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While genome-wide association studies are valuable in identifyingCRCsurvival predictors, the benefit

of adding blood DNA methylation (blood-DNAm) to clinical features, including the TNM system,

remains unclear. In a multi-site population-based patient cohort study of 2116 CRC patients with

baseline blood-DNAm, we analyzed survival predictions using eXtreme Gradient Boosting with a

5-fold nested leave-sites-out cross-validation across four groups: traditional and comprehensive

clinical features, blood-DNAm, and their combination. Model performance was assessed using time-

dependent ROC curves and calibrations. During amedian follow-up of 10.3 years, 1166 patients died.

Although blood-DNAm-based predictive signatures achieved moderate performances, predictive

signatures based on clinical features outperformed blood-DNAm signatures. The inclusion of blood-

DNAmdid not improve survival prediction over clinical features.M1 stage, age at blood collection, and

N2 stage were the top contributors. Despite some prognostic value, incorporating blood DNA

methylation did not enhance survival prediction of CRC patients beyond clinical features.

Colorectal cancer (CRC) is one of themost common cancers and one of the
most commoncauses of cancer-related deaths globally, accounting formore
than 9% of all cancer-related deaths1. The prognosis and therapy manage-
ment of CRC rely on the TNM stage system, with a relative 5-year survival
over 90% for localized-stage CRC but dropping below 15% for distant-stage
CRC2. Nevertheless, the current TNM stage system is insufficient for
accurately predicting survival and guiding clinical management, especially
among stage II–III patients, resulting inpotential over- or undertreatment3,4.
Consequently, there is a growing need to establish more accurate novel
prognostic signatures in predicting survival of CRC patients.

DNAmethylation (DNAm) is a crucial epigenetic modification whose
genome-wide analysis allows exploration of potentially valuable biomarkers
for predicting prognosis in CRC5–7. Predictive signatures based on high-
dimensional tumorDNAm, such asDNAm from resected tumor tissue and
circulating tumor DNA (ctDNA)8, using machine-learning approaches
have been increasingly proposed. However, the added value in dis-
criminatory ability provided by tumor DNAm-derived signature to tradi-
tional clinical variableswas unsatisfactory9. Additionally, it is not possible to

examine the postoperative DNAm profile following the removal of the
tumor. DNAm profiles from peripheral whole blood present alternative
opportunities to develop predictive signatures and use them to monitor
survival over an extended period. DNAm-based scores derived from per-
ipheral whole blood, such as a DNAm mortality risk score and the age
acceleration of PhenoAge and GrimAge, have been identified as strongly
associated with all-cause mortality10. Given that these DNAm scores have
been designed for the general population and not specific to CRC patient
populations, their associations with CRC-specific mortality were weaker
than their associationswith all-causemortality11–13. It is furthermore unclear
whether and to what extent blood DNAm signatures that are specifically
derived for predicting survival of CRC patientsmay add prognostic value to
predictive models based on established prognostic clinical factors.

This study aimed to develop and evaluate blood-DNAm-based prog-
nostic signatures in a large cohort of colorectal cancer patients recruited
from a multi-site, population-based prospective study. Comprehensive
clinical variables were available, and most blood samples were collected
from1-month before surgery to 1-year post-surgery. This design enabled us
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to assess the added value of DNAm profiles alongside clinical variables,
particularly for monitoring survival after surgery. To minimize potential
biases from rapid inflammatory changes shortly after surgery, and to
address the clinical need for improved therapeutic decision-making in CRC
patients with intermediate TNM stages (II–III), we created two specific
subsets for further investigation. Subset 1 includedpatientswhose bloodwas
collected at least 1 month after surgery, and subset 2 focused on CRC
patients with intermediate TNM stages. This approach allowed us to
thoroughly examine the potential predictive value of blood DNAm in these
critical patient groups. To ensure the robustness of the predictive signatures,
we employed rigorous nested leave-sites-out cross-validation (nLSOCV)
and eXtremeGradient Boosting (XGBoost). Thesemethods were applied to
the total CRC cohort and the two subsets, assuring high reliability of the
developed prognostic signatures.

