
 |        (2024) 14:18677  | 

www.nature.com/scientificreports

*

 SNP interaction, Cluster, False positivity, Simulation

Biostatistics and Data Science Program, School of Public Health, Louisiana State University Health Sciences 
Information and Communications Research Laboratories, Industrial 

Technology Research Institute, Hsinchu, Taiwan. Royal 
Division of Population Health, Health Services Research 

Institute of Biomedicine, 
University of Turku, Turku, Finland. 

Department of Applied Health Research, University College 

Australian Prostate 

Translational Research Institute, Brisbane, 

Department of Oncology, University 

Faculty of Health and Medical 
Department of Clinical Biochemistry, Herlev 

Department of 



Vol:.(1234567890)

 |        (2024) 14:18677  | 

www.nature.com/scientificreports/

In the past decade, inherited genetic variant or single nucleotide polymorphism (SNP) data generated from 
Genome-Wide Association Studies (GWAS) increased dramatically because of the decreasing cost of genotyping 
arrays, increasing number of testing variants in arrays, increasing interest in new phenotypes (such as treatment 
effects), and development of advanced statistical  analyses1,2. Most GWAS-identified SNPs can only provide a 
small prediction individually. Recently, many polygenic risk scores (PRSs), the weighted sum of risk variants 
based on SNP main effects, for various phenotypes have been  proposed3. PRS can provide a score to quantify an 
individual’s genetic risk, and these polygenic risk scores benefit personalized medicine. �e polygenic risk scores 
have been shown to increase prediction power for complex traits compared with a single SNP, but there is room 
for improvement. Most PRSs do not consider SNP–SNP interactions. It has been established that gene–gene/
SNP–SNP interactions play a more prominent role in the causality of complex  diseases4,5. It has been shown 
that analyses of SNP–SNP interactions or epistasis are important post-GWAS and potential solutions for solving 
missing  heritability2.

Although SNP–SNP interactions have received more attention in the past decade, many SNP–SNP interaction 
studies suffer low statistical power due to inappropriate statistical methods. Many SNP–SNP interactions have 
been identified, but few can be replicated. One of the reasons is the use of the conventional statistical method, the 
Additive-Additive full interaction (AA-Full) method, for testing SNP–SNP interactions. �is AA-Full method 
tests the full or hierarchical interaction model (2 SNPs + their interaction), and each SNP is based on additive 
inherited mode (count of minor alleles as 0, 1, and 2). It has been shown that AA-Full has low power for detecting 
SNP–SNP interactions and tends to lead to false negative results because this approach only tested one compli-
cated interaction  pattern6,7. Sufficient statistical power is critical for successful investigations, and studies with 
low statistical power result in false negativity, which wasted research  resources8.

A SNP-interaction cluster is defined as a set of SNP–SNP interaction pairs sharing a common or hub SNP. 
When advanced statistical methods were used, SNP-interaction clusters have been reported in many studies. 
More SNP–SNP interactions have been identified with the development of advanced and powerful statistical 
methods for evaluating SNP–SNP interactions, but many related features remain unclear. We observed that an 
increasing number of published studies showed that many significant SNP–SNP interaction pairs are grouped 
into a SNP-interaction  cluster9–14, which refers to a set of SNP–SNP interaction pairs sharing a common or hub 
SNP. Even though these SNP–SNP interaction studies used different statistical methods for various phenotype 
outcomes, the cluster effect for significant SNP–SNP interactions has been  reported9,10,13,14. For example, our 
previous study evaluated SNP–SNP interactions associated with prostate cancer aggressiveness and identified 4 
SNP-interaction clusters using the 2-stage AA9int-SIPI  approach9. A study tested high-order SNP–SNP interac-
tions associated with age-related macular degeneration using the multi-population harmony search algorithm, 
an artificial intelligence  approach10. Using this new approach, 169 SNP pairs were in 3 clusters with a size of 138, 
24, and 7 pairs, respectively. Moreover, one SNP was shown in all 3- and 4-order SNP–SNP interactions, and 
another SNP was included in all 4-order  interactions10. �e other 3 studies using the harmony search algorithm 
also showed the cluster effect of significant SNP–SNP  interactions15–17. Another study evaluated SNP–SNP inter-
actions associated with rheumatoid arthritis. �ere are 19 out of the top 20 SNP–SNP interaction pairs in the 2 
clusters (1 cluster with 6 pairs and the other with 13 pairs) based on three non-parametric  methods13. Moreover, 
studies using the Multifactor Dimensionality Reduction (MDR) method, a model-free data mining method for 
detecting SNP–SNP interactions, showed that SNPs with a strong main effect increase the chance of significant 
SNP–SNP  interactions18–23. �ese studies showed that many hub SNPs in the SNP-interaction clusters also had 
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significant main effects. �us, we hypothesize that some pairs in the cluster of significant SNP–SNP interaction 
pairs are false positive, and the false positivity is related to the significance level of the hub SNPs’ main effect.

To apply identified SNP–SNP interactions for risk prediction and biological mechanisms, it is essential to 
understand the false positivity issue of SNP–SNP interactions and develop a tool to reduce false positivity. �e 
bootstrap, a resampling technique, has been used for estimating statistics, statistical tests, and variable selection, 
and in SNP association studies, it is used to distinguish true positives from false  positives24. However, the usage 
and performance of the bootstrap method for SNP–SNP interaction are still understudied. �erefore, this study 
aims to evaluate cluster effect features of significant SNP–SNP interaction pairs, identify factors associated with 
false positivity, and develop methods for improving SNP–SNP interaction detection accuracy.

We are interested in evaluating factors associated with false- and true-positivity for SNP–SNP interaction analyses 
using the SNP Interaction Pattern Identifier (SIPI)  approach6, focusing on SNP-interaction pairs in a cluster. A 
SNP-interaction cluster is defined as a set of SNP–SNP interaction pairs sharing a common or hub SNP. For thor-
oughly evaluating false-positivity and true-positivity for SNP–SNP interactions, this study has 2 parts (Fig. 1a,b). 
Part 1 is based on simulation analyses with 1000 simulation runs (or 1000 simulated datasets) for each condition. 
Part 2 is to mimic real data analyses based on one dataset using a hybrid study with both observed and simulated 
data. In this study, we used “C” to denote a SNP in a causal pair, which was associated with the outcome. “N” 
represented a null SNP generated based on simulation that was not associated with the outcome. �us, C–C pairs 
are causal pairs, and C–N and N–N pairs are null pairs, which are not significantly associated with the outcome.

