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Abstract

Objectives To evaluate the performance and potential biases of deep-learning models in detecting chronic obstructive

pulmonary disease (COPD) on chest CT scans across different ethnic groups, specifically non-Hispanic White (NHW)

and African American (AA) populations.

Materials and methods Inspiratory chest CT and clinical data from 7549 Genetic epidemiology of COPD individuals

(mean age 62 years old, 56–69 interquartile range), including 5240 NHW and 2309 AA individuals, were retrospectively

analyzed. Several factors influencing COPD binary classification performance on different ethnic populations were

examined: (1) effects of training population: NHW-only, AA-only, balanced set (half NHW, half AA) and the entire set

(NHW+ AA all); (2) learning strategy: three supervised learning (SL) vs. three self-supervised learning (SSL) methods.

Distribution shifts across ethnicity were further assessed for the top-performing methods.

Results The learning strategy significantly influenced model performance, with SSL methods achieving higher

performances compared to SL methods (p < 0.001), across all training configurations. Training on balanced datasets

containing NHW and AA individuals resulted in improved model performance compared to population-specific

datasets. Distribution shifts were found between ethnicities for the same health status, particularly when models were

trained on nearest-neighbor contrastive SSL. Training on a balanced dataset resulted in fewer distribution shifts across

ethnicity and health status, highlighting its efficacy in reducing biases.

Conclusion Our findings demonstrate that utilizing SSL methods and training on large and balanced datasets can

enhance COPD detection model performance and reduce biases across diverse ethnic populations. These findings

emphasize the importance of equitable AI-driven healthcare solutions for COPD diagnosis.

Critical relevance statement Self-supervised learning coupled with balanced datasets significantly improves COPD

detection model performance, addressing biases across diverse ethnic populations and emphasizing the crucial role of

equitable AI-driven healthcare solutions.
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Key Points

● Self-supervised learning methods outperform supervised learning methods, showing higher AUC values (p < 0.001).
● Balanced datasets with non-Hispanic White and African American individuals improve model performance.
● Training on diverse datasets enhances COPD detection accuracy.
● Ethnically diverse datasets reduce bias in COPD detection models.
● SimCLR models mitigate biases in COPD detection across ethnicities.

Keywords Chronic obstructive pulmonary disease, Deep learning, Artificial intelligence, Computed tomography,

Ethnicity
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Introduction
Chronic obstructive pulmonary disease (COPD) poses a

significant challenge in healthcare settings due to its non-

reversible airway and/or alveolar abnormalities, leading to

persistent airflow obstruction. Despite its global pre-

valence of 10.3% [1], COPD remains underdiagnosed and

misdiagnosed [2], necessitating improved diagnostic

strategies. The complexity of COPD diagnosis arises from

its diverse clinical presentations influenced by biological,

socioeconomic, and cultural factors, with racial and ethnic

disparities further complicating management.

Recent reports from 2021 in the US reveal COPD

prevalence at 6.2% in African American (AA) and non-

Hispanic Black individuals, slightly lower than 6.5% in

non-Hispanic Whites (NHW) and notably higher than

3.9% in Latino individuals [3]. Cross-sectional studies

consistently show AA individuals have lower lung

function, up to 10–15% lower forced expiratory volume

in 1 s (FEV1)) [4, 5], attributed in part to anthropometric

factors [4, 6]. COPD disparities extend to health-related

quality of life, dyspnea severity, exercise capacity, and

exacerbation rates, with AA individuals experiencing

worsened outcomes compared to NHW [7, 8]. Imaging

findings reflect these differences, with AA individuals

showing less severe emphysema on CT scans despite

matched lung function impairments [9]. While race

adjustments in spirometry reference equations have

historically addressed these differences, recent perspec-

tives advocate for race-neutral approaches to reduce

potential biases in diagnosis and treatment, particularly
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in vulnerable populations [10–15]. This evolving per-

spective necessitates a reconsideration of established

COPD diagnostic practices that may perpetuate racial or

ethnic bias.

Amidst these challenges, the emergence of artificial

intelligence has offered promising avenues for COPD

diagnosis and management. Particularly on the imaging

diagnosis front, deep learning (DL) has played a crucial

role in COPD early diagnosis and improved outcomes

[16–23]. However, concerns about potential racial bias in

AI detection models have also surfaced as their cap-

abilities unfold.