Results
Characteristics of study population
The baseline characteristics of study population are summarized Table 1.
Median age at CRC diagnosis and blood sample collection were 69 and 70
years, and a slight majority of patients were male (58.9%). The blood
samples were collected ≥1-month after surgery in approximately half of all

patients (49.2%, Supplementary Fig. 1) and frommore than half of patients
with intermediate TNM stages (TNM stage II–III, 67.8%). The tumor was
located in the distal colon and rectum in 66.2% of patients. The majority of
patients were never smokers (40.8%) or former smoker (43.2%). During a
median follow-up of 10.3 years, 1166 patients died, of whom 595 died from
CRC. We designed two subsets to investigate the potential predictive value
of blood DNAm in patients whose blood was collected ≥1-month after
surgery (subset 1, N = 1042) and CRC patients with intermediate TNM
stages (subset 2, N = 1434). The distribution of characteristics was similar
among two subsets and the total CRC cohort.

Model performance
Predictive models for survival of CRC patients were developed using
XGBoost with a 5-fold nLSOCV (Fig. 1) scheme across four feature groups:
Model 1: traditional clinical features including TNM stage, Model 2: com-
prehensive clinical features includingmajor tumormarkers,Model 3: blood-
DNAm, and Model 4: the inclusion of blood-DNAm with comprehensive
clinical features. These fourmodels were developed based on three datasets:
the total CRC patient cohort, subset 1, and subset 2.

Table 2 shows theperformanceof predictivemodels for overall survival
of CRC patients trained on the total CRC cohort (N = 2116). At 1-, 3-, 5-,

Table 1 | Baseline characteristics of the study population

Characteristics Totala Subset 1b
p Subset 2c

p

N 2116 1042 - 1434 -

Age at blood collection (year, median [IQR]) 69 [62, 77] 69 [62, 76] 0·21 70 [62, 77] 0.38

Age at CRC diagnosis (year, median [IQR]) 70 [63, 77] 70 [62, 77] 0·83 70 [63, 77] 0.38

Sex (female, %) 869 (41.1) 399 (38.3) 0·15 612 (42.7) 0.36

TNM Stage (%) 0.55 -

I 379 (17.9) 200 (19.3) 0 (0.0)

II 738 (34.9) 370 (35.8) 738 (51.5)

III 696 (32.9) 343 (33.1) 696 (48.5)

IV 291 (13.8) 122 (11.8) 0 (0.0)

Tumor Location (%) 0.44 0.44

Proximal colon 712 (33.6) 369 (35.5) 487 (34.0)

Distal colon 766 (36.2) 381 (36.7) 549 (38.3)

Rectum 635 (30.0) 289 (27.8) 396 (27.6)

Family history of CRC (yes, %) 89 (4.2) 48 (4.6) 0.67 59 (4.1) 0.96

BMI (kg/m2, median [IQR]) 26.1 [23.6, 29.0] 26.2 [23.7, 28.9] 0.99 26.1 [23.7, 29.0] 0.99

Education (years, %) 0.76 0.79

≤9 1456 (68.8) 708 (68.1) 1002 (69.9)

10–11 347 (16.4) 166 (16.0) 237 (16.5)

≥12 309 (14.6) 165 (15.9) 192 (13.4)

Smoking status (%) 0.23 0.76

Never 863 (40.8) 385 (37.0) 608 (42.4)

Former 915 (43.2) 482 (46.3) 607 (42.3)

Current 336 (15.9) 174 (16.7) 217 (15.1)

Alcohol consumption (g/d, median [IQR]) 8.9 [2.0, 22.5] 9.3 [2.3, 22.0] 0.53 8.7 [2.0, 22.4] 0.82

Average lifetime physical activity (MET-h/wk, median [IQR]) 190.7 [130.2, 278.3] 181.0 [121.2, 262.6] 0.006 189.2 [130.9, 275.1] 0.74

Blood collection time (≥1-month post-surgery, %) 1042 (49.2) 1042 (100.0) - 713 (49.7) -

Median follow-up time (months [95% CI]) 123 (123–125) 119 (118–121) - 124 (122–126) -

Deaths (CRC-specific deaths) 1166 (595) 534 (254) - 735 (314) -

Distributions of total patients and each subset were compared with Pearson’s chi-square test or Kruskal–Wallis test.

