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Multiple myeloma (MM) is an incurable malignancy of plasma cells. Epide-

miological studies indicate a substantial heritable component, but the

underlying mechanisms remain unclear. Here, in a genome-wide association

study totaling 10,906 cases and 366,221 controls, we identify 35 MM risk loci,

12 of which are novel. Through functional fine-mapping and Mendelian ran-

domization, we uncover two causal mechanisms for inherited MM risk: longer

telomeres; and elevated levels of B-cell maturation antigen (BCMA) and

interleukin-5 receptor alpha (IL5RA) in plasma. The largest increase in BCMA

and IL5RA levels is mediated by the risk variant rs34562254-A at TNFRSF13B.

While individuals with loss-of-function variants in TNFRSF13B develop B-cell

immunodeficiency, rs34562254-A exerts a gain-of-function effect, increasing

MM risk through amplified B-cell responses. Our results represent an analysis

of geneticMMpredisposition, highlighting causalmechanisms contributing to

MM development.

Multiple myeloma (MM) is one of the most common blood malig-

nancies. It is defined by uncontrolled, clonal growth of plasma cells

(Supplementary Fig. 1). Clinically, MM leads to bone marrow failure,

bone lesions, andhypercalcemia and remains essentially incurable. It is

preceded by monoclonal gammopathy of unknown significance

(MGUS), a common condition (~3%of >50year-olds) that progresses to

MM at an annual rate of 1%.

First-degree relatives of MM and MGUS cases have a two- to four-

fold higher risk for MM, as well as an increased risk for other B-cell

malignancies and some solid tumors1–4. Genome-wide association
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studies (GWAS) have identified DNA sequence variants at 25 loci

influencing MM risk. However, much of the heritable risk remains

unexplained5–10, and the biological mechanisms involved are largely

uncharacterized11.

In the present study, we conducted a genome-wide association

study totaling 10,906 MM cases and 366,221 controls. We identify

35MM risk loci, 12 of which are novel. By integrating expression

quantitative locus (eQTL), chromatin accessibility (ATAC-sequencing),

and ultra-high-resolution chromatin configuration analysis (micro-C),

we identify causal variants and high-confidence target genes. Using

Mendelian Randomization analysis, we uncover two causal mechan-

isms for inherited MM risk: longer telomeres; and elevated levels of

B-cell maturation antigen (BCMA) and interleukin-5 receptor alpha

(IL5RA) in plasma.Moreover, we find that the largest increase in BCMA

and IL5RA levels is mediated by the risk variant rs34562254-A at

TNFRSF13B and that there is an antagonistic relationship between risk

of B-cell immunodeficiency and risk of MM for this locus. Our results

represent a comprehensive analysis of genetic MM predisposition,

highlighting central biological mechanisms contributing to MM

development.

Results
Genetic architecture of MM risk
To characterize the germline genetic architecture of MM, we per-

formed a meta-analysis of ten GWAS datasets5–10 totaling 10,906 cases

and 366,221 controls (Fig. 1a, Supplementary Data 1 and Supplemen-

tary Fig. 2). We identified 30 significant (Pmeta < 5 × 10−8) and two sug-

gestive associations (Pmeta < 5 × 10−7), including nine novel significant

associations (Supplementary Data 2). Approximate conditional analy-

sis revealed three additional linkage disequilibrium (LD)-independent

associations, yielding 12 novel associations (Fig. 1b and Table 1). We

replicated all known associations except a previously reported bor-

derline signal at 22q13.1/TOM1 (rs138745; Pmeta =0.001)7. The two

suggestive associations correspond to previously reported signals at

7q31.33/POT1 and 6p22.3/JARID2 (Pmeta= 7.1 × 10−8 and 1.2 × 10−7,

respectively)5,6. MM plasma cell-specific transcriptome-wide associa-

tion study (TWAS) andmethylome-wide association study (MWAS) did

not identify additional loci but provided support for 11 of the GWAS

loci (Supplementary Data 3-4). Using linkage disequilibrium adjusted

kinships (LDAK), we estimated the heritability ascribable to all com-

mon variation at 15.6% ( ± 4.7). Using LD score regression, we detected

enrichment of risk variants in regions of accessible chromatin in

plasma cells andB-cells (Fig. 1c), indicating that alteredgene regulation

in these cell types mediates MM risk. We also noted enrichment in

activating histone marks of MM cell lines (Supplementary Fig. 3).

MM can be classified into hyperdiploid and non-hyperdiploid

subtypes, the latter being primarily composed of cases with immu-

noglobulin heavy-chain (IGH) translocations, t(11;14), t(4;14) and

t(14;16), which lead to over-expression of oncogenes, CCND1, MMSET

and MAF respectively, through juxtaposition with the IGH locus.

Fig. 1 | Genetic architecture of MM risk. a Study design. bManhattan plot; x-axis

indicates genomic position; y-axis –log10 GWAS P-value. Dark red indicates loci

where novel risk variants were found. c Enrichment of heritability in regions of

accessible chromatin in hematopoietic cell types (red nuance indicates -log10 LD-

score regression P-value). d Correlation betweenMGUS andMMGWAS effect sizes

(β) for the identified MM lead variants. P-value and r2 statistics are for Pearson

correlation. e Summary of additional pleiotropic associations (Supplementary

Data 7). Abbreviations: B-cells (B), CD4+ T-cells (CD4), CD8+ T-cells (CD8), common

lymphoid progenitor (CLP), common myeloid progenitor (CMP), erythroid pro-

genitor (Ery), granulocyte megakaryocyte progenitor (GMP), hematopoietic stem

cells (HSC), lympho-myeloid primed progenitors (LMPP), monocyte (Mono),

megakaryocyte-erythroid progenitor (MEP), multi-potent progenitors (MPP),

myeloid dendritic cells (mDC), plasmacytoid dendritic cells (pDC), megakaryocyte

(Mega), natural killer cells (NK), plasma cells (PC).
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Previous work has found relationships between the risk loci at 11q13.3/

CCND1 and 5q15/ELL2 with t(11;14) and hyperdiploid MM,

respectively12,13. For newly discovered loci, we found no evidence for

additional subtype-specific associations (Supplementary Data 5).

To examine the genetic overlap with other diseases, we analyzed

6234 MGUS cases and 720,279 controls. We observed a strong, posi-

tive correlation with MGUS effect sizes for MM lead variants (Pearson

r2 = 0.58, P = 4.2 × 10−7; Fig. 1d and Supplementary Data 6), consistent

with risk variants exerting their effects early in clonal evolution. Using

theGWAScatalog14, we also identifiedpleiotropy (r2 >0.8 between lead

variants) with other B-cell neoplasias (8 signals), solid tumors (6 sig-

nals), autoimmune diseases (6 signals), and immunological traits

(16 signals; Fig. 1e and Supplementary Data 7).