Recent studies [24, 25] suggest that rather than miti-

gating bias, these AI models might exacerbate and

perpetuate unfairness, particularly against specific sub-

populations. The mechanisms through which bias is

perpetuated are multifaceted. During training, datasets

may inadvertently underrepresent certain patient groups

or contain harmful correlations, leading to a distortion

of model outcomes. What amplifies the significance of

these concerns is the realization that human biases are

encapsulated in the target labels used to train these

models [26]. Besides, the algorithm design may also have

a higher tendency to learn and propagate such biases.

Among the main categories of algorithm design are

supervised learning (SL) and self-supervised learning

(SSL) models. SL methods can inherit biases present in

the labeled datasets [27], potentially perpetuating dis-

parities in disease detection [25, 28, 29]. SSL, on the

other hand, are less susceptible to biases inherent in

labeled data, as they rely on learning representations

directly from unlabeled data, often through pretext

tasks. This independence from biased labels is a sig-

nificant advantage, potentially reducing the risk of per-

petuating biases present in annotated datasets. However,

it’s crucial to note that SSL can still learn biases from the

data itself, as well as from the design of the SSL task

chosen. Even within the broader category of un-/self-

supervised learning, state-of-the-art models may, to

some extent, still harbor biases associated with learned

associations from the data [26, 30].

Despite the growing significance of the issue, previous

research has largely overlooked the potential ethnic biases

encoded in common COPD imaging detection models,

whether they employ SL or SSL techniques. Furthermore,

the impact of such biases on the performance of these

models remains unexplored.

In the face of this complex, multicausal issue, we

investigated how COPD predictive models on chest CT,

whether supervised or self-supervised, generalize across

different ethnic populations. This exploration is specifi-

cally defined within the context of the largest

COPD imaging dataset, Genetic epidemiology of COPD

(COPDGene), serving as the focal point for our compre-

hensive inquiry.

Specifically, our exploration unfolds through three

pivotal research questions:

– Research Question 1 (RQ1): To what extent do

NHW and AA experience similar prediction

performance when COPD detection models are

trained on large-scale datasets?

– Research Question 2 (RQ2): What is the impact of

the training population choice on the variations in

test accuracies between NHW and AA? This

involves assessing models trained exclusively on

AA, NHW, and a balanced set comprising equal

proportions of both.

– Research Question 3 (RQ3): If differences exist, are

these smaller for SSL methods?

Examining the potential for unfairness in DL algo-

rithms, whether due to the underrepresentation of min-

ority populations in the training set or by the algorithm

itself, is the first step for a comprehensive understanding

of the intricate relationship between training population

dynamics and algorithmic fairness in the realm of COPD

predictive models.

Materials and methods
Study sample

Our study retrospectively analyzed COPDGene phase

1 study [31] (clinicaltrials.gov, NCT00608764; http://

www.copdgene.org/), which recruited current and for-

mer self-reported NHW and AA smokers (≥ 10 pack-

years), aged 45–80 years, between 2008 and 2011. Paired

chest CT in inspiration (Insp) and expiration (Exp), pul-

monary function tests, and questionnaires were collected

per subject. Imaging data was acquired from different

scanners and different manufacturers. Specific image

acquisitions vary on the scanner model, which is available

in [31, 32].

To streamline the analysis and maintain simplicity, only

inspiratory images were included in this study, as con-

trastive tasks have demonstrated robustness even without

the inclusion of expiratory images [20]. Pre-processing

strategies followed the description of [20, 21].

Subpopulation matching and data split

Differences in COPD prediction between NHW and AA,

if any, could be related to confounding effects of demo-

graphic and risk factors variables. To limit the influence of

such factors, a population of NHW was selected to match

the AA population (NHW-matched), based on individuals

with the same age, gender, and smoking duration (years).

Having this in mind, to explore the effects of the training

population, COPD prediction models were trained on the

entire dataset (NHW and AA), AA only, NHW-matched
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only, and on a perfectly balanced set (half NHW-

matched+ half AA).