For SNP main effects, various inheritance modes (dominant, recessive, and additive) were assessed using logistic 
regressions for a binary outcome. �e best mode was selected based on the lowest p-value for each SNP using 
the “SNPmain” function in the SIPI R package. Our published study shows that SNP inheritance modes play an 
essential role in association tests because the additive model assumption may not be valid for all  conditions25.

We tested SNP–SNP interactions associated with an outcome using the SNP Interaction Pattern Identifier (SIPI) 
 approach6. With a binary outcome, logistic-model-based SIPI was applied. �e analyses used the “SIPI” function 

Figure 1.  Summary of study design in the 2 study parts. (a) Simulation setting in Part 1: A cluster with 7 pairs: 
one causal (C–C) pair, and 6 with null (C–N) pairs. (b) Hybrid setting in Part 2: A cluster with 601 pairs: one 
observed causal pair and 600 simulated null pairs. MAF minor allele frequency, “C” represents a SNP from a 
causal pair; “N” represents a simulated null SNP.
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in the SIPI R package. For each SNP pair, SIPI tests 45 interaction patterns by considering 3 major factors: model 
structures, inheritance modes, and risk directions. �ere are 4 model structures: (1) full interaction model with 
two SNPs plus the interaction of SNP1 and SNP2; (2) SNP1 plus an interaction; (3) SNP2 plus an interaction; 
and (4) interaction only. �e 3 inheritance modes are additive, dominant, and recessive modes. In addition, 
SIPI considers 2 risk or mode-coding directions: original coding based on a minor allele and reverse coding. 
SIPI uses the Bayesian information criterion to search for the best interaction pattern with the smallest Bayesian 
information  criterion6. Based on our previous  studies6,9, the most common models for the significant SNP–SNP 
interaction pairs are interaction-only models. For p-values, “p-main” is defined as the p-value of a SNP main 
effect associated with an outcome in a model with this SNP main effect only without interaction, and “p-pair” 
is defined as a p-value of a SNP–SNP interaction pair associated with an outcome.

In conventional studies, researchers o�en apply a p-value cut-point (called “p-pair-criterion,” such as the 
Bonferroni criterion) to identify significant SNP–SNP interaction pairs. Based on the results of previous  studies9,10 
and Table 1, SNP–SNP interaction pairs with a significant SNP main effect tend to have a significant interaction. 
In addition, most of the research interest is identifying SNP–SNP interactions, which can predict the outcome 
better than SNP’s main effects. �us, we proposed “3pRule”, a modified significance rule for detecting SNP–SNP 
interactions. �e “3pRule” approach is a rule of defining a significant SNP interaction pair based on 3 p-value 
rules: (1) p-pair of SNP1-SNP2 < p-pair-criterion; (2) p-pair < p-main of SNP1, and (3) p-pair < p-main of SNP2. 
�en, we compared the performance of 3pRule with the convention approach (called “1pRule”). �e “1pRule” 
approach is a convention rule of defining a significant SNP interaction pair based on 1 p-value criterion: p-pair 
of SNP1-SNP2 < p-pair-criterion. It is worth mentioning that the 1pRule and 3pRule approaches have different 
results only when p-SNP1 and/or p-SNP2 are less than the p-pair criterion, which indicates that these SNPs have 
a very significant main effect, especially GWAS-identified SNPs.

In the simulation in Part 1, we evaluated the cluster effect of significant SNP–SNP interactions, focusing on 
positivity in a cluster. In Part 1, we evaluated 24 clusters with 7 pairs per cluster (1 causal (C–C) pair and 6 null 
(C–N) pairs, see Fig. 1a). �e hub SPNs of these 24 clusters were based on the 24 SNPs in the 12 causal pairs 
associated with a binary outcome. Under a similar interaction pattern, we were interested in evaluating the false 
positivity of pairs with different p-pair and p-main for the hub SNP in a cluster. �erefore, these 12 causal pairs 
were generated based on 4 interaction patterns with 3 various significance levels (low significance (L), medium 
significance (M), and high significance (H)) (Supplementary Table S1 and Fig. 2). In order to mimic complicated 
relationships of SNP–SNP interactions associated with a binary outcome, the 4 pairs with a high significance level 
 (C1H–C2H,  C3H–C4H,  C5H–C6H, and  C7H–C8H) were generated the top findings of our published study with a 
sample size of around 20,0009. As shown in Supplementary Table S1, the 4 SNP pairs with a high significance level 
had a p-pair of 4.5 ×  10–18 to 6.7 ×  10–5 under a sample size of 20,000 and had a wide range of MAF (0.055–0.444). 
�en, the other 8 pairs were generated using the same 4 interaction patterns but with lower significance levels. 
�e 4 pairs with a medium significance level were  C1M–C2M,  C3M–C4M,  C5M–C6M, and  C7M–C8M, and the 4 pairs 
with a low significance level of  C1L–C2L,  C3L–C4L,  C5L–C6L, and  C7L–C8L. �erefore, 3 pairs for each set were 
generated. Using the C1–C2 set as an example,  C1H–C2H,  C1M–C2M,  andC1L–C2L are the pairs with the similar 
C1–C2 pattern with the high, medium, and low significance of the SNP–SNP interaction (p-pair = 4.5 ×  10–18, 
9.1 ×  10–14, and 1.6 ×  10–8, respectively) under a sample size of 20,000. �e details of simulating these causal pairs 
are listed in the Supplementary Methods S1 section.

For null pairs in a cluster (C–N pairs), we simulated 6 null SNPs independently based on various MAFs of 
0.05, 0.1, 0.2, 0.3, 0.4, and 0.5, named N1 to N6. �e null SNPs were generated based on the MAF following a 
multinomial distribution, with the probabilities based on the Hardy–Weinberg equilibrium (HWE). Because 
these SNPs were generated independently, they were not associated with the outcome. �us, each cluster had 
7 pairs (see Fig. 1a). Using the cluster with  C1H as the hub SNP as an example, there are 1 causal pair (such as 
 C1H–C2H) and 6 null pairs (including  C1H–N1,  C1H–N2 to  C1H–N6). Each condition was tested under 3 sample 
sizes (n = 5000, 10,000, and 20,000) and 1000 simulation runs. For evaluation, both 1pRule and 3pRule with a 
p-pair-criterion less than 1 ×  10–4 based on empirical results (Supplementary Fig. S2b) were applied to detect 
significant pairs.  TIRs1k and  FIRs1k were used to measure the probability of being significant based on 1000 

Table 1.  Summary of 7 observed significant SNP–SNP interaction pairs associated with a binary outcome. 
1 Min minor allele, Maj major allele, MAF minor allele frequency. 2 Bold for significant results based on the 
Bonferroni criteria. p-main < 8.1 ×  10–5 (= 0.05/614), and p-pair < 2.7 ×  10–7 (= 0.05/614C2).