To assess the collective impact of all risk alleles, we calculated

polygenic risk scores based on effect sizes and allele frequencies in our

study population and the five super-populations in the 1000 Genomes

compendium (European, American, African, East Asian, and South

Asian). All identified risk variants were polymorphic in all super-

populations, except the low-frequency variants at 6p22.3/JARID2,

7q36.1/SMARCD3, and 13q13.1/BRCA2 which were not polymorphic in

East Asians (Supplementary Data 8). Consistent with the higher inci-

dence of MM among individuals of African or African-American

ancestry, we observed the highest polygenic risk scores in the AMR

super-populations (Supplementary Fig. 4; median 2.24 relative to our

study population), due to a higher prevalence of several risk alleles

(e.g., 3p22.1/ULK4, 16p11.2/RNF40, 10q24.33/STN1, 19p13.3/NFIC, and

2p23.3/DTNB-AS1; Supplementary Data 8).

Identification of target genes
To identify target genes, we considered genes overlapping a region

definedby the variants in high LD (r2 >0.8)with the leadvariant at each

locus. Additionally, we considered genes with chromatin looping

interactions with these regions, as determined by Micro-C analysis in

MM cell lines. Among 371 genes in total, we prioritized target genes

Table 1 | Identified associations with MM risk

Cytoband rsID Chr Position RA/

OA

RAF OR 95% CI GWAS P Phet I
2 Target genes

7p15.3 rs75341503 7 21936698 A/C 64.7 1.25 1.2 - 1.3 1.47E-35 0.94 0 CDCA7L

22q13.1 rs5995688 22 39548027 G/A 43.8 1.21 1.2 - 1.3 2.71E-31 0.08 41 CBX7

2p23.3 rs7577599 2 25613146 T/C 76.4 1.27 1.2 - 1.3 8.00E-28 0.22 13 DTNB-AS1

2p23.3* rs6546615 2 26148733 G/C 33.0 1.21 1.2 - 1.3 6.97E-22 0.09 40 DTNB-AS1

17p11.2 rs34562254 17 16842991 A/G 10.6 1.30 1.2 - 1.4 2.82E-23 0.31 14 TNFRSF13B

6p21.33 rs3132535 6 31116526 A/G 26.4 1.19 1.2 - 1.2 1.52E-22 0.14 33 HLA, CCHCR1

3p22.1 rs9856633 3 42013850 A/G 19.1 1.23 1.2 - 1.3 1.65E−20 0.44 0 ULK4

7q36.1 rs10233479 7 150933044 T/C 9.0 1.25 1.2 - 1.3 4.93E-19 0.15 33 SMARCD3

3q26.2 rs7621631 3 169512145 C/A 75.6 1.18 1.1 - 1.2 8.58E-18 0.43 1 TERC

3q26.2* rs77033531 3 169859690 G/C 98.0 1.63 1.4 - 1.9 1.72E-09 0.21 26 TERC

6q21 rs9386514 6 106636902 C/T 19.2 1.18 1.1 - 1.2 1.51E-16 0.99 0 ATG5, PRDM1

9p21.3 rs3731222 9 21983914 T/C 85.2 1.23 1.2 - 1.3 2.84E-16 0.02 54 CDKN2A

8q24.21 rs1948915 8 128222421 C/T 32.8 1.15 1.1 - 1.2 1.54E-15 0.32 13 MYC

19p13.3 rs11085015 19 3369572 T/G 17.3 1.19 1.1 - 1.3 1.73E-13 0.31 16 NFIC

19p13.3* rs8107139 19 3462045 C/T 39.0 1.13 1.1 - 1.2 5.11E-08 0.37 8 NFIC

20q13.13 rs6090899 20 47358450 G/A 10.2 1.22 1.2 - 1.3 3.45E-13 0.26 20 PREX1

5q15 rs11744881 5 95240865 A/T 71.9 1.15 1.1 - 1.2 6.08E-13 0.37 8 ELL2

7q22.3 rs11762574 7 106293277 A/G 70.6 1.14 1.1 - 1.2 8.18E-13 0.89 0 CCDC71L

16p11.2 rs8058928 16 30704312 G/T 28.6 1.14 1.1 - 1.2 3.82E-12 0.83 0 RNF40

9q21.33 rs10746812 9 90099454 C/T 36.6 1.12 1.1 - 1.2 5.13E-11 0.97 0 DAPK1

13q13.3 rs75712673 13 36766420 G/T 2.9 1.29 1.2 - 1.4 3.26E-10 0.55 0 DCLK1

19p13.11 rs4808046 19 16439390 G/A 23.0 1.13 1.1 - 1.2 4.62E-10 0.05 47 KLF2

10p12.1 rs2993984 10 28798656 T/A 73.7 1.12 1.1 - 1.2 7.32E-10 0.51 0 WAC

10q25.2 rs3737315 10 112035508 T/G 36.5 1.11 1.1 - 1.2 7.62E-10 0.25 21 MXI1

16q23.1 rs8050262 16 74661159 T/C 59.3 1.11 1.1 - 1.2 7.83E-10 0.18 29 RFWD3

10q24.33 rs11813268 10 105682296 T/C 15.5 1.15 1.1 - 1.2 1.30E-09 15.50 0 STN1

6p22.2 rs34565965 6 26350810 T/A 75.7 1.13 1.1 - 1.2 1.65E-09 0.17 30 BTN1A1,

BTN3A2,

HMGN4

21q11.2 rs2822736 21 15898681 C/G 38.5 1.11 1.1 - 1.2 2.79E-09 0.07 43 SAMSN1

2q31.1 rs16862227 2 174832967 G/T 76.4 1.12 1.1 - 1.2 3.89E-09 0.22 24 SP3

5q23.2 rs2162826 5 122714477 C/A 21.9 1.12 1.1 - 1.2 6.58E-09 0.94 0 CEP120

5q35.2 rs6864880 5 173298226 C/T 70.2 1.11 1.1 - 1.2 1.85E-08 0.91 0 CPEB4

6p25.3 rs1050976 6 408079 T/C 47.5 1.10 1.1 - 1.1 2.33E-08 0.49 0 IRF4

13q13.1 rs11571833 13 32972626 T/A 17.3 1.57 1.3 - 1.9 2.95E-08 0.31 0 BRCA2

6p22.3 rs74875586 6 15216525 A/G 2.5 1.45 1.3 - 1.7 7.12E-08 0.12 36 JARID2

7q31.33 rs10954065 7 124672253 C/A 73.1 1.10 1.1 - 1.2 1.22E-07 0.81 0 POT1

Novel loci in bold. Star (*) indicates conditional association. Abbreviations: RA/OA risk/other allele, RAF risk allele frequency, OR odds ratio, 95% CI 95% confidence interval, Phet P-value for

heterogenety; I2 heterogeneity, Q Cochran’s Q.
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based on (i) potentially pathogenic coding variants, (ii) variants in long

non-coding RNAs, (iii) expression quantitative trait loci (eQTLs) in the

B-cell lineage, and (iv) TWAS signals (Supplementary Data 3-9, 10). To

identify putative causal variants underlying the effects on gene

expression, weperformedmassively parallel reporter assays (MPRA) in

three MM cell lines. We also incorporated published MPRA data11,

luciferase assays, and epigenomic annotations. Using conservative

criteria (Online Methods), we identified 17 high-LD variants with tran-

scriptional activity. Notably, 16 of these mapped to transcription start

sites or enhancers (Table 2 and Supplementary Data 9).