Differences in COPD prediction were evaluated on the

test set splits of AA only and NHW-matched only.

Data splits for training, validation, and testing followed

the same strategy as in [20, 21], now applying it to the

AA set.

COPD model prediction

Aiming to investigate the impact of SL and SSL on COPD

binary classification performance, several models were

evaluated.

Supervised learning (SL) models

For the evaluation of SL methods, we adopted three well-

established voxel-based approaches: end-to-end patch

classifier with a recurrent neural network (PatClass+

RNN); multiple instance learning (MIL) with RNN as

aggregation (MIL+ RNN); attention-based MIL (MIL+

Att). All methods are thoroughly described in the Sup-

plementary Materials S-1.

Self-supervised learning (SSL) models

For the evaluation of SSL methods, three self-supervised

contrastive tasks were compared (SimCLR, NNCLR, and

context-aware NNCLR), having a fixed anomaly detec-

tion approach as a downstream task. These models are

based on a recently proposed self-supervised anomaly

detection method by Almeida SD et al [20, 21] (cOOpD).

This approach is founded on modeling the distribution

of normal-lung regions utilizing contrastive latent

representations and identifying deviations from this

distribution as COPD-anomalous samples. In their

approach, SimCLR [33] was used as the self-supervised

contrastive model, as a pretext task to extract highly

informative latent features per lung region. Subse-

quently, a generative model was applied to healthy

regions from normal-lung-function subjects to discern

the distribution of “normality.” Out-of-distribution

samples were assigned an anomaly score based on the

negative log likelihood, enabling the identification of

COPD regions. Patient-level labels were obtained by

aggregating local-level scores.

To further enhance the richness of latent representa-

tions and extend beyond single instance positives, we

adapted and compared the Almeida SD et al cOOpD

method with two self-supervised pretext methods:

nearest-neighbor contrastive learning approach (NNCLR)

[34] and to a novel Context-Aware NNCLR (cNNCLR).

The NNCLR method introduces diversity in positive

pairs by incorporating nearest neighbors sampled from a

memory bank, aiming to increase the richness of latent

representations and overcome limitations of pre-defined

data augmentations.

The novel cNNCLR adaptation addresses concerns

regarding disease-related sample selection by enforcing

that nearest neighbors come from the same lung lobe and

patient, leveraging spatial information for refined repre-

sentations. This adaptation is particularly important given

the subtle and heterogeneous pathological patterns

observed in COPD.

For both NNCLR and cNNCLR, implementation con-

figurations followed established strategies for random

augmentations, encoder selection, and memory bank size,

ensuring consistency with previous work [34]. The same

downstream task as the original Almeida SD et al [20, 21]

method was employed for all self-supervised pretext tasks.

Further details about the method and implementations

are available in the Supplementary Materials S-2 and S-3.

Supplementary Fig. 1 illustrates the main differences

between NNCLR and cNNCLR.

The code for the self-supervised models is available on a

public repository on GitHub (https://github.com/MIC-

DKFZ/cOOpD).

Statistical analysis

Model performance was assessed using the Area Under

the Receiver Operator Curve (AUC) as the main evalua-

tion metric. The Area Under the Precision Recall Curve

(AUPRC) is also reported. Further details are available in

Supplementary Materials S-4. Differences in test perfor-

mance between AA and NHW were measured based on

the AUROC.

Multiple linear regression analysis was performed to

predict the AUC, based on the following independent

variables: type of learning method (SL vs SSL), training

configuration (AA, NHW, AA+NHW, AA+NHW

balanced), and evaluation population (AA-only and

NHW-only). Multiple linear regression was chosen to

quantify the contribution of each predictor and their

interactions, providing a comprehensive analysis of the

effects of the learning method, training configuration, and

evaluation population on the AUC. Corrections for mul-

tiple comparisons were addressed using the Holm-

Bonferroni method.

The distribution of the anomaly scores generated by

the SSL methods was compared using the Kolmogorov–

Smirnov Test. The hypothesis is that the distributions

of the individual binary classes (diseased/healthy)

should be identical, independently of the ethnicity.

Benjamini–Yekutieli correction was applied to the

p values.