SNP pair
SNP1–SNP2

SNP1
Min < Maj (MAF)1

SNP2
Min < Maj (MAF)1

SNP1
p-value (p-main)2

SNP2
p-value (p-main)2

SNP–SNP interaction
p-value (p-pair)2

rs17632542-rs4783709 G < A (0.06) A < G (0.31) 2.2 × 10–15 0.027 5.7 × 10–18

rs2569735-rs7613553 A < G (0.12) A < C (0.44) 5.5 × 10–9 0.551 4.4 × 10–13

rs1058205-rs2274545 G < A (0.15) C < A (0.28) 9.5 × 10–8 0.065 8.5 × 10–10

rs4802755-rs4473378 A < G (0.46) G < A (0.14) 1.8 × 10–7 0.728 2.3 × 10–9

rs174776-rs1250240 A < G (0.11) A < G (0.26) 7.9 × 10–7 0.279 3.5 × 10–10

rs2271095-rs7446 G < A (0.35) A < G (0.31) 2.0 × 10–6 2.0 × 10–5 1.7 × 10–12

rs266876-rs9521694 G < A (0.24) A < T (0.16) 3.2 × 10–6 0.001 3.4 × 10–9
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Figure 2.  False identification rates  (FIRs1k) for the 8 sets of clusters based on 1000 simulation runs. Each set 
had 3 clusters with a hub SNP with various significance levels, such as  C1H,  C1M, and  C1L for C1 SNP with a 
high, medium, and low significance level, respectively. Sample size: 20 K (n = 20,000), 10 K (n = 10,000), and 
5 K (n = 5000). Significance rules: 1pRule: p-pair < 2.7 ×  10–7; 3pRule: p-pair < 2.7 ×  10–7 and p-pair < p-main for 
SNP1, and p-pair < p-main for SNP2.



Vol:.(1234567890)

 |        (2024) 14:18677  | 

www.nature.com/scientificreports/

simulation datasets under a selected condition. “True identification rate  (TIRs1k)” is defined as a proportion of 
significance for a causal pair out of the 1000 simulation datasets. “False identification rate  (FIRs1k)” was defined 
as a proportion of significance for a selected condition of null pairs (such as the 6 null pairs with  C1H as a hub 
under a sample size of 20,000) based on the 1000 simulation datasets.

In order to develop methods for improving SNP–SNP interaction detection accuracy and evaluate N–N pairs, we 
applied a hybrid study by integrating causal pairs from real data and simulated null SNPs. As shown in Table 1 
and Fig. 1b, this hybrid study used a dataset comprising 614 SNPs: 14 SNPs from 7 significant pairs and 600 null 
SNPs. We evaluated 14 clusters, with each of these 14 SNPs as a hub SNP. For causal pairs, we included 7 observed 
SNP–SNP interaction pairs related to the KLK3 gene significantly associated with prostate cancer aggressiveness 
based on our published study and randomly selected 20,000 subjects from the original  data9. �ese 7 pairs were 
treated as causal pairs with true associations. �ese 7 SNP–SNP interaction pairs are rs17632542-rs4783709 in 
KLK3 and CYB5B:LOC105371325 and rs2569735-rs7613553 in KLK3 and RARB, rs1058205-rs2274545 in KLK3 
and COL4A2, rs4802755-rs4473378 in KLK3 and FN1-DT, rs174776-rs1250240 in KLK3 and FN1, rs2271095-
rs7446 in KLK3 and KPNA3, rs266876-rs9521694 in KLK3 and COL4A2 associated with prostate cancer aggres-
siveness with a p-value of interactions in a range of 5.7 ×  10–18 to 3.4 ×  10–9. �e p-pair values of 7 C–C pairs and 
the p-main values of their composite SNPs associated with prostate cancer aggressiveness are listed in Table 1. 
�e MAF of these 14 SNPs in the causal pairs ranged from 0.06 to 0.46. For significance, the Bonferroni criterion 
p < 8.1 ×  10–5 (= 0.05/614) was applied for SNP main effects, and a p-pair-criterion of 2.7 ×  10–7 (= 0.05/614C2) was 
used for SNP–SNP interaction pairs for both 1pRule and 3pRule.

For null SNPs, we simulated 600 null SNPs (N1, N2, …, N600) independently based on the HWE with a 
sample size of 20,000. We generated 100 null SNPs for the 6 different MAF conditions (0.05, 0.1, 0.2, 0.3, 0.4, 
and 0.5). Among all pairs, we were especially interested in evaluating the clusters with 1 causal pair and 600 null 
pairs (C–N pairs) in the same cluster (Fig. 1b). For a total of 614 SNPs, there were 188,191 pairwise interaction 
pairs: 7 causal C–C pairs, 8400 C–N pairs, 179,700 N–N pairs, and 84 pairs with other combinations of 2 “C” 
SNPs (called “C–C-other” pairs). We defined the 7 selected significant pairs as causal pairs and the others as null 
pairs. �erefore, any observed significant C–N, N–N, or C–C-other pairs in this study were considered false 
positive findings. For testing correlations or the LD status among SNPs,  r2 was applied. SNPs with  r2 > 0.8 were 
considered strong LD. For the hybrid project in Part 2, the true positive rate (TPR) was defined as a proportion 
of significance out of 7 causal pairs. �e false positive rate (FPR) was defined as a proportion of significance out 
of all null pairs. In addition, the cluster-level FPRs  (FPRcluster) was defined as a proportion of significance out of 
null pairs in a cluster.