In total, we identified 35 target genes (Fig. 2). Several of thesewere

further supported by DepMap essentiality in MM or lymphoid cells

(SupplementaryData 11), aMendelian cancer predisposition syndrome

(BRCA2, CDKN2A, POT1, and RFWD3)15,16, a congenital B-cell immuno-

deficiency (TNFRSF13B and WAC)17,18, or recurrent somatic genetic

lesions in MM (IRF4, MYC, PRDM1, JARID2, MXI1, TNFRSF13B, and

POT1)19–23. We also noted enrichment of target gene expression in the

B-cell lineage (Supplementary Fig. 5). Amore detailed description of all

target genes is provided in Supplementary Notes.

Biological pathways involved in MM predisposition
Pathway analysis showed that the set of target genes is enriched for

genes involved in B-cell development, chromatin organization, and

telomeremaintenance (Supplementary Data 12). For example, SAMSN1

encodes a regulator of B-cell activation, and SAMSN1 deletions have

been reported in MM-prone mice24. TNFRSF13B regulates B-cell

homeostasis25–31. ELL2 drives immunoglobulin (Ig) synthesis in

plasma cells32,33. PRDM1 and ATG5 are essential for plasma cell

survival34. Several other target genes interact with the MYC-IRF4

pathway, which plays a key role in B-cell and plasma cell development

(Supplementary Fig. 6)23,35. These findings, and the enrichment of MM

risk variants in accessible chromatin of plasma cells and B-cells

(Fig. 1c), suggest that dysregulation of the germinal center and post-

germinal center reaction is critical to MM predisposition.

Target genes involved in chromatin organization, cell cycle reg-

ulation, and DNA repair include CDKN2A, RFWD315, NFIC36, JARID237,

SMARCD311, HMGN438, and CEP12039. Notably, the 13q13.1 association

represents a pathogenic truncating variant in BRCA2 (Lys3326Ter)40.

Longer telomeres mediate genetic MM risk
Three targetgeneshavewell-knownroles in telomeremaintenance:TERC

encodes the telomerase RNA component, POT1 and STN1 subunits of the

shelterin complex. Given that leukocyte telomere length (LTL) is a mar-

ker for chromosomal instability41–45, we assessed the pleiotropy between

MMand LTL using data on 472,174 individuals fromUK Biobank46. Using

colocalization analysis, we found evidence of shared causal variants for

increased MM risk and increased LTL at the TERC, POT1, and STN1 loci

(posterior probability, PP, of shared variant >0.8; Fig. 3a and Supple-

mentaryData 13). Additionally, using LDAK47, we foundapositive genetic

correlation between MM and LTL (Rg=0.23, P= 1.87 × 10
−5).

To examine the causal effect of LTL on MM risk, we performed a

two-sample Mendelian randomization analysis using four

methods48–50. Increased LTLwasconsistently associatedwith increased

MM risk (inverse variance weight random effects model P-value,

PIVW-RE = 2.07 × 10−4; Fig. 3b and Supplementary Data 14, 15), with the

Steiger test confirming that this was the likely causal direction (Sup-

plementary Data 16). These data support that a subset of risk variants

increase MM risk by increasing telomere length, plausibly affecting

replicative lifespan and/or chromosomal stability and thereby the risk

of neoplastic transformation51.

Elevated plasma BCMA and IL5RA levels mediate genetic
MM risk
To identify additional mechanisms underlying MM predisposition, we

searched for shared effects of risk variants on B-cell and plasma cell

development. These processes mainly take place in lymph glands and

bone marrow. Since population-scale data is lacking for these tissues,

we reasoned that shared mechanisms could be detectable indirectly

through effects on circulating levels of proteins derived from these

processes in peripheral blood.

Accordingly, we examined the effects of MM risk variants on the

levels of 2931 plasma proteins using Olink data for 46,665 UK BioBank

individuals. Across nine risk loci, we identified trans-protein quantita-

tive trait loci (trans-pQTLs) for 21 proteins (Supplementary Data 17).

Mendelian randomization analysis incorporating a Steiger test for

directionality supported a causal relationshipbetween increased levels

of B-cell maturation antigen (BCMA; PIVW= 5.6 × 10−6) and interleukin-5

receptor subunit alpha (IL5RA; PIVW = 9.0 × 10−13) and increased MM

risk (Fig. 3c-d). Both associations were replicated in SomaScan data for

36,177 Icelanders (Supplementary Data 16,18)52. Nine risk loci (ATG5/

PRDM1, CCHCR1, ELL2, MXI1, NFIC, RNF40, SMARCD3, TNFRSF13B and

WAC) showed significant association with BCMA and/or IL5RA. Colo-

calization analysis confirmed a shared variant with MM risk (PP >0.8)

at seven of these (ELL2, MXI1, NFIC, RNF40, SMARCD3, TNFRSF13B and

WAC; Fig. 3a and Supplementary Data 19).

The BCMA receptor is expressed on plasma cells and mature

B-cells. It binds B-cell activating factor (BAFF) and is a target for MM

immunotherapy53. Its soluble form is produced by cleavage of the

BCMA extracellular domain by γ-secretase54. Several studies have

linked soluble BCMA levels to plasma cell pool size. For example, the

plasma BCMA level decreases in MM patients after treatment, and

patients with MGUS show lower levels than patients with fully devel-

oped MM55–59. IL5RA is also expressed in plasma cells and B-cells

(Supplementary Fig. 7). IL5 stimulation promotes plasma cell differ-

entiation and has been implicated in immunogenic MM cell death60,61.

These results indicate that a second subset of MM risk variants exert

their effects through increased BCMA and IL5RA levels, plausibly

reflecting an expanded plasma cell and mature B-cell pool. These risk

variants are distinct from those influencing telomere length (Fig. 3a).

The TNFRSF13B risk variant predisposes for MM through a gain-
of-function effect
To gain insight into the molecular basis of the elevated BCMA and

IL5RA levels, we focused on the TNFRSF13B locus. The TNFRSF13B

variant rs34562254-A is one of themost statistically significantMMrisk

variants. It is associated with the largest increase in BCMA and IL5RA

levels (P = 1.4 × 10−97, β =0.23 for BCMA; P = 4.9 × 10−63, β =0.19 for

IL5RA for rs34562254-A; Supplementary Data 17). In addition, we and

others have demonstrated an association between rs34562254-A and

higher IgG levels62–64.

TNFRSF13B encodes the TACI receptor, a central regulator of

B-cell responses and Ig class-switching. Individuals who carry rare loss-

of-function variants in TNFRSF13B are predisposed to common vari-

able immunodeficiency (CVID), a condition defined by low IgG and IgA

levels due to stalled development of mature B-cells and plasma cells17.

Themost common CVID variants in TNFRSF13B are the Cys104Arg and

Ala181Glumissense variants, which abolish TACI signalling65. We found

associations between Cys104Arg and Ala181Glu and lower BCMA and

IL5RA levels in the UK Biobank Olink data (Fig. 4a and Supplementary

Data 22). The opposite effects on BCMA, IL5RA, and IgG levels shown

by rs34562254-A indicate that this MM risk variant has a gain-of-

function effect.