Statistical analyses were performed with R (version

4.2.3; R Foundation for Statistical Computing). A p value

of < 0.05 was considered statistically significant.
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Table 1 Demographic data and functional parameters for the analyzed COPDGene study sample, divided by ethnicity and by dataset

split (training, evaluation, and testing)

Attribute Non-Hispanic White (NHW) African American (AA) NHW-matched to AA

All data

N Patients 5240 2309 2312

M (N) 2841 1297 1242

F (N) 2399 1012 1070

Age (y) (mean (IQR)) 62 (56–69) 55 (49–59) 58 (51–63)

BMI (mean (SD)) 28.4 (5.8) 28.6 (6.3) 28.6 (5.8)

Smoking habits

Never-smoker (N (%)) 105 (2.0%) 7 (0.3%) 0 (0%)

Former smoker (N (%)) 3158 (60.3%) 485 (21.0%) 1072 (46.4%)

Current smokers (N (%)) 1977 (37.7%) 1817 (78.7%) 1240 (53.6%)

Smoking duration (y) (mean (SD)) 36 (12) 36 (9) 37 (9)

Spirometry

FEV1%_pred (mean (SD)) 74.9 (26.9) 83.9 (25.3) 82.3 (24.6)

FEV1/FVC (mean (SD)) 0.6 (0.2) 0.7 (0.2) 0.7 (0.2)

Imaging

LAA-950% (mean (SD)) 7.9 (10.5) 4.5 (8.3) 5.4 (6.7)

LAA-878% (mean (SD)) 25.6 (20.5) 18.8 (18.9) 19.1 (18.2)

Training data

N Patients 3144 1384 1386

M (N) 1699 776 741

F (N) 1445 608 645

Age (y) (mean (IQR)) 63 (55–69) 55 (49–59) 57 (51–63)

BMI (mean (SD)) 28.3 (5.7) 28.6 (6.3) 28.6 (5.8)

Smoking habits

Never-smoker (N (%)) 63 (2.0%) 3 (0.2%) 0 (0.0%)

Former smoker (N (%)) 1862 (59.2%) 303 (21.9%) 615 (44.4%)

Current smokers (N (%)) 1219 (38.8%) 1078 (77.9%) 771 (55.6%)

Smoking duration (y) (mean (SD)) 36 (12) 36 (9) 37 (9)

Spirometry

FEV1%_pred (mean (SD)) 75.4 (26.8) 83.9 (25.1) 82.2 (24.7)

FEV1/FVC (mean (SD)) 0.6 (0.2) 0.7 (0.2) 0.7 (0.2)

Imaging

LAA-950% (mean (SD)) 7.8 (10.4) 4.5 (8.6) 5.5 (9.0)

LAA-878% (mean (SD)) 25.4 (20.4) 18.7 (18.9) 19.3 (18.5)

Validation data

N Patients 786 347 347

M (N) 450 198 199

F (N) 336 149 148

Age (y) (mean (IQR)) 63 (56–69) 55 (49–59) 58 (52–63)

BMI (mean (SD)) 28.3 (5.7) 28.5 (6.2) 28.6 (5.6)

Smoking habits

Never-smoker (N (%)) 13 (1.7%) 0 (0.0%) 0 (0.0%)

Former smoker (N (%)) 479 (60.9%) 73 (21.0%) 165 (47.6%)

Current smokers (N (%)) 294 (37.4%) 274 (79.0%) 182 (52.4%)

Smoking duration (y) (mean (SD)) 36 (12) 37 (9) 37 (9)

Spirometry

FEV1%_pred (mean (SD)) 74.2 (26.8) 82.5 (25.2) 82.1 (25.2)
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Results
Dataset characteristics

Table 1 presents the demographic data and lung function

parameters of the study sample employed in this study,

divided by ethnicity (AA and NHW). An extra column is

provided for the NHW population matched to AA

(NHW-matched). Patient characteristics are then divided

by training, evaluation, and test sets. Overall, this study

comprised 7549 COPDGene individuals (mean age 62

years old, 56–69 interquartile range), from which 5240

were NHW and 2309 were AA.