In the 2nd part of the hybrid analysis, we were also interested in evaluating correlations between a C–C pair 
and the significant corresponding C–N pairs in the same cluster. All 7 causal pairs and most significant null pairs 
had interaction-only patterns analyzed by SIPI. For pairs with an interaction-only pattern with an additive mode, 
these pairs with a value of (0, 1, 2, or 4) can be treated as a continuous variable. �us, Pearson correlations can be 
used to calculate correlations between these pairs with an additive mode. �e Phi correlation was calculated for 
the interaction patterns with binary (0 and 1) dominant or recessive inheritance modes. Moreover, we further 
tested correlations between p-pair and p-main, the most significant main effect in the 2 composite SNPs, using 
the Spearman test for 91 pairwise interactions based on the 14 SNPs in the causal pairs.

Based on our study findings, 3pRule can effectively reduce FPRs compared with 1pRule. However, we observed 
that some false positive pairs were highly correlated with the causal pairs even a�er applying 3pRule. In order to 
solve this issue, we proposed using the “bootstrap + 3pRule” approach and applied it in Part 2. In the bootstrap 
approach or resampling with replacement, subjects are randomly selected with replacement, miming the sam-
pling variation in the population from which the sample was  drawn26. �e sample size of bootstrap datasets was 
the same as the observed data. In order to mimic real data analyses, the 500 bootstrap samples were generated 
based on the observed dataset with 614 SNPs and the same sample size of 20,000. On each bootstrap dataset, we 
performed pairwise SNP–SNP interaction for the 614 SNPs using SIPI, in which 3pRule was applied to define 
significant pairs. For evaluating the performance of the “3pRule + bootstrap” approach, the positivities (TPR and 
FPR) were compared with the conventional approach, original data with 1 pRule, based on 500 bootstrap datasets.

�e SIPI function in the SIPI R package (https:// github. com/ LinHu iyi/ SIPI) was used to detect SNP–SNP 
interaction pairs. In addition, the 3 new functions have been added to the SIPI package based on the findings 
of this study. �e “eval3pRule” R function is to identify significant SNP–SNP interaction pairs based on 3pRule. 
�e “boot3p_SIPI” R function is used to conduct SIPI analyses to detect SNP–SNP interactions with the “boot-
strap + 3pRule” approach. Using this function, the SIPI results based on the 3pRule in the user-defined bootstrap 
datasets will be summarized. �e “bootData” R function is for bootstrap data generation.

For Part 1, we are interested in evaluating  FIRs1k for pairs in a cluster. As shown in Fig. 2a–h and Supple-
mentary Table S1,  FIRs1k based on 1pRule were larger than 3pRule. For C1 with a high significance level 
(p-main = 1.4 ×  10–8) under a sample size of 10,000, the  FIRs1k was 82.3% for 1pRule but reduced to 29.5% for 
using 3pRule. For C3 with a high significance level (p-main = 2.1 ×  10–7) under a sample size 10,000, the  FIRs1k 
was 53.0% for 1pRule but reduced to 23.8% for using 3pRule. �ese results support that 3pRule can effectively 
reduce  FIRs1k compared with the 1pRule. As for the sample size effect, we observed that a large sample size caused 
a high  FIRs1k, and this trend was applied for both 1pRule and 3pRule. For example,  FIRs1k for C3 with a high 
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significance level were 24.8%, 23.8%, and 10.8% under a sample size of 20,000, 10,000, and 5000, respectively, 
based on 3pRule. In addition, the significance level of the main effect (p-main) for the hub SNP also affected 
 FIRs1k. �e smaller value of the hub SNP’s p-main generally had a higher  FIRs1k. Using the C1 cluster as an exam-
ple (Fig. 2a), the  FIRs1k were 29.5%, 28.8%, and 20.5% of C1 with p-main of 7.5 ×  10–10, 9.6 ×  10–8, and 3.8 ×  10–5, 
respectively, under a sample size of 10,000. For the C3-cluster under the sample size 10,000 (Fig. 2c), the  FIRs1k 
were 23.8%, 19.5%, and 8.2% for C3 with p-main of 2.1 ×  10–7, 5.0 ×  10–6, and 4.1 ×  10–4, respectively. A similar 
 FIRs1k trend can be observed in other clusters, as shown in Fig. 2.

All  FIRs1k results listed in Supplementary Table S1 were summarized in Fig. 3 with 72  FIRs1k results by the hub 
SNP’s p-main and the 2 significance rules. Each data point represented the results of a cluster with 6 null pairs 
(such as  C1H–N1,  C1H–N2, and  C1H–N6). �e  FIRs1k of null SNPs in a cluster were positively associated with 
p-main values of the hub SNP. �e smaller values of p-main, which equals the larger value of − log10 (p-main), 
the higher the  FIRs1k, and the 3pRule approach can reduce  FIRs1k compared with the conventional 1pRule. 
Moreover,  FIRs1k were also affected by the MAF status of the peripheral SNPs. As shown in Fig. 4, peripheral 
SNPs with a low MAF tended to have higher  FIRs1k than those with a large MAF. Using the  C1H (C1 with high 
significance, p-main = 1.4 ×  10–8) under a sample size of 10,000 as an example, the  FIRs1k for peripheral SNPs with 
MAF values of 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 were 51.2%, 43.0%, 28.2%, 21.6%, 17.2% and 15.8%, respectively. 
�is means that  C1H with peripheral SNPs with a 0.05 MAF had 51.2% chance of being false positive, and the 
false positive chance was reduced to 15.8% when peripheral SNPs with a large MAF of 0.5. Similar trends can 
be observed for other conditions (Fig. 4).