Searching for putative causal variants, we noted that rs34562254

is a missense variant (Pro251Leu) that is predicted to be benign66,67.

However, we noted an association between rs34562254-A and

increased TNFRSF13B expression in B-cells (Supplementary Data 10)

and, congruent with this, two variants in high LD (rs4273077 and

rs4792800; r2 = 0.90 and 0.92 with rs34562254) showed transcrip-

tional effects in both MPRA datasets (Fig. 4b-c, Table 2 and Supple-

mentary Data 9). Further, both rs4273077 and rs4792800 map to
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Table 2 | Putative causal variants in high LD with MM lead variants

MM lead variant r
2 Variant Target gene RA/OA Genetic effect Effect in reporter assay Regulatory elements

rs10233479 0.91 rs73169649 SMARCD3 C/T Increasing expression Increasing activityc -

rs10233479 1.00 rs78740585 SMARCD3 A/G Increasing expression Increasing activityc,d Enhancer in SMARCD3; Looping to SMARCD3 TSS

rs10746812 0.77 rs1329600 DAPK1 G/A Increasing expression Increasing activitye DAPK1 TSS

rs11571833 1.00 rs11571833 BRCA2 T/A Lys3326Tera - -

rs11744881 0.96 rs1458018 ELL2 G/T Decreasing expression Decreasing activityc Enhancer in ELL2

rs11744881 0.96 rs17085266 ELL2 A/C Decreasing expression Decreasing activityc Enhancer in ELL2

rs11744881 0.91 rs3777182 ELL2 T/A Decreasing expression Decreasing activityc,d Enhancer in ELL2

rs11744881 0.90 rs3777183 ELL2 G/A Decreasing expression Decreasing activityd Enhancer in ELL2

rs11744881 0.96 rs3777189 ELL2 C/G Decreasing expression Decreasing activityd Enhancer in ELL2

rs11744881 0.91 rs889302 ELL2 A/C Decreasing expression Decreasing activityc Enhancer in ELL2

rs2822736 1.00 rs2822736 SAMSN1 G/A Increasing expression Increasing activitye Enhancer in SAMSN1

rs2993984 0.88 rs2790444 WAC C/T Decreasing expression Decreasing activityd Enhancer in WAC

rs34562254 1.00 rs34562254 TNFRSF13B A/G Pro251Leub - -

rs34562254 0.96 rs4273077 TNFRSF13B G/A Increasing expression Increasing activityc,d Enhancer in TNFRSF13B; Looping to TNFRSF13B

rs34562254 0.92 rs4792800 TNFRSF13B G/A Increasing expression Increasing activityc,d Enhancer in TNFRSF13B; Looping to TNFRSF13B TSS

rs34565965 1.00 rs34565965 BTN1A1, BTN3A2,HMGN4 T/A Increasing BTN3A2, HMGN4; Decreasing
BTN1A1

Increasing activitye Enhancer 14.7 kb upstream of BTN3A2; Looping to BTN1A1

and HMGN4

rs6864880 0.87 rs144869372 CPEB4 CCCTTCG/C Decreasing expression Decreasing activitye Enhancer 4.9 kb upstream of CPEB4; Looping to CPEB4 TSS

rs6864880 0.82 rs72810983 CPEB4 A/G Decreasing expression Decreasing activitye CPEB4 TSS

rs75341503 0.94 rs4487645 CDCA7L C/A Increasing expression Increasing activityd Enhancer 3.6 kb downstream CDCA7L

rs7621631 0.81 rs2293607 TERC T/C Variant in long non-coding RNA - -

aTruncating variant.
bMissense variant in signaling domain. Effect directions with respect to MM risk allele.
cNew MPRA.
dPublished MPRA.
eLuciferase.
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enhancers in TNFRSF13B intron 3, and rs4792800 displays a chromatin

looping interaction with the transcription start site (Fig. 4b and Sup-

plementary Data 9). Finally, dual-sgRNA CRISPR/Cas9 deletion of the

rs4273077- and rs4792800-harboring regions in Raji cells led to the

downregulation of both of the two main TNFRSF13B transcript iso-

forms (Fig. 4d), further supporting a regulatory role of these regions.

These data indicate that the TNFRSF13BMM risk allele exerts a gain-of-

function effect leading to increased MM risk.

Discussion
We report a comprehensive analysis of the germline genetic archi-

tecture of MM. By bringing together all major GWASs to date, we

identify 12 new risk loci. Through functional fine-mapping, we identify

high-confidence target genes and central biological pathways

(Fig. 5 and Supplementary Notes). Our data support that MM risk

variants act early in clonal evolution by predisposing for MGUS rather

than for progression from MGUS to MM.

Furthermore, we identify two central mechanisms mediating

inherited MM risk: increased LTL and increased BCMA and IL5RA

levels. These findings are consistent with amodel where dysregulation

of telomere maintenance and B-cell and plasma cell development

constitute central mechanisms in MM predisposition, each influenced

by a distinct subset of risk loci (Fig. 3a). Our initial analysis of the

TNFRSF13B risk locus suggests that the increase in BCMA and IL5RA

levels reflects a gain-of-function effect leading to increased MM risk

through amplified B-cell responses (Fig. 4a).

In conclusion, our study provides insights into genetic MM pre-

disposition, highlighting central biological mechanisms that

lead to MM.

Methods
Ethics
Collection ofpatient samples and clinico-pathological informationwas

undertaken with informed consent and ethical approvals in accor-

dance with the Declaration of Helsinki: for the Myeloma-IX68,69 trial by

the Medical Research Council Leukaemia Data Monitoring and Ethics

committee (MREC 02/8/95, ISRCTN68454111), the Myeloma-XI70 trial

by the Oxfordshire Research Ethics Committee (MREC 17/09/09,

ISRCTN49407852), HOVON65/GMMG-HD4 (ISRCTN 644552890;

METC 13/01/2015), HOVON87/NMSG18 (EudraCTnr 2007-004007-34,

METC 20/11/2008), HOVON95/EMN02 (EudraCTnr 2009-017903-28,

METC 04/11/10), University of Heidelberg Ethical Commission (229/

2003, S-337/2009, AFmu-119/2010), University of Arkansas forMedical

Sciences Institutional Review Board (IRB 202077), Lund University

Ethical Review Board (2022-01414-02), the Norwegian REK 2014/97,

the Danish Ethical Review Board (no. H-16032570), and the National

Bioethics Committee of Iceland (VSN 17-143).

Data reporting
No statistical methods were used to predetermine sample sizes.

Experiments were not randomized, and the investigators were not

blinded.