Model performance

The differences in performance in terms of the AUC

across models, training, and evaluation patient sub-

groups are summarized in Fig. 1 and in Supplementary

Table 1. SSL methods generally outperform SL methods,

with SL methods showing a lower average performance,

irrespective of the training and evaluation configuration.

Furthermore, AUC shows higher dispersion in SL

models than in SSL. Overall, the best-performing com-

bination is the NNCLR with the context framework

applied to the large-scale dataset (NHW+AA all), fol-

lowed by SimCLR.

Table 2 presents results from the multiple linear

regression model. Interactions between the various

predictors were also tested but since they were not sig-

nificant, the model was refitted without interactions. As

indicated in Table 2, the F-statistic p value is significant

implying that at least one of the predictors (the type of

learning, training configuration, and evaluation popula-

tion) is significantly associated with the AUC. The

overall coefficient of determination (R2) indicates how

much the model explains the variance of the AUC. The

contribution of each predictor (type of learning, training

configuration, and evaluation population) on the

dependent variable (AUC) is indicated by the respective

β values and p values.

SL methods had a significantly lower AUC (β=−18.90,

p < 2e-16) compared to SSL, holding the training config-

uration and evaluation population constant. Training on

the NHW-matched population resulted in a statistically

significant lower AUC than training on NHW+AA all

population (β=−4.09, p= 0.01). Although not sig-

nificant, training on the AA-only population showed a

lower AUC trend than the reference NHW+AA all

population. No differences were found for training on the

balanced set (half NHW-matched+ half AA) compared

Table 1 continued

Attribute Non-Hispanic White (NHW) African American (AA) NHW-matched to AA

FEV1/FVC (mean (SD)) 0.6 (0.2) 0.7 (0.1) 0.7 (0.2)

Imaging

LAA-950% (mean (SD)) 8.0 (10.6) 4.9 (8.8) 4.9 (8.0)

LAA-878% (mean (SD)) 25.7 (20.3) 20.0 (20.3) 19.0 (17.6)

Test data

N Patients 1310 578 579

M (N) 692 323 302

F (N) 618 255 277

Age (y) (mean (IQR)) 63 (56–69) 55 (49–59) 58 (52–63)

BMI (mean (SD)) 28.1 (5.7) 29.0 (6.5) 28.4 (6.2)

Smoking habits

Never-smoker (N (%)) 29 (2.2%) 4 (0.7%) 0 (0.0%)

Former smoker (N (%)) 817 (62.4%) 109 (18.9%) 292 (50.4%)

Current smokers (N (%)) 464 (35.4%) 465 (80.4%) 287 (49.6%)

Smoking duration (y) (mean (SD)) 36 (12) 36 (9) 37 (9)

Spirometry

FEV1%_pred (mean (SD)) 74.2 (27.1) 84.7 (25.8) 82.8 (24.2)

FEV1/FVC (mean (SD)) 0.6 (0.2) 0.7 (0.1) 0.7 (0.2)

Imaging

LAA-950% (mean (SD)) 8.1 (10.6) 4.1 (7.5) 5.3 (8.2)

LAA-878% (mean (SD)) 26.1 (21.1) 18.2 (18.0) 18.8 (18.0)

Attenuation percentages were measured by VIDA Diagnostics
COPDGene genetic epidemiology of COPD, N number, sd standard deviation, y years, BMI body mass index, FEV1 forced expiratory volume in 1 s, FEV1/FVC FEV1-to-
forced vital capacity ratio, LAA-950% percentage of LAA under −950 HU, LAA-856% percentage of LAA under −856 HU
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to training on the entire population (NHW+AA all)

holding the type of learning and evaluation population

constant. Similarly, no differences were found between

the evaluation populations, holding the type of learning

and the training configuration constant.

RQ1: To what extent do NHW and AA experience similar

prediction performance when COPD detection models are

trained on large-scale datasets?