For Part 1, the  TIRS1K for the 12 pairs under the 3 sample sizes (n = 20,000, 10,000, and 5000) based on 1000 
simulation runs are listed in Supplementary Fig. S1. As shown in Fig. 5 and Supplementary Fig. S1, the  TIRS1K 
for 3pRule was lower but similar to those for 1pRule under the same condition in general. �e 3pRule has more 
stringent criteria to define significance than the 1pRule. �erefore, we can expect that the  TIRS1K for 3pRule 
is lower than for 1pRule. For example, the  TIRS1K for the C1–C2 pair with the highly significant interaction 
(p-pair = 4.5 ×  10–18) were 96.5% vs. 90.9% based on 1000 simulation runs by using 1pRule vs. 3pRule, respectively, 
under a sample size of 20,000. For the C3–C4 pairs with a highly significant interaction (p-pair = 3.9 ×  10–13), 
their  TIRS1K were 99.8% vs. 99.1% using 1pRule vs. 3pRule, respectively, under a sample size of 20,000. For the 
effect of sample size,  TIRS1K was higher for a large sample size. For example, the  TIRS1K for the C1–C2 pair with 
a high significance of interaction were 90.9%, 82.7%, and 58.7% by using 3pRule under a sample size of 20,000, 
10,000, and 5000, respectively. As expected, the significance level of the interaction also decreased as the sample 
size decreased. For example, the p-pair values for the C1–C2 pair with a high significance of interaction were 
4.5 ×  10–18, 7.5 ×  10–10, and 9.0 ×  10–6 under a sample size of 20,000, 10,000, and 5000, respectively (Supplemen-
tary Table S1). We were interested in further evaluating the relationship between  TIRS1K for causal pairs and the 
p-main of their most significant composite SNP. Furthermore, all  TIRs1k results for the 36 conditions by the 2 
significance rules were summarized in Fig. 5. Each data point represented the results of a causal pair (such as 
 C1H–C2H). Figure 5 shows a positive relationship between  TIRS1K and the p-main values of the most significant 
composite SNP. In addition, the TIRs for 3pRule are lower but similar to the  TIRS1K of 1pRule. In summary of 
Part 1, 3pRule can effectively reduce  FIRs1k and maintain  TIRS1K compared to 1pRule for detecting SNP–SNP 
interactions.

For the dataset of 614 SNPs in Part 2, 7 causal pairs (C–C pairs) are only 0.004% of the total 188,191 pairs, 
so identifying these 7 causal pairs and keeping low FPRs is a challenge. All 7 SNP pairs were significant 

Figure 3.  False identification rates  (FIRs1k) by the hub SNP’s main effect (p-main) and the 2 significance rules. 
Results were based on the 1000 simulation runs of the 72 clusters and their hub SNPs. Two Significance rules: 
1pRule: p-pair < 2.7 ×  10–7 ; 3pRule: p-pair < 2.7 ×  10–7 and p-pair < p-main for SNP1, and p-pair < p-main for 
SNP2.
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based on the Bonferroni criterion (p-pair < 2.7 ×  10–7), and the range of their p-pair value was 5.7 ×  10–18 
(rs17632542–rs4783709) to 3.4 ×  10–9 (rs266876–rs9521694). Interestingly, each causal pair had at least 1 SNP 
with a significant main effect. Table 1 showed that SNP pairs with a low p-main of the composite SNP tended to 
be more significantly associated with the outcome. For further testing, we tested correlations between the p-pair 

Figure 4.  False identification rates  (FIRs1k) for 8 sets of SNP–SNP interaction clusters based on 3pRule and 
1000 runs. Each set had 3 clusters with a hub SNP with various significance levels, such as  C1H,  C1M, and  C1L 
for C1 SNP with a high, medium, and low significance level, respectively. Sample size: 20 K (n = 20,000), 10 K 
(n = 10,000), and 5 K (n = 5000).
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and p-main values for the powerful SIPI approach and the conventional AA-full model approach. Among the 91 
pairwise interactions based on the 14 observed SNPs, a significant positive correlation was observed between the 
p-pair and p-main of the most significant composite SNP for the SIPI approach (Spearman r = 0.73, p < 0.001) but 
not for the AA-full approach (Spearman r = 0.17, p = 0.118). �is demonstrated that the high correlations between 
p-pair and corresponding p-main values only exist in the SIPI but not in the low-power AA-full approach.

Among the 14 clusters with a hub SNP involved in the 7 C–C pairs,  FPRcluster were 0% for the 6 SNPs with a 
p-main ≥ 1 ×  10–4 and various MAFs of 0.14–0.44. For the remaining 8 SNPs with a p-main < 1 ×  10–4, the  FPRcluster 
for these 8 clusters were summarized in Table 2. �e following  FPRcluster discussions are primarily based on 
3pRule. We observed that the pairs with a hub SNP with an insignificant main effect had 0%  FPRcluster despite 
the hub SNP’s MAF. �e clusters tended to have a high  FPRcluster if the hub SNP had a significant p-main and a 
large MAF. Mainly, rs4802755 had a significant effect (p-main = 1.8 ×  10–7) with a large MAF (0.46), so its cluster 
yielded the highest  FPRcluster (38.7%) compared with other clusters. In contrast, rs17632542 had the most signifi-
cant main effect (p-main = 2.2 ×  10–15) but had a low MAF of 0.06. �erefore, its  FPRcluster is 15.0%, which is lower 
than the  FPRcluster of the rs4802755 cluster. For the pair of rs2271095-rs7446, both SNPs had a significant main 

Figure 5.  True identification rates  (TIRs1k) by the hub SNP’s main effect (p-main) and the 2 significance 
rules. In this plot, the most significant SNP in a causal pair was used as a hub. Results were based on the 1000 
simulation runs of the 36 clusters and their hub SNPs. Two Significance rules: 1pRule: p-pair < 2.7 ×  10–7; 3pRule: 
p-pair < 2.7 ×  10–7 and p-pair < p-main for SNP1, and p-pair < p-main for SNP2.

Table 2.  Cluster-level false positive rates  (FPRcluster) in a SNP-pair cluster by 2 significance rules and 
minor allele frequency (MAF) of peripheral null SNPs. 1 FPRcluster% and mean of correlations (corr), 
calculated between the causal pair and significant null pairs sharing the same hub SNP in a cluster (such as 
rs17632542-rs4783709 pair correlated with rs17632542-N1 and rs17632542-N2), based on all 600 null pairs in 
a cluster or 100 pairs under a selected MAF.

Hub SNP (causal pair)
p-main of 
hub (p-pair) MAF of hub

1pRule 3pRule 3pRule

Total Total
Set-1 
MAF = 0.05

Set-2 
MAF = 0.1

Set-3 
MAF = 0.2

Set-4 
MAF = 0.3

Set-5 
MAF = 0.4

Set-6 
MAF = 0.5

FPRcluster% of 
600  pairs1

FPRcluster% 
of 600 pairs 
(corr)1

FPRcluster% 
of 100 pairs 
(corr)1

FPRcluster% 
of 100 pairs 
(corr)1

FPRcluster% 
of 100 pairs 
(corr)1

FPRcluster% 
of 100 pairs 
(corr)1

FPRcluster% 
of 100 pairs 
(corr)1

FPRcluster% 
of 100 pairs 
(corr)1

rs17632542
(rs17632542-rs4783709)

2.2 ×  10–15

(5.7 ×  10–18)
0.06 66.5

15.0
(0.86)