IQR interquartile range, CI confidence interval, BMI body mass index,MET-h/weekmetabolic equivalent hours/week, CRC colorectal cancer.
aNumbers do not add up to 2116 because of missing values in the following variables (number): BMI (10), pack-years (17), alcohol consumption (7), average lifetime physical activity (40).
bSubset 1 includes patients with blood samples collected ≥1-month after surgery.
cSubset 2 includes patients with TNM stage II–III.
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and 10-year follow-ups, 187 (8.8%), 499 (23.6%), 716 (33.8%), and 1087
(51.4%) of the patients had died in the total CRC cohort. AlthoughModel 3,
whichwasbasedonblood-DNAm,had somepredictive valuewitha10-year
concordance index (C-index) of 0.64 and time-dependent areas under the
receiver operating characteristics curve (AUROCs) ranging from 0.67 to
0.71, it performed worse compared to Models 1 and 2. Models 1 and 2,
which were both based on clinical features, achieved higher 10-year C-
indexes (0.74–0.75) and AUROCs at all time points (0.78–0.83). Model 4,
which combined blood-DNAm with comprehensive clinical features,
showed similar performance to Models 1 and 2, with a 10-year C-index of
0.75 and AUROCs ranging from 0.80 to 0.84. The statistical tests in each
outer-loop supported these comparisons (Supplementary Table 1). These
findings indicate that adding blood DNAm did not improve the prognostic
performance compared to models based solely on clinical features. The
Kaplan-Meier (KM) curves for the dichotomized signature of eachmodel in
the total CRC cohort are displayed in Supplementary Fig. 2. The prognostic
performance, time-dependent ROC curve, and time-dependent calibration
curve of themodels in each outer-loop of the total CRC cohort are displayed
in Supplementary Table 2 and Supplementary Figs. 3, 4.

Table 3 shows theperformanceof predictivemodels for overall survival
of CRC patients trained on subset 1 (N = 1042) and subset 2 (N = 1434). At
1-, 3-, 5-, 10-year follow-ups, 80 (7.7%), 223 (21.4%), 321 (30.8%), and 501
(48.1%) patients, respectively, had died in subset 1, while in subset 2, the
corresponding numbers were 80 (5.6%), 254 (17.7%), 404 (28.2%), and 672
(46.9). Among patients with intermediate stage, the 10-year AUROCs for
Model1, 2 and4were lower, ranging from0.69 to0.75, compared to the total
CRC cohort, ranging from 0.79 to 0.82. Similar performance patterns were
observed in both subsets as in the total CRC cohort, where adding blood
DNAm to comprehensive clinical features did not significantly improve the
predictive performance over traditional clinical features. TheKM curves for
dichotomized signature of each model in subset 1 are displayed in Sup-
plementary Fig. 5, the comparison of prognostic performances, perfor-
mance and calibrations, time-dependent ROC curve, and time-dependent
calibration curve of the models in each outer-loop of subset 1 are displayed
in Supplementary Tables 3, 4, and Supplementary Figs. 6, 7. Correspond-
ingly, those in each outer-loop of subset 2 are displayed in Supplementary
Tables 5, 6, and Supplementary Figs. 8–10.

Supplementary Table 7 shows the performances and calibrations of
four predictivemodels forCRC-specific survival in the totalCRCcohort and

two subsets. Similar comparison patterns to overall survival were observed
for CRC-specific survival in the total CRC cohort and the two subsets, and
no improvements inperformancewere observedby addingbloodDNAmto
clinical features for the prediction of CRC-specific survival. The Kaplan-
Meier (KM) curves for thedichotomized signature of eachmodel in the total
CRC cohort and the two subsets are displayed in Supplementary Figs.
11–13. The comparison of prognostic performances, performance, and
calibrations of the models in each outer-loop of the total CRC cohort and
two subsets are displayed in Supplementary Tables 8–13.

Model interpretation and feature importance
Figure 2 displays the top 20 features contributing to the prognostic signature
based on Model 4, which combined both comprehensive clinical features
and blood DNAm, in the total CRC cohort. The SHAP (SHapley Additive
exPlanation) analysis suggests that M1 stage, age at blood collection, and
N2 stage were the top contributors to overall survival prediction in CRC
patients. The Charlson comorbidity index (CCI) and cg20352849 exhibited
much higher contributions compared to T4 and T2 stages. Additionally,
cg03067296 and cg07573085, alongwith retirement/early retirement status,
showed similar contributions to the T4 and T2 stages.