No statistically significant difference was found between

the evaluation populations when holding the other

Fig. 1 The schematic workflow of this study. A Main differences in COPD-related clinical characteristics between non-Hispanic Whites (NHW) and

African-Americans (AA) and visual representation of normal and diseased regions on chest CT. The impact on COPD detection performance was assessed

by the influence of two factors: B Training population (AA-only, NHW-matched-only, AA and NHW-matched, and AA and NHW all) and (C) Learning

strategy (supervised learning [SL] and self-supervised learning [SSL]). D The impact is evaluated by comparing the Area Under the Receiver Operator

Curve (AUC) per training configuration and learning strategy and by assessing the differences in distributions produced by the top-performing method

Table 2 Multiple linear regression analysis to predict the main performance metric (AUC) with the following as independent variables:

type of learning method (supervised vs self-supervised), training configuration (AA only, NHW-matched only, AA+ NHW all, AA+ NHW

balanced) and evaluation population (NHW-matched only and AA only)

Multiple linear regression analysis

F(5, 42)= 61.18, p < 2e-16, R2= 0.88, adj R2= 0.86

Independent variable β p

Type of Learning (supervised vs self-supervised) −18.90 < 2e-16 *

Training configuration (AA vs NHW+ AA all) −1.49 0.34

Training configuration (NHW+ AA balanced vs NHW+ AA all) 0.03 0.98

Training configuration (NHW matched vs NHW+ AA all) −4.09 0.01*

Evaluation population (NHW-matched vs AA) 0.48 0.67

The second line provides information on the model fit, including the F-statistic. Reference categories are underlined
* p value was significant after Holm-Bonferroni correction for multiple comparisons
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predictors constant. This indicates that NHW and AA

individuals experience similar prediction performance,

independently of the learning strategy and training con-

figuration. Still, SL models trained with diverse data

sources (NHW+AA all) exhibited larger mean perfor-

mance differences between NHW and AA populations.

Furthermore, this same training configuration (NHW+

AA all) exhibited higher AUC than population-specific

configurations (NHW-matched p= 0.01, tendency for

AA-only n.s.), while no difference was found when com-

pared with the balanced set (half NHW-matched+ half

AA). Therefore, although no difference was found for the

COPD detection performance between AA and NHW,

the performance is higher when models are trained on the

entire (NHW+AA all) or on a balanced set (half NHW-

matched+ half AA).

RQ2: What impact does the choice of the training

population have on the differences in test accuracies

between NHW and AA?

Regardless of the training population, SL consistently

demonstrates higher AUC when evaluated on the AA

population, compared to NHW individuals. For SSL, there

are instances where the AUC mean is higher when

training on a population matched with the evaluation

population (e.g., NHW-matched when evaluating on

NHW). This effect is consistent across all models and

configurations, except for NNCLR models. Although no

statistically significant difference was found for the eva-

luation population, the training configuration has an

impact on the overall AUC: including both NHW and AA

patients in the training set improves the model’s perfor-

mance on both populations compared to training on a

population-specific dataset.

RQ3: If differences exist, are these smaller for self-

supervised methods?

Figure 2 illustrates that SL generally exhibits lower per-

formance and higher uncertainty in COPD prediction

compared to SSL. Furthermore, SL trained on the entire

population tends to demonstrate higher pronounced dif-

ferences in performance between NHW and AA indivi-

duals. Conversely, SSL, while achieving higher mean AUC

overall (p < 2e-16), also reveals greater discrepancies

between ethnicities, particularly when trained on other

population configurations.

Fig. 2 Supervised models show lower performance and higher uncertainty compared to self-supervised models. Comparison of COPD prediction

performance across supervised (MIL+ Att, MIL+ RNN, PatchClass+ RNN) and self-supervised (cOOpD, NNCLR, cNNCLR) models and across training and

evaluation sub-ethnicity groups. Training subgroups are represented by color, while evaluation subgroups by linetype. Average classification

performance across ethnic subgroups is shown in terms of the AUC (%), with error bars representing min–max values. The barplot on the top left corner

represents mean AUC differences (NHW - AA) between models. Thus, positive bars represent higher prediction performance for models evaluated on

NHW, compared to models evaluated on AA
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Do the distributions of anomaly scores generated by SSL

exhibit bias, and is there evidence to support the

hypothesis that the distributions of individual binary

classes (diseased/healthy) are identical, irrespective of

ethnicity?