Genome-wide association study
We performed a meta-analysis of ten GWAS data sets from nine pre-

viously published studies (German, US, UKOnco, UK, Netherlands,

Sweden, Norway, Denmark, and Iceland)5–10 and the UK Biobank

(UKBB), totalling 10,906 cases and 366,221 controls, all

population–based cohorts with European Ancestry. Published studies:

The nine GWAS comprised Swedish (2338 cases, 11,971 controls), UK

(2282 cases, 5197 controls), German (1508 cases, 2107 controls), Dan-

ish (940 cases, 91,744 controls), UKOnco (878 cases, 7083 controls),

US (780 cases, 1857 controls), Netherlands (555 cases, 2669 controls),

Icelandic (598 cases, 313,882 controls), and Norwegian (500 cases,

4696 controls) and. UK Biobank study71: 527 cases of MM and 1417 age

Fig. 2 | Overviewof target genes. aAmong genes located in associated regions,

or with chromatin looping contact with these regions, we prioritized target

genes based on highly correlated (r2 > 0.8) coding variants, variants in long

non-coding RNAs, eQTLs, and TWAS signals (Supplementary Data 3,10).

Footnotes: 1: Truncating variant (Lys3326Ter). 2: Missense variant (Pro251-

Leu) in intracellular signalling domain. 3: Variant in expressed sequence of

TERC (rs2293607; r2 = 0.81 with rs7621631). 4: eQTL supported by a tran-

scriptionally active variant (Table 2 and Supplementary Data 9). b Additional

support for target genes, including DepMap essentiality (Supplementary

Data 11), cancer predisposition syndromes, B-cell immunodeficiencies, or

somatic mutations in MM.
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and sex-matched controls were identified, and genotypes down-

loaded. The association between variant genotype and MM was per-

formed under an additivemodel in SNPTESTv2.5. The diagnosis ofMM

(ICD-10 C90.0) was established in accordance with World Health

Organization guidelines. All samples from patients for genotyping

were obtained before treatment or at presentation.

We examined the relationship between genotype andMM in each

GWAS, assuming a log-additive model72. Meta-analysis under a fixed-

effects inverse-variance weighted model was performed using META

v1.773. Variants in the meta-analysis only included those with an

imputation quality score (info) > 0.8 and MAF >0.005 (8.1million

variants after filtering). The I2 statistic was calculated to quantify

between-study heterogeneity, and variants with an I2 > 75% were

excluded. There was no evidence of genomic inflation (λ = 1, Supple-

mentary Fig. 1). To define known risk loci, we compiled a list of pre-

viously reported genome-wide significant association signals for MM

(i.e., P < 5 × 10−8). Genome-wide complex trait analysis was used to

perform approximate conditional and joint association analysis

(COJO)74 to identify independent risk loci. To estimate LD, we used a

reference sample of unrelated individuals from a combined dataset of

UK10K75 and European individuals from the 1000Genomes Project76,

excluding variants with low imputation quality (INFO<0.8) and

deviation from HWE (P < 1 × 10−6). Associations at Pconditional < 5×10−8

within a 1Mb region of primary associations were considered novel

secondary associations.

Transcriptome-wide association study
We retrieved previously published expression data generated on

CD138-purified plasma cells from 183 UK (MRC Myeloma IX trial,

GSE21349), 658 German (E-MTAB-2299), and 608 US cohorts

(GSE2658, GSE31161)77. RNA was profiled using Affymetrix Human

GenomeU133 2.0 Plus Arrays.Gene expressionmodelsweregenerated

using the PredictDB pipeline78 for a total of 1449 participants. Elastic

net model building was done independently for each dataset. Models

were computed using genotype and expression data, and covariate

factors were estimated using PEER79. For the UK dataset, 30 PEER

factors were used; for the US and German data sets, 60 PEER factors

were used, as recommended by the GTEx protocol. Transcriptome-

wide association tests were performed for each dataset individually

using S-PrediXcan80 with summary statistics from the GWAS meta-

analysis. To combine S-PrediXcan results from the different data sets,

we used S-MultiXcan81.

Methylome-wide association studies
Illumina 450Kmethylation array datawasobtained from379 of theUK

cohort (MRC Myeloma XI trial). The EZ DNA Methylation kit (Zymo

Research) was briefly used for bisulfite conversion of genomic DNA.

Tumour DNA methylation was profiled using Illumina Infinium

HumanMethylation450 arrays. Raw data were exported from Genome

Studio (Illumina). Quality checking and normalization of raw methy-

lation data on 378 cases was performed using the ChIP Analysis

Methylation Pipeline (ChAMP). TheBMIQmethodwas used to perform

normalization. Elastic net model building was performed using geno-

type and expression data and covariate factors estimated using PEER,

where 60 PEER factors were according to the GTEx protocol.

Methylome-wide association testswere thenperformed for the dataset

using S-PrediXcan with summary statistics from the GWAS meta-

analysis. We annotated CG islands with the nearest gene and con-

sidered a Bonferroni-corrected P-value of 2 × 10−6 (i.e., 0.05/25,000

genes) as significant.

Fig. 3 | Pleiotropy with LTL and plasma BCMA/IL5RA levels. a MM risk variants

showing colocalized associated with LTL, BCMA levels, or IL5RA levels in UK Bio-

bank (Supplementary Data 13,19). Color indicates effect size (β) with respect to the

MM risk variant. Marker size indicates -log10 GWAS P-value for association with the

respective traits. b–dMendelian randomization (MR) plots showing effect sizes (β)

of LTL, BCMA, and IL5RA GWAS variants in the UK Biobank (exposures) and their

effect sizes (β) on MM risk (outcome). Lines represent slopes of four tests: inverse-

variance weighted (blue solid), weighted median (blue dashed), weighted mode

(black solid), and MR-Egger (black dashed). Data represent effect size (β) ± s.e.m;

circle area -log10 GWAS P-value.
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Estimation of heritability and partitioned heritability
To estimate the narrow-sense heritability of MM risk, we used LDAK

v5.2, applying BLD-LDAK and LDAK-Thin models47. Variants were har-

monized to HapMap3 with 1000 Genomes EUR, MAF > 0.01. Trans-

formation of observed scale heritability estimates ofMMto the liability

scale was carried out, assuming a lifetime risk of 1% for MM. To esti-

mate cell type-specific partitioned heritability based on chromatin

accessibility, we used LD-scores based on ATAC-seq data for sorted

blood cells available for LDSC12, extended with LD-scores for myeloid,

plasmacytoid dendritic cells, and plasma cells computed from pub-

lished ATAC-seq data8 (NCBI Gene Expression Omnibus accession no.

GSE119453; European Genome-phenome Archive accession no.

EGAS00001005394 and EGAD00001007814).

ChIP-mentation and ATAC-seq data
We carried out ChIPmentation and ATAC-seq to annotate regulatory

elements in KMS11 cells82–84. ChIPmentation was carried out for his-

tone marks H3K27Ac, H3K27me3, H3K4me1, H3K4me3, H3K36me3

and H3K9me3 in KMS11, L363, JJN3 and MOLP-8 cell lines. ChIP-

mentation reads were trimmed and aligned to hg19/GRCh37 using

Bowtie2. Duplicate reads were marked and removed using Picard.

ChromHMM was used to infer chromatin states, training the model

on four cell lines. Genome-wide signal tracks were binarized,

including input controls. A 12-state model was assigned to the

states85–87. We also annotated variants using GM12878 and Bone

Marrow mesenchymal stem cell ChromHMM tracks, using Roadmap

Epigenomics data88,89.