Discussion
In this multi-site large population-based prospective cohort study, incor-
porating comprehensive clinical features and DNAm data from peripheral
whole blood, we found that the inclusion of these features did not lead to a
significant enhancement of predictive signatures for survival in CRC
patients when compared to those developed with traditional clinical vari-
ables only, including age, sex, and TNM stage. M1 stage, age at blood
collection, and N2 stage emerged as the top contributors to overall survival
prediction in CRC patients. Similar performance of predictive signatures
was observed in patients whose blood samples were taken ≥1-month post-
surgery and in those with intermediate TNM stages.

Interest in identifying prognostic DNAm biomarkers for survival in
CRC patients has seen a steep rise, with the hope that biomarkers derived
from novel omics-technologies may hold potential as valuable supplements
to established prognostic criteria; however, there is still insufficient evidence
to establish their utility in clinical practice5. A recent systematic review and
external validation have highlighted the insufficient performance and lim-
ited generalizability of published prognostic DNAm biomarkers derived

Fig. 1 | Study design and workflow. Prognostic

predictive signatures for survival of CRC patients

were developed using three datasets: the total CRC

cohort and two subsets stratified by blood collection

time and TNM stage. Predictive models were

developed in each dataset based on four feature

groups using 5-fold nested leave-sites-out cross-

validation. In each outer-loop, the training set for

Model 1 used traditional clinical features including

age, sex, and TNM stages. The training sets for

Models 2 and 3 underwent feature selection with

their corresponding feature groups. The training set

for Model 4 incorporated features selected from

Models 2 and 3. Selected features were used to

construct predictive signatures using XGBoost, with

hyperparameter tuning conducted in inner-loops.

Performance evaluation involved discrimination

and calibration indicators, aggregating results from

each test set in the outer loops. Abbreviation: CRC

colorectal cancer, CV cross-validation, EN elastic

net, XGBoost eXtreme Gradient Boosting.
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Table 2 | Performance and calibration of predictive models for overall survival in the total CRC cohort (N = 2116)

Models C-index (10 y) Time-dependent AUROC IBS (10 y) Time-dependent Brier score

1 y 3 y 5 y 10 y 1 y 3 y 5 y 10 y

Model 1 0.74 (0.72–0.75) 0.81 (0.78–0.88) 0.80 (0.77–0.82) 0.78 (0.76–0.82) 0.79 (0.78–0.81) 0.15 (0.14–0.15) 0.07 (0.06–0.09) 0.14 (0.12–0.15) 0.17 (0.15–0.19) 0.19 (0.18–0.19)

Model 2 0.75 (0.74–0.77) 0.83 (0.80–0.88) 0.82 (0.79–0.86) 0.81 (0.78–0.84) 0.82 (0.80–0.83) 0.14 (0.13–0.15) 0.07 (0.06–0.08) 0.13 (0.12–0.15) 0.16 (0.14–0.18) 0.18 (0.17–0.18)

Model 3 0.64 (0.63–0.65) 0.71 (0.67–0.74) 0.67 (0.66–0.69) 0.67 (0.66–0.69) 0.67 (0.63–0.69) 0.18 (0.17–0.19) 0.08 (0.06–0.09) 0.17 (0.16–0.19) 0.21 (0.20–0.22) 0.23 (0.22–0.24)

Model 4 0.75 (0.74–0.77) 0.84 (0.82–0.87) 0.83 (0.80–0.86) 0.81 (0.78–0.84) 0.80 (0.78–0.82) 0.14 (0.13–0.15) 0.07 (0.06–0.08) 0.13 (0.12–0.15) 0.16 (0.14–0.18) 0.18 (0.17–0.19)

Model 1 based on traditional clinical features, Model 2 based on comprehensive clinical features, Model 3 based on blood DNAmethylation, Model 4 combined both clinical features and blood DNAmethylation. The values are presented as the mean (range) across 5-fold

outer-loops.

AUROC area under receiver operating characteristic curve, IBS integrated Brier score.