Figure 3 displays the differences between ethnicities (AA

vs. NHW) across anomaly score distributions of healthy

and diseased subjects, for different training configurations

and SSL models. Particularly, NNCLR with context-aware

training (cNNCLR) exhibited more prominent and larger

differences, with clear shifts between AA and NHW

patients observed in the subgroup distributions for

COPD/healthy. Conversely, no obvious separation was

observed for cOOpD across any of the training config-

urations. Notably, training on the entire dataset

(NHW+AA all) resulted in minimal visually relevant

differences.

As presented in Table 3, the statistical analysis con-

firmed these qualitative observations. No statistically sig-

nificant differences were found for cOOpD models,

indicating similar distributions for AA and NHW, both

for healthy and diseased patients, across different training

configurations. For NNCLR, on the other hand, significant

differences were found between the marginal distributions

for AA and NHW healthy patients across all training

configurations (p < 0.0001) for all. For diseased patients,

no evidence of differences was found, except when

training in NHW-only (p= 0.03). Finally, for cNNCLR,

differences in distributions were found between ethni-

cities of healthy individuals when models were trained in

AA-only (p= 0.02), NHW-only (p < 0.0001), and on the

entire dataset (p= 0.003). No differences were found in

cNNCLR for the diseased patient-wise anomaly score

distribution in all cases and for healthy individuals when

the model was trained on the balanced set (half NHW-

matched+ half AA).

Discussion
In this study, we compared DL models for COPD detec-

tion on chest CT scans across ethnic groups. SSL out-

performed SL methods (p < 0.001), yielding higher AUC

and lower uncertainty. Training on the entire COPDGene

Fig. 3 Training on a matched, balanced population (half NHW-matched+ half AA) shows fewer distribution shifts across ethnicities, for the same health

condition. The SSL cOOpD model is revealed to be the best generalizable. Distribution shifts in patient-wise anomaly scores. Distributions of healthy

(green) and COPD cases (orange) for AA individuals (full line) and NHW individuals (dotted line) are plotted across self-supervised models (cOOpD,

nnCLR, cNNCLR), for four training configurations (AA-only, NHW-only, half NHW-matched+ half AA, AA+ NHW all). The plots were generated using all

individuals in the test set group. Statistically significant differences, noted by “*” (**** < 0.0001, *** < 0.001, ** < 0.01, * < 0.05), measured by the

Kolmogorov–Smirnov Test are displayed per condition: healthy (left) and for COPD (right)
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dataset produced better performance, with no significant

differences compared to a balanced population. SL per-

formed better on AA individuals, while SSL showed

varying NHW-AA performance differences. However, SL

trained on the full dataset exhibited larger performance

gaps between AA and NHW. Including NHW and AA-

matched patients improved performance and reduced

differences, favoring SSL methods. In addition, SSL

trained on balanced datasets showed more consistent

anomaly score distributions across ethnicities, suggesting

their potential to mitigate bias. These findings underscore

the importance of considering ethnicity in model devel-

opment and training to ensure equitable performance

across diverse populations in COPD diagnosis.

While our study contributes significantly to under-

standing the performance and biases of DL models in

COPD detection, it also sheds light on an important gap in

the existing literature. The vast majority of fairness studies

conducted to date have focused on pathology classification

tasks within medical imaging [25, 35–40], with no attention

paid to COPD diagnosis in minority classes. Despite the

prevalence and significant healthcare burden associated with

COPD, its diagnostic prediction performance across ethni-

cities remains understudied. Therefore, our work cannot be

directly compared to other studies. However, studies from

Glocker et al [25] and Seyyed-Kalantari et al [36] have

evaluated bias in AI algorithms for various pathologies in

chest X-rays. Parallelly to our findings, both studies high-

light the presence of performance disparities and biases in

AI models utilized for disease detection across various

demographic subgroups, including biological sex, race, and,

for the latter, socioeconomic status. Still, the effect of the

training population and different types of learning strategies

on pathology diagnosis has not been addressed.

