilution 1:400).

Assaying cell proliferation and viability

The proportion of cells in S phase was determined using EdU incorporation
and cell cycle analysis. Cells were incubated with 10 µM EdU (Lumiprobe)
for 1 h prior to collection, then 106 cells fixed in 4% paraformaldehyde
(Morphisto) at room temperature for 15min and in 90% ice-coldmethanol
before storing at−20 °C. Fixed cells were permeabilized for 30min in 1M
Tris buffer (pH 7.4) containing 1% bovine serum albumin and 0.1% Triton
X-100, then stained for 30min with 3 µM Cy5 azide (Lumiprobe) in 1M
Tris (pH 7.4) with 2mM CuSO4 and 20mg/ml ascorbic acid. Cells were
subsequently washed with PBS and counterstained with DAPI (Millipore,
Sigma) for flow cytometric cell cycle analysis. Flow cytometry was con-
ducted on a Beckman Coulter CytoFLEX instrument. Data analysis used
FlowJo software V10 (Becton Dickinson). Viability was assessed in retino-
blastoma cell lines and models using the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay (Roth) according to manu-
facturer’s instructions. Cells (105 cells for suspension cell lines, 5 × 104 for
adherent cells) were seeded onto 96-well plates in quadruplicate for MTT
assay, and ifMYCN knockdown was to be induced, incubated 24 h before
0.5 µg/ml doxycycline treatment. For soft agar assays, cells were trypsinised,
and 0.5 × 104 cells were resuspended in a top agar solution containing 0.35%
agar, then poured onto a base layer containing 0.7% agar in 12-well plates.
Eachwell was coveredwith 0.7 ml ofmedia. IfMYCN knockdownwas to be
induced, cells were supplemented with 0.5 µg/ml doxycycline in top agar
solution and upper media. Plates were incubated under standard culture
conditions for 2weeks. Colonies were fixed and stainedwith 10%methanol,
10% acetic acid and 0.1% of crystal violet. For clonogenicity assays, cells (0.5
× 104) were seeded onto 12-well plates pre-coated with poly-L-lysine
(Thermo Fisher Scientific). MYCN knockdown was induced by adding
doxycycline to a final concentration of 0.5 µg/ml, and plates were incubated
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under standard culture conditions for 2 weeks. Cells were fixed in 75%
methanol, 25% acetic acid and stained with 10%methanol, 10% acetic acid,
and 0.5% of crystal violet. The colony counting, calculation of colony areas
was performed using Ilastik59-processed segmented images and ImageJ
software (Rasband, WS, ImageJ, U.S. National Institutes of Health,
Bethesda, MD, USA). Proliferation was assessed in theMYCN-knockdown
RB355 and RB355 cell models using the chick chorioallantoic membrane
(CAM) assay. Knockdown was induced in model cells (0.5 µg/ml doxycy-
cline) 48 h before engrafting. Induced or uninduced model cells (106/50 µl
PBS) were grafted onto the chorioallantoic membrane of E10 stage chick
embryos after cutting a window into the eggshell. Proliferation was assessed
7 days after engraftment, at stage E17, by enlarging the windows to pho-
tograph the entire anterior chorioallantoic membrane region and carefully
extract the tumors. Tumors were weighed to assess volumetric growth, and
tumor areas were assessed using ImageJ software. The results represent 3
replicates with 10 eggs per test condition.

Genetic, epigenetic, and genomic analyses

RB1 variants were identified using DNA from fresh-frozen tumor samples
orDNA fromblood and one ormore of the following in routine diagnostics
(Dept. of Human Genetics, Essen) as previously described60–63 analysis of
allele loss in tumors, cytogenetic analysis, denaturing high performance
liquid chromatography, exon-by-exon sequencing, multiplex ligation-
dependent probe amplification, methylation-sensitive PCR, quantitative
fluorescent multiplexed PCR, quantitative real-time PCR, real-time PCR
and single-strand conformation polymorphism analysis. RB1 mutational
mosaicismwas diagnosedwhen the signal ratio for themutant:normal allele
in blood DNA < 50%, but detecS§. If available, DNA from an additional
tissue source (i.e., buccal mucosa) was analyzed for RB1 mosaic cases.
Genome-wide methylation was analyzed using the Illumina Infinium
HumanMethylation 450k array (21 retinoblastoma samples) or EPIC 850k
BeadChip array (39 retinoblastoma samples). Sample RB_33 was analyzed
on both arrays to control for batch effects (Supplementary Data 1). Whole-
exome sequencing (WES) was performed in 37 retinoblastomas (Supple-
mentary Data 1).