Table 3 | Performance and calibration of predictive models for overall survival in the two subsets

Subsets Models C-index (10 y) Time-dependent AUROC IBS (10 y) Time-dependent Brier score

1 y 3 y 5 y 10 y 1 y 3 y 5 y 10 y

Subset 1a (N = 1042) Model 1 0.74 (0.72–0.75) 0.82 (0.72–0.91) 0.80 (0.76–0.83) 0.78 (0.75–0.82) 0.78 (0.75–0.79) 0.14 (0.14–0.16) 0.06 (0.06–0.07) 0.13 (0.11–0.16) 0.17 (0.15–0.19) 0.20 (0.19–0.20)

Model 2 0.75 (0.74–0.76) 0.84 (0.79–0.89) 0.82 (0.79–0.85) 0.80 (0.76–0.82) 0.79 (0.78–0.80) 0.14 (0.13–0.15) 0.06 (0.06–0.07) 0.13 (0.11–0.15) 0.16 (0.15–0.18) 0.19 (0.18–0.20)

Model 3 0.64 (0.61–0.66) 0.71 (0.65–0.78) 0.67 (0.62–0.71) 0.65 (0.62–0.67) 0.68 (0.66–0.71) 0.17 (0.16–0.18) 0.07 (0.06–0.08) 0.16 (0.13–0.19) 0.20 (0.18–0.22) 0.23 (0.22–0.24)

Model 4 0.74 (0.73–0.75) 0.86 (0.82–0.91) 0.83 (0.78–0.87) 0.79 (0.77–0.83) 0.78 (0.76–0.80) 0.14 (0.13–0.15) 0.06 (0.05–0.06) 0.12 (0.10–0.14) 0.16 (0.14–0.18) 0.19 (0.18–0.20)

Subset 2b (N = 1434) Model 1 0.67 (0.66–0.68) 0.75 (0.68–0.84) 0.69 (0.67–0.72) 0.69 (0.65–0.71) 0.73 (0.71–0.73) 0.16 (0.14–0.17) 0.05 (0.04–0.07) 0.14 (0.12–0.16) 0.19 (0.17–0.21) 0.21 (0.21–0.22)

Model 2 0.70 (0.68–0.72) 0.78 (0.71–0.84) 0.73 (0.69–0.76) 0.72 (0.68–0.75) 0.75 (0.75–0.76) 0.15 (0.13–0.16) 0.05 (0.03–0.06) 0.13 (0.11–0.16) 0.18 (0.16–0.20) 0.20 (0.20–0.21)

Model 3 0.63 (0.60–0.67) 0.70 (0.68–0.75) 0.65 (0.60–0.69) 0.65 (0.60–0.67) 0.65 (0.59–0.70) 0.17 (0.15–0.20) 0.05 (0.04–0.07) 0.15 (0.12–0.19) 0.20 (0.17–0.25) 0.25 (0.22–0.27)

Model 4 0.66 (0.64–0.69) 0.74 (0.69–0.82) 0.70 (0.64–0.74) 0.69 (0.63–0.72) 0.69 (0.64–0.73) 0.17 (0.14–0.19) 0.05 (0.04–0.07) 0.15 (0.12–0.18) 0.20 (0.17–0.24) 0.23 (0.21–0.25)

Model 1 based on traditional clinical features, Model 2 based on comprehensive clinical features, Model 3 based on blood DNAmethylation, Model 4 combined both clinical features and blood DNAmethylation. The values are presented as the mean (range) across 5-fold

outer-loops.

AUROC area under receiver operating characteristic curve, IBS integrated Brier score.
aSubset 1 includes patients with blood samples collected ≥1-month after surgery.
bSubset 2 includes patients with TNM stage II–III.
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from tumor tissue9. These limitations could be attributed to relatively small
sample sizes, improper handling ofmissing data, and a lack of evaluation of
calibration. In addition, for most of the machine-learning-based
epigenome-wide research, a robust method to validate models, such as
LSOCVandexternal validation14, hasnot beenapplied15, anobservation that
was also made in studies concerning ctDNA and tumor methylation8,9,15,16.
To our knowledge, no prior study has investigated the prognostic value of
DNAm signatures derived from peripheral whole blood in CRC patients.
Additionally, there are no available public DNAm datasets that provide
DNA methylation array data from whole blood samples for external
validation17. Most prior studies have focused on ctDNA8,18–22, with only one
study examining FOXO3 blood DNA methylation, which found no asso-
ciation between FOXO3 CpGs and survival in CRC patients23.