Our findings also resonate with recent guidance from

the American Thoracic Society (ATS) [41], which advo-

cates for the adoption of race-neutral average reference

equations in pulmonary function testing interpretation,

while discouraging race and ethnicity adjustments. Our

observations are consistent with these overarching goals,

as, models trained on ethnic-specific datasets, exhibited,

on average, larger differences in COPD prediction per-

formance. On the other hand, on average, SSL exhibited

fewer disparities in COPD prediction between different

ethnic populations when models were trained on the

entire or on balanced dataset. Our analysis of anomaly

score distributions also revealed less statistically sig-

nificant differences between ethnicities across healthy and

diseased subjects when models are trained on the

balanced dataset. This underscores the importance of

leveraging ethnically diverse training datasets to enhance

model robustness and mitigate potential biases.

The implications of our study are multifaceted and can

inform future research and clinical practice in several key

areas. First, our findings underscore the importance of

evaluating DL models for medical applications across

diverse demographic groups to ensure equitable perfor-

mance and minimize biases. This highlights the need for

comprehensive data collection efforts that include diverse

populations to train models effectively and promote gen-

eralizability. Second, our study emphasizes the potential of

SSL methods to mitigate biases and improve model per-

formance in COPD detection. One possible reason for this

improvement, over SL, is that SSL methods are likely cir-

cumventing biases that may be inherent in labeled datasets,

thereby improving model generalization and reducing

disparities across different demographic groups. SSL

models excel in capturing nuanced patterns and variations

in lung characteristics, including those influenced by

demographic factors, leading to more robust and adaptable

performance. Moreover, SSL mitigates the risk of over-

fitting to specific labeled examples, making it more resilient

in real-world applications. In general, SSL can reduce the

dependency on labor-intensive manual labeling and lever-

age the abundant unlabeled CT scans in the medical

datasets, offering scalable solutions for improving COPD

diagnosis and equity in healthcare outcomes. This suggests

that investing in the development and evaluation of SSL

Table 3 Kolmogorov–Smirnov Tests for Comparing Distributions of ethnic evaluation populations across patient-wise anomaly score

distributions for self-supervised models (cOOpD, NNCLR, cNNCLR)

Self-supervised

model

Trained on

AA-only NHW-only (matched) half NHW-matched+ half AA (balanced) AA+NHW (all)

Healthy COPD Healthy COPD Healthy COPD Healthy COPD

cOOpD > 0.99 > 0.99 > 0.99 > 0.99 > 0.99 > 0.99 > 0.99 > 0.99

NNCLR < 0.0001**** > 0.99 < 0.0001**** 0.03* < 0.0001**** 0.19 < 0.0001**** 0.09

cNNCLR 0.02* > 0.99 < 0.0001**** 0.11 0.05 > 0.99 0.003** > 0.99

**** < 0.0001, ** < 0.01, * < 0.05
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approaches could yield significant benefits for improving

COPD diagnostic accuracy and reducing disparities. In

addition, our analysis underscores the importance of con-

sidering the choice of training data and its impact on model

performance and bias. Finally, our study raises a critical

consideration regarding the optimal balance between

model performance and equity in healthcare outcomes.

The choice between a lower-performing model with

reduced disparities between ethnic groups or a higher-

performing model with some differences between them

warrants further examination in the context of improving

equitable access to healthcare for diverse populations.

There are some limitations to our study worth reporting.

While we rigorously matched the subgroups for compar-

ison, it’s important to acknowledge the limitation regarding

the inability to match other factors, such as the study site.

Specifically, there were disproportionately fewer NHW

individuals at study sites primarily serving AA individuals.

Furthermore, while we focused on ethnicity as a key

demographic variable, other factors such as socioeconomic

status, education level, and environmental exposures were

not addressed in our analysis. In addition, despite matching

on smoking duration, discrepancies in smoking status (i.e.,

proportions of never-smokers, former smokers, and current

smokers) between NHW and AA populations remain,

influenced by differences in smoking initiation, cessation

rates, cultural norms, and potential sampling variability

within our study cohort. Future studies should aim to

incorporate a more comprehensive set of demographic and

clinical variables to better understand the complex interplay

between patient characteristics and model performance.

In conclusion, our study highlights the significance of

considering ethnicity in developing equitable COPD

diagnostic models. We advocate for comprehensive data

collection efforts and the exploration of SSL methods to

mitigate biases and improve diagnostic accuracy across

diverse populations, paving the way to ensuring equitable

benefits for all population segments.
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