34
(0.88)

21
(0.86)

26
(0.85)

6
(0.82)

2
(0.77)

1
(0.72)

rs2569735
(rs2569735-rs7613553)

5.5 ×  10–9

(4.4 ×  10–13)
0.12 79.5

19.2
(0.74)

32
(0.78)

24
(0.77)

33
(0.74)

10
(0.69)

8
(0.64)

8
(0.64)

rs1058205
(rs1058205-rs2274545)

9.5 ×  10–8

(2.0 ×  10–9)
0.15 39.8

18.5
(0.80)

39
(0.85)

26
(0.81)

22
(0.82)

7
(0.75)

11
(0.68)

6
(0.64)

rs4802755
(rs4802755-rs4473378)

1.8 ×  10–7

(2.3 ×  10–9)
0.46 48.5

38.7
(0.77)

80
(0.80)

61
(0.79)

40
(0.77)

26
(0.73)

19
(0.69)

6
(0.64)

rs174776
(rs174776-rs1250240)

7.9 ×  10–7

(2.4 ×  10–9)
0.11 7.8

7.8
(0.29)

7
(0.31)

9
(0.32)

12
(0.31)

9
(0.27)

7
(0.30)

3
(0.18)

rs2271095
(rs2271095-rs7446)

2.0 ×  10–6

(1.7 ×  10–12)
0.31 2.0

2.0
(0.48)

2
(0.53)

3
(0.51)

3
(0.46)
0
-

0
-

4
(0.45)

0
-

rs7446
(rs2271095-rs7446)

2.0 ×  10–5

(1.7 ×  10–12)
0.35 0.3

0.3
(0.36)

0
-

1
(0.42)

1
(0.30)

0
-

0
-

rs266876
(rs266876-rs9521694)

3.2 ×  10–6

(3.4 ×  10–9)
0.24 2.3

2.3
(0.61)

2
(0.72)

4
(0.67)

4
(0.59)

2
(0.49)

3
(0.58)

0
-
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effect. rs7446 and rs2271095 had similar MAFs of 35% and 31%, respectively. rs2271095 (p-main = 2.0 ×  10–6) 
had a more significant main effect than rs7446 (p-main = 2.0 ×  10–5), so rs2271095 had a higher  FPRcluster than 
rs7446  (FPRcluster = 2% vs. 0.3%). In addition, these cluster effects could be observed in Supplementary Fig. S2a 
with 4 obvious clusters with a small p-pair. �e most significant cluster is the rs17632542 cluster, followed by 
rs2569735, which had the same order of their p-pair and p-main values.

Among the 14 SNPs in the 7 causal pairs, 8 SNPs with a significant main effect formed a cluster (Table 2). For 
demonstration of the C-N pairs, we randomly selected one null SNP from the 6 MAF groups (MAF = 0.05, 0.1, 
0.2, 0.3, 0.4, and 0.5). For each of these 8 SNPs, the results of 6 C-N pairs were shown in Supplementary Table S2. 
As we can see, all 6 null SNPs were not significantly associated with the outcome (p-main = 0.212–0.746). Under 
the same hub SNP, the p-pair of a C-N pair was reduced as the MAF of the null SNP was reduced. For a cluster 
with rs17632542 as a hub SNP, p-pair values were 0.455, 7.7 ×  10–14, and 1.1 ×  10–15 for a null SNP with a MAF of 
0.5, 0.3, and 0.05, respectively. Furthermore, the results of the 600 null SNPs and these 8 hub SNPs were sum-
marized in Table 2. For the clusters with a hub SNP with a p-main < 2.7 ×  10–7, such as rs17632542, rs2569735, 
rs1058205, and rs4802755, the FPR range was 39.8%-79.5% for 1pRule and 15.0–38.7% for 3pRule. For the 
clusters with a hub SNP with a p-main > 2.7 ×  10–7, the FPR range was 0–7.8%, the same for 1pRule and 3pRule. 
Consistent with Part 1, the hybrid study results (Part 2) confirm that 3pRule resulted in a noticeably lower FPR 
than 1pRule. �e reduction in FPR by 3pRule compared with 1pRule was − 77% (from 66.5 to 15%) for the clus-
ter of rs17632542, − 76% (from 79.5 to 19.2%) for the cluster of rs2569735, − 54% for the cluster of rs1058205 
and − 20% for the cluster of rs4802755. �ese results demonstrated that 3pRule could effectively reduce FPR, 
especially for the top pairs. In summary, the magnitude of FPRs depends on the significance of this cut-point 
of p-pair. �e FPRs for the C–N pairs tended to be high when the hub SNP had a small p-main, especially its 
p-main less than the criterion defining the significance of the SNP–SNP interactions (p-pair < 2.7 ×  10–7). To 
identify the causes of the cluster effects for SNP–SNP interactions, we first tested the LD status between the hub 
SNP and significant null SNPs. Among the 4 large clusters with a KLK3 SNP as a hub (rs17632542, rs2569735, 
rs1058205, and rs4802755), there are 90, 115, 111, and 232 significant null pairs in these 4 clusters. �e LD  r2 
between each of these null SNPs and its corresponding hub SNP was close to 0 (range = 0–0.0004). For these 4 
KLK3 clusters, the pairwise LD  r2 among the null SNPs in the same cluster were also close to 0 (range = 0–0.001, 
Suppl. Table S4). �us, we can conclude that LD among the involved SNPs is not the reason for the cluster effect 
of SNP–SNP interactions. Next, we evaluated whether the significant null pairs in a cluster were highly corre-
lated with the causal pair in the same cluster (such as C1–N1 and C1–N2 correlated with C1–C2). �e results 
showed that null peripheral SNPs with a small MAF tended to be highly correlated with the causal pair to cause 
false positivity. As shown in Table 2, the null SNP with a smaller MAF tended to have a higher FPR than those 
with a larger MAF. For example, FPR values for the rs4802755 cluster decreased from 80 to 6% as the MAF of 
null SNPs increased from 5 to 50%. �e mean correlations between rs4802755-rs4473378 and significant null 
pairs involved with the hub SNP of rs4802755 demonstrated a decreasing trend (r = 0.88 to 0.64) as MAF of null 
SNPs went up from 5 to 50%. Similar trends can be observed for other clusters of rs17632542, rs2569735, and 
rs1058205. Finally, we also tested correlations among 7 KLK3 SNPs in Table 1. �e pairwise LD  r2 values among 
the 7 KLK3 SNPs tested in Part 2 were not in a strong LD (all  r2 < 0.8, n a range of 0.03–0.77). All  r2 values were 
less than 0.6 except rs2569735 and rs1058205  (r2 = 0.77).