Cell culture
KMS11, KMS12-BM, L363, MOLP8, MM.1 S, U266B1, and Raji cells were

obtained from ATCC, cultured under recommended conditions, and

tested for mycoplasma.

Variant set enrichment analysis in ChIP-seq data
To examine enrichment in binding across risk loci, we adapted the

method of Cowper-Sal lari et al.90. Briefly, for each risk locus, a region

of strong LD (defined as r2 > 0.8 and D′ >0.8) was determined, and

these variants were considered the associated variant set (AVS). ChIP-

seq peak data for six histone marks from KMS11, L363, MOLP8, and

JJN3 cell lines were generated in-house. For each mark, the overlap of

the variants in the AVS and the binding sites was assessed to generate a

mapping tally. A null distribution was produced by randomly selecting

variants with the same characteristics as the risk-associated variants,

and the null mapping tally was calculated. This process was repeated

10,000 times, and P-values were calculated as the proportion of per-

mutationswhere the nullmapping tally was greater or equal to the AVS

mapping tally. An enrichment score was calculated by normalizing the

tallies to the median of the null distribution. Thus, the enrichment

score is the number of standard deviations of the AVS mapping tally

from the median of the null distribution tallies.

Fig. 4 | Functionalfine-mappingof theTNFRSF13B locus. a Effects of theMM lead

variant rs34562254-A on BCMA, IL5RA, IgG, IgA, and IgM levels in the UK Biobank.

Also shown are the Cys104Arg and Ala181Glu loss-of-function variants associated

with CVID (Supplementary Data 22). b Genomic context of rs34562254, rs4273077,

and rs4792800, showing chromatin accessibility (ATAC-seq intensity) in the B-cell

lineage, looping interactions, and regions targeted byCRISPR/Cas9. Also shownare

the chromatin states identified through ChromHMManalysis of histonemark ChIP-

seq data for in four plasma cell line (L363, MOLP8, JJN3, and KMS11) and one B-cell

line (GM12878). Light blue indicates enhancer activity; medium blue tran-

scriptionally active chromatin; darkblue transcription start site; andwhite indicates

transcriptionally inactive/repressed chromatin. c MPRA data for rs4273077 and

rs4792800 in L363 cells. Dots represent effect estimates for individual MPRA bar-

codes (MPRAscore βi values reflecting the representation of a barcode at the RNA

level normalized to its representation in the MPRA plasmid library), grouped by

allele (reference allele to the left; alternative to the right), DNA strand (+ or -) and

sliding window (variant at −20, 0 or +20bp from the center of 120bp oligonu-

cleotides representing the genomic context).OverallMPRAsignals for each cell line

in SupplementaryData 9.d Expressionof longand shortTNFRSF13B isoforms inRaji

cells subjected to dual-sgRNA CRISPR/Cas9 deletion of the rs4273077- and

rs4293800-harboring regions (“CRISPR”), non-targeting control (“Ctrl”), or empty

vector (“Empty”). P-values are for Student’s t-test. The bottom, middle and top of

each box plot represent the 25:th, 50:th, and 75:th percentiles. The whiskers

represent the non-outlier minimum and maximum values, located at 1.5 times the

interquartile range from the bottom and top of the box, respectively. The numbers

by the brackets are P-values for two-sided Student’s t-test.
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Association data for MGUS
Summary statistics for the MM variants were obtained from a meta-

analysis of 6234MGUS cases and 720,297 controls from Iceland (4092

cases and 298,673 controls), UK Biobank (1150 cases; 427,714 controls)

and the German Cancer Research Center (992 cases; 2910 controls).

Caseswere defined basedon ICD-10 codeD47.2. The Icelandic samples

were genotyped using Illuminamicroarrays UK Biobank samples using

AffymetrixUKBiLEVE /UKBiobankAxiomchips.Genotypeswere long-

range phased and imputed using population-specific reference sets91

(whole-genome sequencing data for 63,118 Icelandic and 150,119 UK

Biobank individuals). The association between variants andMGUS was

tested using logistic regression assuming an additive model92. Asso-

ciation results for individual cohorts weremeta-analyzed using inverse

variance weighted meta-analysis.

Pleiotropy analysis
We used the GWAS catalog (accessed November 2023) to identify

pleiotropy with other diseases, as well as with hematological and

immunological traits. We considered highly correlated associations

(r2 >0.8 between the GWAS catalog and MM lead variants).

Micro-C analysis
To detect chromatin looping interactions between risk variants and

target genes, we carried outMicro-C analysis as per refs. 93,94with the

followingmodifications:Cells werefixed at a density of 106 cells perml

in 3mM disuccinimydyl glutarate (DSG) for 20mins at room tem-

perature (RT). After adding formaldehyde to a final concentration of

1%, cells were further incubated at room temperature for 10mins.

Reactions were quenched by adding glycine to a final concentration of

660mM with incubation for 5mins at RT. Fixed cells were digested

withMNase (Worthington) optimized for each cell line and batch, with

incubation for 10mins at 37 °C, 1000 rpm. The reaction was quenched

by EGTA at a final concentration of 12.5mM, with incubation for

10mins at 65 °C, 1000 rpm. End repair and biotin labeling was per-

formed by incubating 106 MNase-digested cells using 30U of T4 PNK

(NEB) at 37 °C for 15mins, 1000 rpm. 35 U Large Klenow Fragment

(NEB) was added and incubated at 37 °C for 15mins. After biotin 14-

dATP (Jena NU-809-BIOX), biotin 11-dCTP (Jena NU-835-BIO14), dTTP

and dGTP were added (final concentration 66uM each), samples were

incubated at 25 °C for 45mins, 1000 rpm. Reactions were stopped

using 40mM EDTA and heating to 65 °C for 20min. Ligation was

performed with 10,000 U T4 DNA ligase, 23 °C for 3 hours, 1000 rpm.

Biotin ends were excised using 200U Exonuclease III at 37 °C for

10mins, 1000 rpm. Sequencing was conducted using a NovaSeq (Illu-

mina). The Juicer (Aidenlab) pipeline was used to generate Hi-C maps

from raw fastq files, and Mustache and FitHiC2 (Ay-lab) were used to

call significant interactions.

Expression quantitative locus (eQTL) data sets
To identify cis-eQTLs in plasma cells, we analyzed gene expression

profiles of CD138+ cells isolated from bonemarrow aspirates fromMM

patients harvested using immunomagnetic beads. First, we used

Affymetrix microarray data for 1445 subjects, including 183 UK Mye-

loma IX trial patients (a study aimed at comparing two bispho-

sphonates in the treatment of MM; Medical Research Council

Leukaemia Data Monitoring and Ethics committee, no. MREC 02/8/95,

ISRCTN68454111)95, 658 German GMMG patients, and 604 patients

treated at the University of Arkansas for Medical Sciences Myeloma

Center, USA6. Second, we used 185 RNA-seq samples from Lund Uni-

versity (Lund, Sweden)96. Third, we used 758 RNA-seq samples with
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DNA copy-number covariates from the CoMMpass study97. Fourth, we

used 309 RNA-seq samples from the Dana Farber Cancer Institute

(Boston, USA)98. For the first two data sets, paired SNP microarray

genotypes were available. For the third and fourth data sets, only RNA-

seq data were available, limiting eQTL analysis to risk alleles with these

coding proxies. Additionally, we used mRNA-sequencing data for

28 sorted immune cell populations from 416 individuals from the

ImmunExUT compendium99. For B cells, we used eQTL data for 758

Icelanders generated by isolating B-cells from peripheral blood

through negative selection using magnetic beads (StemCell Technol-

ogies 19674). We used eQTL data from deCODE Genetics (RNA-seq for

17,848 Icelanders) for whole blood.