RNA sequencing

RNAseq analysis was performed in 52 of the 61 intraocular retinoblastomas
(Supplementary Data 2). Total RNA from primary tumor samples was iso-
lated using the RNeasy Mini Kit (Qiagen) or Monarch Total RNAMiniprep
kit (NewEnglandBiolabsGmbH).RNAseqwasperformedonretinoblastoma
parental cell lines andmodels.Modelswerepreincubatedwith/without 0.5 µg/
ml doxycycline for 48 h before analysis. Total RNA from cells was prepared
according tomanufacturer’s instructions usingRNeasymini kit (Qiagen)with
a separateDNAse I (Qiagen) digestion step.Whole-transcriptome sequencing
on parental cell lines and tumor samples was performed byCeGat (Tübingen,
Germany) using the SMART-SeqStrandedkit (TakaraBioEurope) for library
preparation and NovaSeq 6000, 2x100bp (Illumina) for sequencing. For cell
models, RNA amount was determined by Qubit fluorometer (Life Technol-
ogies), RNAqualitywas assessed byTapeStation 4200withRNAScreenTapes
(Agilent) and the Lexogen QuantSeq 3′ mRNA-Seq Library Prep Kit FWD
(Lexogen)wasused toproduce the library.Libraryqualitywereassessedon the
TapeStation 4200 (High Sensitivity ScreenTapes, Agilent) and concentrations
were measured using the Qubit system. RNA sequencing of MYCN-knock-
downmodels were sequenced using either the IlluminaNextSeq 2000 System
(P2 reagents, 76 cycles, single-read, dual indices) or MiSeq using MiSeq
ReagentKit v3 (76cycles, single-read, dual indices)using3biological replicates
for each model and condition.

DNAmethylation data processing and consensus clustering

Two retinoblastomas that were previously profiled (450k) within the
INFORM study54–57 to identify molecular targets for therapeutic options
were reused for our analyses (SupplementaryData 1).Datasets generated on
450k and EPIC arrays were reduced to the 450 K common probes and
processed using minfi (version 1.36), then normalized using minfi’s

funnormfunction.Batch correctionwas conducted for eacharray typeusing
comBat (from sva version 3.42). The resulting methylation levels were
discretized into 3 classes: unmethylated (levels close to 0),methylated (levels
close to 1), and unknown or semi-methylated (remainder). Exact cut-off
thresholdswere determinedbyfitting a 3-componentmixturemodel of beta
distributions to thehistogramofmethylation levels and identifyingpoints of
equal probability density, as describedpreviously27. Probeswere thenfiltered
to remove probes without information content, retaining only probes that
showed the “methylated” or “unmethylated” state in at least 10 different
samples. Consensus clustering was performed on the reduced discretized
sample-probe matrix by applying different clustering algorithms from the
Python scikit-learn package (K-means, affinity propagation, agglomerative
or hierarchical with single, average and complete linkage and cosine,
Euclidean and Manhattan distance; spectral clustering; DBSCAN; Mean-
Shift) in combination with different preprocessingmethods (robust scaling,
normalization and principal component analysis or UMAP with 1 to 4
dimensions) and different output cluster numbers (2 to 6). From the
resulting 8857 successful individual clusterings, thosewith a silhouette score
of zero or less were discarded. Remaining clusterings were used to define a
similaritymatrix between samples, describing in howmany clusterings two
samples were assigned to the same cluster. Thematrixwas transformed into
a similarity graph, such that each sample is a node and weighted edges
between nodes indicate relative similarity (between 0 and 1; proportion of
clusterings for which the 2 samples are in the same cluster). As a last step,
edgeswith aweight <0.5were removed resulting in 3 separated components
defining the final 3 clusters.

Differential methylation analysis

Retinoblastoma subtype-specific clustering was carried out using the pub-
lished 8-probe classifier12, then confirmed using a modified 8-probe clas-
sifier supplemented with EPIC array probe cg04786667, which is closest to
450 arrayprobe cg12750745 that is absent from theEPICarray.Hierarchical
clustering (dplyr R package) was performed for the 8-probe classifiers with
the parameters (distance: Manhattan, linkage: Ward.D2). Heatmaps were
produced using the gplots R package. Differential methylation in retino-
blastoma clusters was defined by differentiallymethylated probe sets for the
batch-corrected (ComBat) whole-genome methylation data from tumors
(Welch t-test with Benjamini–Hochberg false discovery rate adjustment;
cut-off: β valuemean difference of at least 0.2, adjusted p < 0.001). Cell lines
were matched to cluster methylation profiles by extending the matrix for
tumormethylation with β values from cell lines. Differential methylation in
specified genomic regions (super-enhancers, CpG islands, etc) utilized the
Bioconductor regioneR package on the usegalaxy.org public server64. CpG
island coordinates were retrieved from the UCSC server (2020 update,
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cpgIslandExt.
txt.gz;). BED files corresponding to the enhancers identified in developing
retinoblastoma and retina30 (GSE86981) were extracted from the SEDb2.0
database31. TheHomer script,findMotifs.pl (http://homer.ucsd.edu/homer/,
v4.10.3), was used to compare 50-bp sequences (containing knownmotifs)
around CpGs (51 bp) that were differentially methylated with a strand-
specific input.