For evaluating the performance of the bootstrap + 3pRule approach, the related TPR results are summarized 
in Table 3. �e TPR results corresponding to all the causal pairs in Table 3 revealed that the TPR values under 
1pRule and 3pRule are very similar. In Table 3, all 7 causal pairs had > 75% TPR based on the 1pRule and 3pRule 
approaches. �e TPR corresponding to the causal pair of rs17632542–rs4783709 was observed at 95% for 1pRule 
and 91.8% for 3pRule based on the 500 bootstrap runs. For these 7 causal pairs, these two methods (3pRule and 
1pRule) of defining statistical significance for SNP–SNP interaction only varied by 0.2–3.2%. �us, 3pRule with 
a more stringent criterion had a similar performance in terms of TPR compared to 1pRule for the causal pairs.

�e FPR results of the bootstrap + 3pRule approach are shown in Table 4. Although FPR looked small (0.81% 
for 1pRule and 0.35% for 3pRule) in the original dataset, there were still many false-positive pairs due to a large 
number of pairwise interaction tests (188,191 pairs): 1538 significant pairs using 1pRule and 672 pairs using 

Table 3.  True positive rates (TPR) by causal SNP pairs based on bootstrap results. 1 Bold for significant 
results based on the Bonferroni criteria. p-main < 8.1 ×  10–5 (= 0.05/614), and p-pair < 2.7 ×  10–7 (= 0.05/614C2). 
2 Based on 500 bootstrap datasets with a sample size of 20,000 and 614 SNPs (7 causal pairs + 600 null SNPs). 
3 Significance rules: 1pRule: p-pair < 2.7 ×  10–7; 3pRule: p-pair < 2.7 ×  10–7, p-pair < p-main for SNP1, and 
p-pair < p-main for SNP2.

Causal pair
SNP1
p-value (p-main)1

SNP2
p-value (p-main)1

SNP–SNP interaction
p-value (p-pair)1

Bootstrap2

1pRule
TPR%3

3pRule
TPR%3

rs17632542–rs4783709 2.2 × 10–15 0.027 5.7 × 10–18 95.0 91.8

rs2569735–rs7613553 5.5 × 10–9 0.551 4.4 × 10–13 98.2 98.0

rs1058205–rs2274545 9.5 × 10–8 0.065 2.0 × 10–9 83.6 81.0

rs4802755–rs4473378 1.8 × 10–7 0.728 2.3 × 10–9 86.6 86.0

rs174776–rs1250240 7.9 × 10–7 0.279 2.4 × 10–9 94.0 93.8

rs2271095–rs7446 2.0 × 10–6 2.0 × 10–5 1.7 × 10–12 95.4 94.4

rs266876–rs9521694 3.2 × 10–6 0.001 3.4 × 10–9 77.0 75.6
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3pRule. �is showed that 3pRule could effectively reduce 56% of false-positive findings compared with 1pRule. 
Moreover, the bootstrap method can dramatically reduce the number of false-positive pairs. Using the boot-
strap method under 3pRule, the number of significant pairs was only 86, 48, and 31 when using ≥ 75%, ≥ 80%, 
and ≥ 85% bootstrap criteria, respectively. By applying the criterion of ≥ 75% bootstrap runs and 3pRule for select-
ing significant pairs, this approach maintained 100% TPR, but its false-positive findings can be reduced by 95% 
from 1531 pairs identified using the conventional 1pRule without the bootstrap validation to 79 pairs (overall 
FPR = 0.82–0.04%). If using a more stringent criterion of ≥ 90% bootstrap datasets and 3pRule, false-positive 
findings out of the 1531 significant null pairs can be reduced further to 2% (= 26/1531), but TPR is reduced to 
71.4% (5 out of the 7 pairs).

For N–N pairs, the mean and median of p-main values for the 600 null SNPs were 0.33 and 0.29, respectively. 
For demonstration, we randomly selected one null SNP from the 6 MAF groups. �e p-main and p-pair values 
of the 15 N–N pairs based on the selected 6 null SNPs were shown in Supplementary Table S3. �e p-pair values 
for the pairwise interactions of these 6 null pairs (6.0 ×  10–3 to 0.928) were insignificant. For the 179,700 N–N 
pairs, FPRs were 0% using both 1pRule and 3pRule with the original and bootstrap datasets (Table 4), and the 
mean and median p-pair values were 0.13 and 0.07, respectively, with an interquartile range of 0.028–0.147. �e 
significance levels of the 7 C–C pairs and the selected null pairs are shown in Supplementary Fig. S2. As shown 
in Supplementary Fig. S2a, most of the N–N pairs were less significant than the C-N pairs. As shown in Supple-
mentary Fig. S2b, for the distribution of the 1,797,700 N–N pairs’ significance levels, most of them (99.94%) had a 
p-pair ≥ 1 ×  10–4. �is result demonstrated that 1 ×  10–4 can be used as the cut-point to select promising SNP–SNP 
interaction pairs. �is is also why we used p-pair < 1 ×  10–4 in Part 1. Because of the insignificance of N–N pairs, 
the exclusion of N–N pairs for SNP–SNP interaction detection can be used as a strategy of variable reduction.

�is study addresses several important questions of SNP–SNP interaction detection, including reasons for FPR, 
methods for reducing FPR, and dimensional reduction. �e cluster effects of significant SNP–SNP interaction 
pairs do not result from high LD between SNPs but are caused by high correlations between the causal pair(s) 
and null pairs (C-N pairs) in the same cluster. For factors associated with high  FPRcluster, features of both the 
hub SNP and other peripheral SNPs matter. �e hub SNP with a more significant main effect and a large MAF 
tends to interact with its peripheral SNPs to cause false positivity. In addition, peripheral null SNPs with a 
small MAF are likely to cause false positivity of SNP–SNP interactions. In this study, some SNPs (rs17632542, 
rs2569735, rs1058205, and rs4802755 in KLK3 gene) are GWAS-identified SNPs associated with prostate cancer 
risk or  aggressiveness27, so they have very significant main effects. Many studies performed SNP–SNP interac-
tion analyses based on GWAS-identified SNPs or SNPs with significant main effects. When using powerful 
statistical approaches, searching SNP–SNP interactions considering GWAS-identified SNPs is effective because 
more significant SNP–SNP interaction pairs can be identified, but this approach also tends to have high false-
positivity. Our findings can provide researchers a valuable insight into understanding false positivity in SNP–SNP 
interaction analyses.