Selection of target genes and putative causal variants
To identify target genes underlying the MM risk associations, we

considered genes overlapping a region defined by the variants in high

LD (r2 >0.8) with each lead variant. Additionally, we considered genes

displaying chromatin looping interactions with these regions, as

determined by the Micro-C data. Among 371 admissible genes in total,

we prioritized genes as probable target genes if they: (i) contained a

potentially pathogenic coding variants correlated (r2 >0.8) with the

MM lead variant; (ii) contained a variant in the expressed sequence of a

long non-coding RNAs correlated (r2 >0.8) with the MM lead variant;

(iii) had expression quantitative trait loci (eQTLs) in plasma cells or

another B-cell population (r2 > 0.8 between the eQTL and MM lead

variant); or (iv) a Bonferroni-significant TWAS signal within 1Mb of the

MM lead variant. We considered potentially pathogenic variants as

frameshift, stop-gain, stop-loss, and splice variants; computationally

predicted-pathogenic missense variants, and missense variants in

functionally well-characterized protein domains. At loci where no

effect on expression could be identified in the B-cell lineage, we

accepted eQTLs in other hematologic cell populations. At loci, where

no gene fulfilled any of our criteria, we prioritized the closest gene.

We searched for putative causal gene-regulatory variants to

obtain mechanistic support for the identified effects on gene expres-

sion. In the newly generated MPRA data (KMS11, RPMI-8226, and L363

cells), we nominated variants with false discovery rate (FDR) < 5% in at

least two cell lines and absolute log2 fold-change >0.2 in at least one of

these. In the published MPRA data (L363 and MOLP8 cells), we nomi-

nated variants with FDR < 5% in both cell lines and absolute log2 fold-

change >0.2 in at least one of them. In addition, we nominated variants

with significant effects in luciferase assays. We only considered effects

in the same direction as the corresponding eQTL/TWAS signal.

To obtain further support a functional impact of the gene itself,

we examined effects of CRISPR/Cas9 and shRNA knockdown on MM

and lymphoid cell line growth using data from the Dependency Map

(DepMap; https://www.depmap.org; version 23Q2), associations with

human Mendelian cancer predisposition syndrome, congenital B-cell

immunodeficiencies, and occurrence of recurrent somatic

mutations in MM.

Massive parallel reporter assays
In addition tomaking use of our publishedMPRAdata for the L363 and

MOLP8MMcell lines for 21 risk loci11, wegenerated anexpandedMPRA

dataset for 23of the risk loci using theKMS11, RPMI8226, and L363MM

cell lines100. Single-base pair variants in LD (r2 ≥0.4) of the lead variant

were included at each locus. Candidate regulatory sequences (CRS)

were designed in the forward and reverse direction for reference (ref)

and alternate (alt) alleles. Variants were centered in a 200-bp region.

230-bp oligos were synthesised (Agilent) with the CRS between 15 bp

adapters- ACTGGCCGCTTGACG**CRS**CACTGCGGCTCCTGC. Two

rounds of PCRwere used to add aminimal promoter (primers 5BC-AG-

f01v2 and 5BC-AG-r01v2; Supplementary Data 23) and a 15 bp random

barcode. Amplified fragments were cloned by Gibson assembly into

the SbfI/AgeI site of the pLS-SceI vector (Addgene no. 137725) before

transformation into electrocompetent E.coli for plasmid amplification.

pLS-SceI was a gift from Nadav Ahituv (Addgene no. 137725). Sanger

sequencing was used to confirm successful construction. The purified

plasmidwas sequenced (Mi-seq) with customprimers (pLSmP-ass-seq-

R1v2 and PLSmP-ass-seq-R2v2; Supplementary Data 23). The associa-

tion function in the MPRAflow100 pipeline was used to map unique

barcodes for each CRS. A lentivirus library was generated by trans-

fecting HEK293T cells with the plasmid library. After two days, the

supernatant was collected and concentrated, and this lentiviral library

was used to transduce KMS11, RPMI-8226, and L363 cells in triplicate.

After three days, DNA and RNA were harvested, plasmid RNA reverse

transcribed, and plasmid DNA and cDNA amplified by PCR, further

adding adapters for final NovaSeq sequencing (Illumina). MPRAflow100

was used to count barcodes and log2 DNA/RNA ratios for each CRS.

Activity of ref vs alt allelewas calculated usingMPRAnalyze101, with CRS

direction, barcode, and replicate as covariates. Primers were used as

published except those referenced in Supplementary Data 23, which

were used to accommodate novel adaptor sequences.

The pre-existing MPRA data for L363 and MOLP8 cells are

described in ref. 11. In short; we screened 1039 variants in high LD

(r2 >0.8) with MM lead variants. For each one, we designed twelve

120 bp oligonucleotide sequences corresponding to reference and

alternative alleles in six genomic contexts (both strands × three sliding

windows with the variant at −20, 0, and +20 bp from the center).

Sequences were coupled to a reporter gene with random 20bp

sequence barcodes 3′ of its open reading frame. Following transfec-

tion, the transcriptional activity of each construct was measured by

determining the barcode representation in reporter mRNA relative to

DNA, calculated using MPRAscore102. Plasmid sequencing identified

1.73 × 106 unique barcodes tagging 12,378 (99.2%) of the 12,468

designed oligonucleotides. F

Luciferase reporter assays
For loci not evaluated by MPRA, we performed luciferase assays. A

region surrounding the variant (120bp or 250bp) was cloned into

luciferase reporter constructs (pGL4.23[luc2/minP] or pGL3 basic;

Promega). Constructs and renilla control vectors were transfected by

nucleofectionwithAmaxa (Lonza), using kitVprogramX-01 forKMS-11

cells; or the Neon electroporation system (Life Technologies) using 2

pulses at 1250V, 10ms for Raji; 1 pulse 20ms 1550 V for U266B1 and

1400V, 3 pulses, 10ms for L363. Cells were harvested after 20–24 h

incubation at 37 °C, and 5% CO2 and luciferase activity were quantified

(DualGlo, Promega E1960). Two technical replicates of each of the

three biological replicates were normalized to the renilla control.

Biological replicates were mean-centred, and a change in transcrip-

tional activity was calculated as the difference in normalised reads

between the reference and alternate alleles. Significance was calcu-

lated with a two-sided, paired t-test.

Additional gene expression data sets
To test for enrichment of target gene expression in hematopoietic cell

types, we used bulk RNA-seq data for sorted blood cell populations103,

and pseudo-bulked single-cellmRNA-seq data for 35,882mononuclear

blood and bone marrow cells104.

