000292455 001__ 292455
000292455 005__ 20240826181330.0
000292455 0247_ $$2doi$$a10.1016/S2589-7500(24)00123-7
000292455 0247_ $$2pmid$$apmid:39179310
000292455 037__ $$aDKFZ-2024-01722
000292455 041__ $$aEnglish
000292455 082__ $$a610
000292455 1001_ $$aFeng, Xiaoshuang$$b0
000292455 245__ $$aEvaluation of risk prediction models to select lung cancer screening participants in Europe: a prospective cohort consortium analysis.
000292455 260__ $$aLondon$$bThe Lancet$$c2024
000292455 3367_ $$2DRIVER$$aarticle
000292455 3367_ $$2DataCite$$aOutput Types/Journal article
000292455 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1724660966_2130
000292455 3367_ $$2BibTeX$$aARTICLE
000292455 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000292455 3367_ $$00$$2EndNote$$aJournal Article
000292455 520__ $$aLung cancer risk prediction models might efficiently identify individuals who should be offered lung cancer screening. However, their performance has not been comprehensively evaluated in Europe. We aimed to externally validate and evaluate the performance of several risk prediction models that predict lung cancer incidence or mortality in prospective European cohorts.We analysed 240 137 participants aged 45-80 years with a current or former smoking history from nine European countries in four prospective cohorts from the pooled database of the Lung Cancer Cohort Consortium: the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (Finland), the Nord-Trøndelag Health Study (Norway), CONSTANCES (France), and the European Prospective Investigation into Cancer and Nutrition (Denmark, Germany, Italy, Spain, Sweden, the Netherlands, and Norway). We evaluated ten lung cancer risk models, which comprised the Bach, the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial 2012 model (PLCOm2012), the Lung Cancer Risk Assessment Tool (LCRAT), the Lung Cancer Death Risk Assessment Tool (LCDRAT), the Nord-Trøndelag Health Study (HUNT), the Optimized Early Warning Model for Lung Cancer Risk (OWL), the University College London-Death (UCLD), the University College London-Incidence (UCLI), the Liverpool Lung Project version 2 (LLP version 2), and the Liverpool Lung Project version 3 (LLP version 3) models. We quantified model calibration as the ratio of expected to observed cases or deaths and discrimination using the area under the receiver operating characteristic curve (AUC). For each model, we also identified risk thresholds that would screen the same number of individuals as each of the US Preventive Services Task Force 2021 (USPSTF-2021), the US Preventive Services Task Force 2013 (USPSTF-2013), and the Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON) criteria.Among the participants, 1734 lung cancer cases and 1072 lung cancer deaths occurred within five years of enrolment. Most models had reasonable calibration in most countries, although the LLP version 2 overpredicted risk by more than 50% in eight countries (expected to observed ≥1·50). The PLCOm2012, LCDRAT, LCRAT, Bach, HUNT, OWL, UCLD, and UCLI models showed similar discrimination in most countries, with AUCs ranging from 0·68 (95% CI 0·59-0·77) to 0·83 (0·78-0·89), whereas the LLP version 2 and LLP version 3 showed lower discrimination, with AUCs ranging from 0·64 (95% CI 0·57-0·72) to 0·78 (0·74-0·83). When pooling data from all countries (but excluding the HUNT cohort), 33·9% (73 313 of 216 387) of individuals were eligible by USPSTF-2021 criteria, which included 74·8% (1185) of lung cancers and 76·3% (730) of lung cancer deaths occurring over 5 years. Fewer individuals were selected by USPSTF-2013 and NELSON criteria. After applying thresholds to select a population of equal size to USPSTF-2021, the PLCOm2012, LCDRAT, LCRAT, Bach, HUNT, OWL, UCLD, and UCLI, models identified 77·6%-79·1% of future cases, although they selected slightly older individuals compared with USPSTF-2021 criteria. Results were similar for USPSTF-2013 and NELSON.Several lung cancer risk prediction models showed good performance in European countries and might improve the efficiency of lung cancer screening if used in place of categorical eligibility criteria.US National Cancer Institute, l'Institut National du Cancer, Cancer Research UK.
000292455 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000292455 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000292455 650_2 $$2MeSH$$aHumans
000292455 650_2 $$2MeSH$$aLung Neoplasms: diagnosis
000292455 650_2 $$2MeSH$$aLung Neoplasms: mortality
000292455 650_2 $$2MeSH$$aEurope: epidemiology
000292455 650_2 $$2MeSH$$aAged
000292455 650_2 $$2MeSH$$aMale
000292455 650_2 $$2MeSH$$aFemale
000292455 650_2 $$2MeSH$$aMiddle Aged
000292455 650_2 $$2MeSH$$aProspective Studies
000292455 650_2 $$2MeSH$$aEarly Detection of Cancer
000292455 650_2 $$2MeSH$$aRisk Assessment
000292455 650_2 $$2MeSH$$aAged, 80 and over
000292455 650_2 $$2MeSH$$aIncidence
000292455 650_2 $$2MeSH$$aRisk Factors
000292455 7001_ $$aGoodley, Patrick$$b1
000292455 7001_ $$aAlcala, Karine$$b2
000292455 7001_ $$aGuida, Florence$$b3
000292455 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b4$$udkfz
000292455 7001_ $$aVermeulen, Roel$$b5
000292455 7001_ $$aDownward, George S$$b6
000292455 7001_ $$aBonet, Catalina$$b7
000292455 7001_ $$aColorado-Yohar, Sandra M$$b8
000292455 7001_ $$aAlbanes, Demetrius$$b9
000292455 7001_ $$aWeinstein, Stephanie J$$b10
000292455 7001_ $$aGoldberg, Marcel$$b11
000292455 7001_ $$aZins, Marie$$b12
000292455 7001_ $$aRelton, Caroline$$b13
000292455 7001_ $$aLanghammer, Arnulf$$b14
000292455 7001_ $$aSkogholt, Anne Heidi$$b15
000292455 7001_ $$aJohansson, Mattias$$b16
000292455 7001_ $$aRobbins, Hilary A$$b17
000292455 773__ $$0PERI:(DE-600)2972368-1$$a10.1016/S2589-7500(24)00123-7$$gVol. 6, no. 9, p. e614 - e624$$n9$$pe614 - e624$$tThe lancet / Digital health$$v6$$x2589-7500$$y2024
000292455 909CO $$ooai:inrepo02.dkfz.de:292455$$pVDB
000292455 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000292455 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000292455 9141_ $$y2024
000292455 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANCET DIGIT HEALTH : 2022$$d2023-08-23
000292455 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000292455 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000292455 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:53:13Z
000292455 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:53:13Z
000292455 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:53:13Z
000292455 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000292455 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
000292455 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000292455 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
000292455 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-23
000292455 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bLANCET DIGIT HEALTH : 2022$$d2023-08-23
000292455 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
000292455 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
000292455 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000292455 980__ $$ajournal
000292455 980__ $$aVDB
000292455 980__ $$aI:(DE-He78)C020-20160331
000292455 980__ $$aUNRESTRICTED