False positivity is a well-known issue for high data dimensional  analyses28. �is high FPR issue worsens 
for studies of SNP–SNP interaction analyses because the number of interaction tests increases dramatically as 
the number of SNPs increases. In this study, there are 188,191 pairs for only 614 SNPs. �e number of pair-
wise SNP–SNP interaction pairs increases to ~ 500,000 for 1000 SNPs and 12 million for 5000 SNPs. �us, this 
extremely high-dimensional data issue makes the searching task of SNP–SNP interactions like finding a needle 
in a haystack. Our findings indicate that many null pairs were highly correlated with causal pairs, so this high 
correlation issue among the identified SNP-interaction pairs makes variable selection challenging. �e bootstrap 
resampling method accounts for sampling variation and is useful for variable selection and internal validation. 
In bootstrapping, variables strongly associated with the outcome tend to be selected more o�en than variables 
with null or a weak  effect26,29. Our results demonstrate that the bootstrap + 3pRule approach can effectively 

Table 4.  Evaluation of the 3pRule + bootstrap approach for detecting SNP–SNP interactions based on a dataset 
with 614 SNPs. 1 Significance rules: 1pRule: p-pair < 2.7 ×  10–7; 3pRule: p-pair < 2.7 ×  10–7 and p-pair < p-main 
for SNP1, and p-pair < p-main for SNP2; “C”: a SNP in a causal pair; “N”: a null SNP. 2 TPR (true positive rate): 
proportion of significance out of 7 causal pairs; FPR (false positive rate): proportion of significance null pairs 
out of all 188,184 null pairs. 3 Based on 500 bootstrap runs.

Method1 Criterion TPR2 (%) FPR2 (%) Total

No. significant  pairs1

C–C (causal 
pair) Total null pair

C–N (% null 
pairs) C–C-other N–N

1pRule

Original 100 0.82 1538 7 1531 1482 (96.8) 49 0

 ≥ 75%  runs3 100 0.24 468 7 461 439 (95.2) 22 0

 ≥ 80%  runs3 85.7 0.18 346 6 340 325 (95.6) 15 0

 ≥ 90%  runs3 71.4 0.14 262 5 257 245 (95.3) 12 0

3pRule

Original 100 0.35 672 7 665 624 (93.8) 41 0

 ≥ 75%  runs3 100 0.04 86 7 79 71 (89.9) 8 0

 ≥ 80%  runs3 85.7 0.02 48 6 42 37 (88.1) 5 0

 ≥ 90%  runs3 71.4 0.01 31 5 26 23 (88.5) 3 0
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increase detection accuracy in identified SNP–SNP interactions. In addition to SNP–SNP interactions, other 
statistical approaches focus on reducing data dimension for evaluating epistasis. Some studies combined multi-
ple SNPs into groups and then tested group–group interactions to evaluate  epistasis30,31. �e grouping methods 
of multiple SNPs were based on similar biological functions (such as pathways)30 or similarity using statistical 
methods (such as factors using factor analysis)31. However, these group–group interactions for testing epistasis 
lose valuable SNP-level information.

In addition, the low FPR for the N–N pairs provides valuable insights about dimensional reduction for 
detecting SNP–SNP interactions. Our study findings showed that two SNPs without a significant main effect 
tend to have no or weak interaction. �is important feature can be applied to real data applications. We can 
test the significance of the main effects of SNP associated with an outcome. �e variable reduction can be made 
by excluding the pairs composed of two SNPs with a weak or no main effect, such as N–N pairs in this study. 
�is strategy can effectively reduce the number of interaction tests and ease the computation burden for testing 
SNP–SNP interactions.

In real data applications, the hub SNPs in the SNP-interaction clusters can be identified, but it is not easy to 
distinguish which pairs are true-positive or false-positive pairs. It is commonly known that a stringent signifi-
cance criterion can reduce FPR, but statistical power (TPR) will also be reduced. �us, it is essential to find an 
effective approach to address this issue. �is study demonstrated that the bootstrap + 3pRule approach can reduce 
FPR and maintain high statistical power. Although the SNP–SNP interaction analyses in this study were based 
on SIPI, the cluster effects have been shown across studies with various traits and different statistical methods, 
such as non-parametric methods (Gini, absolute probability difference, and entropy)13, multipopulation harmony 
search, an artificial intelligence  approach10,15–17, and chi-square test based on 8 interaction  patterns11. �us, our 
findings of cluster effect’s features and the bootstrap + 3pRule approach can be applied to other similar studies.

�e strength of this study is the application of a solid study design with 2 parts (simulation analyses and 
hybrid analyses). �erefore, we can thoroughly evaluate the complicated cluster effects of SNP–SNP interactions. 
Our findings are closer to reality and more reliable because the causal pairs in this study are based on real data. 
�is study also demonstrates that SIPI combined with the bootstrap + 3pRule approach is a powerful method 
for detecting SNP–SNP interactions. �e limitation of this study is that it is primarily based on SIPI analyses. 
However, based on the literature review, we anticipate that other advanced statistical methods for detecting 
SNP–SNP inactions should benefit from our study findings in reducing false positivity. Further investigations 
will be needed to warrant our findings.

Including SNP–SNP interaction pairs in polygenic risk scores is the key to driving substantial improvements 
in this domain. Even though the FPR, when applying the stringent Bonferroni criteria (1pRule), is not high in 
terms of the general rule of 5%, the number of false positive pairs is still large because of the large number of 
testing pairwise pairs. �is study highlights the cluster effect and identifies the reasons for false positivity of 
SNP–SNP interactions. �e bootstrap + 3pRule approach is suggested to increase the accuracy of SNP–SNP 
interaction detection.

�e simulation datasets used in this study are available from the corresponding author upon reasonable request. 
For data used for the real data application in this project, these data are available from the Prostate Cancer 
Association Group to Investigate Cancer Associated Alterations in the Genome Consortium (PRACTICAL 
Consortium, http:// pract ical. icr. ac. uk/ blog/? page_ id= 1242, email: practical@icr.ac.uk), but restrictions apply 
to the availability of these data.
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