In the current study, we developed prognostic signatures usingDNAm
profiles from peripheral whole blood, integrating comprehensive clinical
features to assess the added value of blood DNAm compared to traditional
clinical features onmodel performance. To ensure unbiased generalizability
evaluation, we investigated a cohortwith a large sample size and employed a
nested LSOCV strategy, iteratively training and validating the model on
different sites, maintaining independent training and testing datasets. This
nested LSOCV approach simulated real-world scenarios, offering an opti-
mal bias-variance trade-off and leveraging the full richness of data during
training, including out-of-distribution samples for testing sites. The prog-
nostic signature based on blood DNAm alone showed insufficient perfor-
mance, with a time-dependent AUROC ranging from 0.67-0.71 for either
short-term or long-term follow-up, and provided no added value beyond
traditional clinical features, including age, sex, and TNM stage. Similarly,

tumor DNAm showed poor performance in the aforementioned systemic
review and external validation study9, while the effectiveness of ctDNA
methylation is still unclear. An improvement in performance from com-
bining ctDNA methylation with clinical features over TNM staging was
noted; however, as this combination was not directly compared to clinical
features alone, the source of the improvement—whether clinical features or
ctDNA methylation—remains unclear8. Additionally, we explored prog-
nostic signatures in CRC patients with intermediate TNM stage, requiring
further risk stratification due to the survival paradox dilemma3,4,24. The
predictive value of blood-DNAmprofiles remained poor, offering no added
value compared to traditional clinical features, and furthermore, it even
decreased the discriminatory capability when combined with comprehen-
sive clinical features.

Examining DNAm profiles in peripheral whole blood, spanning from
pre-surgery to post-surgery periods, presents a unique opportunity to
explore their potential as a tool for monitoring postoperative CRC prog-
nosis. The comparable (albeit rather limited) discriminative performance of
predictive signatures based on blood DNAm was evident across both the
total CRC cohort and postoperative CRC patients, indicating that DNAm
may maintain its predictive capability even after surgical tumor removal.
While blood-based DNAm profiles do change post-surgery and during
adjuvant therapy 25,26, suggesting their potential inclusion in predictingCRC
response to therapy7,27, the number of patients with DNAm profiles in the
current study determined during specific treatment windows, such as the
period between surgery and chemotherapy, was limited. This hindered
more differentiated assessment of when the prognostic value of blood
DNAmmight be most notable during treatment. Further research in large
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cohorts of CRC patients undergoing repeat longitudinal blood sampling is
needed to address this important point. Additionally, considering that
tumor recurrence may alter blood DNAm profiles, developing a signature
for timely monitoring could offer early detection of CRC recurrence19.

Despite machine learning’s “black box” reputation, interpreted
through the SHAP method, the M1 stage demonstrated the highest con-
tribution, significantly surpassing other features, followed by age and
N2 stage. This underscores the ongoing importance of traditional clinical
features in survival prediction28. CCI ranking as the 4th contributor
emphasizes the significant role of comorbidity in predicting survival29,30.
Additionally, cg20352849, located in the south shelf of the PLCD3 gene,
showed a much higher contribution than T4 and T2 stage, indicating its
potential value in survival prediction. PLCD3, a phospholipase C family
member, which hydrolyze phosphatidylinositol 4,5-diphosphate (PIP2)
into diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP3), initiating
Ca2+ release and activating protein kinase C (PKC)31. Its role in survival
potentially involves the Wnt signaling pathway32.

A major strength of our study is its development of predictive sig-
natures for survival in CRC patients, drawing from a large-scale, multi-site,
prospective cohort with long-term follow-up and comprehensive clinical
variables, including DNAm in blood samples taken over an extended time
window and characterization of major tumor subtypes. Additionally, we
adapted nested LSOCV and SHAP methods for high generalizability and
interoperability. In particular, in contrast to many previous studies, we
assessed the predictive value of blood DNAm in models including the best
established clinical predictors of prognosis, including TNM stage, enabling
assessment of incremental prognostic value beyond those predictors.

However, several limitations should be addressed. Firstly, approxi-
mately half of the blood samples were collected within 1 month after sur-
gery, during which DNAm profiles are likely to have been influenced by
surgery-related immune and inflammatory factors. This may have com-
promised the precision of the predictive signature for the entire CRC cohort
and prompted us to provide separate analyses for a subset of patients whose
blood samples were taken≥1-month post-surgery. In addition, collection of
blood samples at a single point of time prevented longitudinal assessment of
changes in DNA methylation as a predictor of colorectal cancer patient
survival. Secondly, the limited sample size of CRC patients with blood
DNAm before surgery prevented a detailed assessment of the predictive
value of presurgery blood DNAm. Thirdly, despite the overall large sample
size and multi-site nature of our study, all CRC patients were recruited
exclusively from the Rhine-Neckar region in southwest Germany which
may limit generalizability. Therefore, external validation in different
populations from other countries or with other ethnic composition is
necessary. Lastly, some essential prognostic factors, such as lymphovascular
invasion (LVI) and presurgery carcinoembryonic antigen (CEA) levels,
were not included due to missing values exceeding 50% in this study.