Protein quantitative locus (pQTL) analysis
Plasma samples collected from 46,665 UK Biobank participants of

European descent were analyzed using Olink (UK Biobank application

no. 65851)105. The Olink platform consists of 2941 immunoassays tar-

geting 2925 proteins. The measurements were quantile-normalized

and adjusted for age, sex, and sample age. Association testing was

performedusing a linearmixedmodel106. LD score regressionwas used

to account for inflation in test statistics due to cryptic relatedness and

stratification107. P-values were computed using a likelihood-ratio test,

and the significance threshold was set to 1.8 × 10−9. 24,824 sentinel
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trans-pQTLs were discovered after recursive conditional analysis to

dissect secondary pQTLs and LD-based clumping105. We used SomaS-

can v4 data for 35,892 Icelanders47 for replication, representing 4907

aptamer-based assays targeting 4719 proteins. The same pipeline was

used to derive the lead trans-pQTLs as described for the Olink data. To

assess whether the MM variants affect the levels of plasma proteins

measuredusing theOlinkplatform,we searched forpQTL leadvariants

that co-localize (r2 > 0.8) withMM risk variants and found pQTLs for 21

proteins (Supplementary Data 17). Six of the proteins associated with

more than one MM variant, suggesting a potential causal relationship

with MM. To test this, we performed Mendelian Randomization ana-

lysis between each of these proteins and MM. Variant effects on pro-

teins coded by IL5RA and BCMA showed significant association with

MM risk (PIVW= 5.6 × 10−5 and PIVW = 9.0 × 10−13, respectively) and were

therefore investigated further.

Mendelian randomisation analysis
Two-sample Mendelian Randomisation (2S-MR) was used to examine

the causal relationship between leukocyte telomere length (LTL) and

pQTLs (exposures) with MM risk (outcome) using the TwoSampleMR

package108,109. Association data for LTL were obtained from ref. 46. For

each variant, effect estimates, and standard errors were retrieved.

Variantswere considered potential instruments if theywere associated

at P < 5 × 10−8, minor allele frequency >0.01. To avoid co-linearity,

correlated variants were excluded (r2 ≥0.01). For each variant, causal

effect estimates were generated as odds ratios per one standard

deviation unit increase in LTL (ORSD), with 95% confidence intervals

(CIs), using the Wald ratio (Supplementary Data 20). Causal effects

were also estimated using a random-effects inverse weighted variance

(IVW-RE) model, which assumes each variant identifies a different

causal effect. To assess robustness, we compared causal estimates and

associated P-values using weighted median (WME) and weighted

mode-based (WMBE) methods (Supplementary Data 15). Directional

pleiotropy was assessed using MR-Egger regression, and the Steiger

test was used to infer the direction of causal effect for exposures

(Supplementary Data 16). For this, we estimated the PVE using Cancer

Research UK lifetime risk estimates for MM. A leave-one-out strategy

under the IVW-RE model was employed to assess the potential impact

of outlying and pleiotropic variants (Supplementary Data 21).

Bayesian test for colocalisation
To test if pleiotropic associations reflect shared variants, we per-

formed colocalization using analysis using Coloc110 across 1Mb geno-

mic regions of either sideof lead variants of interest. Coloc enumerates

four possible configurations of causal variants for two traits, calculat-

ing support for each model based on a Bayes factor. Adopting default

prior probabilities, a posterior probability ≥0.80 was considered as

supporting a specific model.

CRISPR/Cas9 deletion of variant-harboring regions
To delete the rs4273077 and 4792800-harboring regions in

TNFRSF13B, we used dual-sgRNA CRISPR/Cas9 genome editing.

sgRNA pairs were selected using CRISPOR (crispor.org; Supplemen-

tary Data 24) and cloned into the pSpCas9(BB)-2A-GFP PX458 vector

(Addgene no. 48138). Cloned sgRNA pairs were co-transfected

(ThermoFisher Neon) into Raji cells. After 24 hours, GFP-positive

cells were isolated by fluorescence-activated cell sorting. RNA was

extracted (RNeasy plus micro kit; Qiagen) and reverse-transcribed.

Using TaqMan™ Fast AdvancedMasterMix (Applied BioSystems) and

PrimeTime qPCR assays (IDT), we quantified the mRNA levels of the

two main TNFRSF13B transcript isoforms with ATCB and GAPDH as

controls (Supplementary Data 25). To verify deletion efficiency, the

targeted regions were PCR-amplified from genomic DNA and ana-

lyzed on 2% agarose gels (Supplementary Data 24 and Supplemen-

tary Fig. 8).

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
Genotyping data have been deposited in Gene Expression Omnibus

(GEO) with accession codes GSE21349, GSE19784, GSE24080, GSE2658,

and GSE15695[https://www.ncbi.nlm.nih.gov/geo/]; in the European

Genome-phenome Archive (EGA) with accession code

EGAD50000000422 [https://ega-archive.org/studies/EGAS50000000

292] in the European Bioinformatics Institute (EMBL-EBI) ArrayExpress

repository with accession code E-MTAB-362 and E-TABM-1138[https://

www.ebi.ac.uk/biostudies/arrayexpress/]; and the database of Geno-

types and Phenotypes (dbGaP) with accession code phs000

207.v1.p1[https://www.ncbi.nlm.nih.gov/gap/]. Summary-level GWAS

data are available through EGA under accession numbers

EGA50000000280, EGAS50000000292, EGAZ50000000827, and

EGAZ50000000828[https://ega-archive.org/]. Expression data have

been deposited in GEO with accession codes GSE21349, GSE2658, and

GSE31161 [https://www.ncbi.nlm.nih.gov/geo/] and in EMBL-EBI

ArrayExpress with accession code E-MTAB-2299[https://www.ebi.ac.

uk/biostudies/arrayexpress/]. The accession number for the KMS11

ChIP-seq data is EGA: S00001002414[https://ega-archive.org/]. The

GM12878 chromatin data is publicly available from UCSC. The

sequencing data for the MPRA experiment have been deposited in the

Sequence Read Archive, accession no. PRJNA679966. The ATAC-seq

data for CD138+ MM plasma cells have been deposited in the EGA,

accession no. EGAS00001005394 and EGAD00001007814[https://ega-

archive.org/]. Publicly available eQTL data from the eQTLGen Con-

sortium[http://www.eqtlgen.org] and gene expression data from the

NCBI Gene Expression Omnibus (GEO) repository, accession numbers

GSE111199, GSE24759, GSE15695, GSE4581, GSE19784, GSE26760, and

GSE5900[https://www.ncbi.nlm.nih.gov/geo/]. Genotype data for the

UK Biobank data and the proteomics data can be accessed at https://

ukbiobank.dnanexus.com/landing. The UK Biobank Resource was used

under application number 65851. The Icelandic genomic data and pro-

teomics data have been described previously52. While these individual-

level data cannot be shared by Icelandic law, we are open to colla-

borations, as we have been in the past. The remaining data are con-

tained within the paper and Supplementary Files.
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