RNA sequencing data analysis

Differential gene expression was analyzed among the 52 retinoblastomas
profiled byRNAsequencing. RNA sequencing readswere preprocessed and
aligned to the H. sapiens normal transcriptome construct (Ensembl v96
release) and relative transcript abundance was quantified for each retino-
blastoma using kallisto (-k 31 parameter, -b 100 parameter)65. To identify
differential gene expression, p-values were computed using sleuth (Wald
test), then used to generate false discovery rates (q values, using the qvalue
package) that were adjusted for multiple comparisons using the Storey-
Tibshirani method (bootstrap method to calculate π0 values)66. p- or q-
values were combined using Edgington’s67method andmetap package. Box
plot visualization for intertumor comparisons of differential expression data
from the matrix created by kallisto required batch correction, which was
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performed using removeBatchEffect from limma package (Bioconductor)
using log1p-transformed tpm values. Differential expression in cell lines and
models was analyzed using DESeq2-based Quantseq 2.3.6 FWD pipeline
and Quantseq DE 1.4.0 pipeline on the BlueBee® Genomics Platform
(Lexogen). Differentially expressed genes were ranked in cell models and
tumors usingπ-values68. Gene sets fromMSigDB69were used forGSEAwith
parameter settings (statistic: weighted, number of permutations: 1000,
minimal gene set size: 10,maximal gene set size: 500 or 5000 for customized
gene sets). Spearman coefficients for correlation were visualized with corr-
plot. Hierarchical clustering of RNA expression data was performed using
the dplyr R package with the parameter settings (distance: Euclidean, link-
age: Ward.D2). Heatmaps were produced using gplots R package. Higher-
level chromosome rearrangements (translocations, duplications) were
analyzed using the Arriba pipeline for RB_52 and RB_8 (RNA-STAR set-
tings in Supplementary Data 2).

Bioinformatic analyses

Chromosomal copy number variations (CNVs) were identified for the
61 samples by calling CNVs from the whole-genome methylation datasets
for each sample using the Bioconductor conumee package70. Whole-exome
sequencing data were analyzed using Varlociraptor v3.6.3 (https://github.
com/snakemake-workflows/dna-seq-varlociraptor). Consensus clustering
was performed using the R package ConsensusClusterPlus (settings:
maxK = 4, reps = 1000, pItem = 0.8, pFeature = 1, clusterAlg = “hc”, dis-
tance = “Pearson”). Correlations between DNA methylation and gene
expression were assessed using the Pearson correlation coefficient (cutoff:
variance for β-values ≥ 1 10−4, Bonferroni-Hochberg-adjusted p < 0.05,
R ≥ 0.4) and the batch-correctedmatrix for normalized expression values of
the corresponding genes. If multiple CpGs in a gene were differentially
methylated, thePearsoncorrelation coefficientwas calculated for eachCpG-
gene pair. Enrichment of expression or methylation gene signatures were
analyzed using the clusterProfiler Bioconductor package71 with parameter
settings (ontology: ALL, p-value cutoff: 0.05,method of p-value adjustment:
Benjamini-Yekutieli, adjusted p-value cutoff: 0.25,minimal gene set size: 10,
maximal gene set size: 500). Methylation probe mapping utilized RefSeq
gene features. Venn diagrams for gene expression were generated using the
VennDiagram and BioVenn R packages72. Box and volcano plots for gene
expression andmethylation β-value visualizations were generated using the
ggplot2 and reshape2 R packages. Bioinformatic analyses were conducted
using the R statistical package, v4.2.2 (2022) and Bioconductor libraries
v3.16 (R Core Team, 2020). P values were adjusted using the
Benjamini–Hochberg method73 for multiple comparisons, and unless
otherwise stated, considered statistically significant if p < 0.05.

Statistics and reproducibility

Data were expressed as mean ± SD or mean ± SE. Unless otherwise stated,
all statistical tests are two-sided. Unless otherwise stated, p < 0.05 was
regarded as statistically significant. Every experiment was repeated three
times independently.

Reporting summary

Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
RawDNAmethylation data andRNAsequencing data have beendeposited
in GEO under study accession no. GSE267015 and GSE268136.
GSE5998313, GSE5878512, and GSE8698130 datasets were used for the ana-
lyses. The source data for graphs and charts are available in Supplementary
Data 30. All other data (raw WES data and the code for consensus clus-
tering) will be provided upon reasonable request.
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