In conclusion, in our multi-site large-scale population-based pro-
spective cohort study, signatures incorporating comprehensive clinical
features and blood DNA methylation did not enhance prediction perfor-
mance compared to algorithms based only on traditional clinical features,
including age, sex and TNM stage. This also applied to subsets of patients
whose blood samples were taken ≥1-month post-surgery and patients with
intermediate TNM stage. M1 stage, age at blood collection, and N2 stage
emerged as the top contributors to survival prediction. This rigorously
validated finding suggests a limited role for blood DNA methylation in
predicting survival in CRC patients. Further research should evaluate the
potential use of blood DNA methylation signatures for predicting and
monitoring treatment response and CRC recurrence.

Methods
Study design and population
Our analysis is based on theDACHS (German name: Darmkrebs: Chancen
der Verhütung durch Screening) study, an ongoing population-based case-
control studywith comprehensive follow-up of CRC cases conducted in the
Rhine-Neckar region in southwestern Germany since 200333–35. Briefly, the

DACHS study began in 2003 and covered CRC cases from a population of
approximately two million people. Eligible participants aged 30 years or
older who received a first diagnosis of CRC (ICD-10 codes C18-C20) were
recruited from 22 hospitals providing CRC surgery in the study region.
Following recruitment by the clinics, personal interviews by trained inter-
viewerswere conductedwith patients and controls to collect information on
lifetime and current exposure toCRC risk and prognostic factors, and blood
and tumor samples were collected. Comprehensive follow-up with respect
to treatments and overall and disease-specific survival over 10 years after
diagnosis was conducted by collecting information from the patients’
treating physicians, record linkagewith population registries, and collection
of causes of death from public health authorities.

For this analysis, we included 2116 CRC patients who were diagnosed
between 2003 and 2010 and from whom DNAm from peripheral whole
blood, comprehensive clinical and follow-up data regarding survival out-
comes were available (Supplementary Fig. 14). Additionally, we designed
two subsets to investigate the potential predictive value of blood DNAm:
patients whose blood was collected at least 1 month after surgery (subset 1,
N = 1042) and CRC patients with intermediate TNM stages (subset
2, N = 1434).

The DACHS study was approved by the ethics committees of the
Medical Faculty of the University of Heidelberg (#310/2001, 06 December
2001), and the Medical Chambers of Baden-Württemberg and Rhineland-
Palatinate. Written informed consent was obtained from all participants.

DNAmethylation preprocessing
Peripheral blood samples were collected after the interview and stored at
−80 °C. DNA extraction and DNAm assessment based on Infinium
MethylationEPICBeadChipKit (Illumina, Inc, SanDiego,CA,USA),which
covers over 850 thousand CpG probes, was conducted according to stan-
dard procedures. Details of quality control for samples and CpG probes are
displayed in Supplementary Fig. 1436–38. Samples that did not meet the
quality control criteria, including mismatched sex, low intensity, call-rate
<95% on autosome, mean detected p-value > 0.01, duplicates, and lacking
records of time of blood collection were excluded. Individual CpG probes
that did not meet the quality control criteria, including (1) a detection
p > 0.01 in any sample; (2) a bead count <3 in at least 5% of samples; (3) not
CpG sites; (4) single nucleotide polymorphisms (SNPs)39; (5) align to
multiple locations40,41; and (6) targeting sex chromosomes, were filtered out.
Noob correction and beta-mixture quantile (BMIQ)42 were applied to
normalize beta values (ranging from 0 to 1, i.e., from completely unme-
thylated to completely methylated) and batch correction were applied
before machine learning analysis.

Machine learning procedure
We constructed the prognostic signatures for overall survival, as well as
CRC-specific survival. Survival timewas defined as the period from the date
of blood collection to the date of death or cancer-related death, or the last
follow-up. Living participants were censored at the end of each follow-up
period. A 5-fold nLSOCV scheme (Fig. 1), inwhichXGBoostwas applied to
develop predictive models for survival of CRC patients, was used separately
for the total CRC cohort and the two subsets. CRC patients were split into
five groups of approximately equal size according to their hospitals and
institutions (SupplementaryTable 14). Eachgroup, in turn, servedas the test
set, with the remaining four subsets being the training set. In the outer-loop,
a two-step filtering process was employed for selecting features. Firstly, we
conducted Cox regression analysis on CpG sites that have passed quality
controlmeasures, aiming to select CpGsites associatedwith overall survival.
This Cox regression adjusted for age at blood collection, sex, TNM stage,
smoking status and alcohol consumption. Subsequently, we identified and
selected the 5000 CpG sites with the lowest Benjamini-Hochberg adjusted p
values (BH-adjusted p-values) for the correspondingWald test. The second
step aimed to selected predictive features with the elastic net (EN)
approach43. The predictive features were selected based on comprehensive
clinical features and all 5,000 survival-related CpGs selected in the previous
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step. XGBoost, which consistently achieves state-of-the-art performance in
model prediction44, was then applied with selected predictive features. Both
EN and XGBoost underwent another 5-fold cross-validation for hyper-
parameter tuning with grid search, called inner-loop. Performance eva-
luation involved discrimination and calibration indicators, aggregating
results from each test set in the outer loops.

We developed 4 predictive models with the nLSOCV scheme using
specific feature groups: (1) Model 1: traditional clinical features including
age at blood collection, sex and separately stages of tumor size and invasion
(T), lymphnodes involvement (N), and distantmetastasis (M) ; (2)Model 2:
comprehensive clinical features, incorporating additional features including
age at diagnosis, tumor location, family history of CRC, resection edge,
tumor differential grading, histological type, CCI29, bodymass index (BMI),
smoking status, pack-years of cigarette consumption, alcohol consumption,
average lifetime physical activity, diet quality score45, occupational position,
employment situation, MSI, KRAS, BRAF, CIMP46, neo-chemotherapy,
neo-radiotherapy, adjuvant-chemotherapy, adjuvant-radiotherapy, relapse,
metastasis, and surgery, adjuvant-chemotherapy and adjuvant-
radiotherapy after relapse and metastasis (Supplementary Table 15); (3)
Model 3: processed blood DNAm; and (4)Model 4: features after two-step
filtering in each outer-loop, incorporating blood CpGs from Model 3 with
clinical features from Model 2. Missing data of clinical features were
imputed with the missforest method47. MissForest is a non-parametric,
iterative imputation technique that utilizes the Random Forest algorithm.
This method inherently implements a multiple imputation approach by
averaging across numerous unpruned classifications or regression trees,
enabling the handling of multivariate data, including both continuous and
categorical variables, simultaneously.

Model evaluation and visualization
We evaluated the model’s performance at several specific follow-up times
post-surgery, including at 1, 3, 5, and 10 years, to identify potential drift over
time48. The model’s discriminatory ability was assessed using the Kaplan-
Meier (KM) curve for signatures dichotomized by the median value and
time-dependent ROC curves, alongwith calculating theAUROC. TheROC
curve illustrates the trade-off between the true positive rate (TPR) and false
positive rate (FPR) across various decision thresholds at specific times. A
higher AUROC value indicates better predictive accuracy of the model. To
align our findings with studies that employ the C-index, which captures the
model’s capability to differentiate among predictions regarding risk, event
occurrence, and time in a single metric but may reflect overconfidence in
model discrimination49, we alsomeasured theC-indexwithin a 10-year time
window. The time-dependent AUROCs and C-indexes in each outer-loop
of different models were compared. The calibration performance was
examined using the time-dependent Brier score and the integrated Brier
score (IBS). The Brier score, which ranges from 0 to 1,measures the average
squared difference between observed survival status at specific times and the
predicted probabilities of survival, with a lower score indicating more
accurate predictions. The IBS evaluates the overall accuracy of survival
predictions over a specified time window of 10 years, reflecting the squared
differences between the observed and predicted survival curves. Calibration
curves were plotted; ideally, a perfectly calibrated model would exhibit a
curve that closely alignswith the 45-degree diagonal line.The strict settingof
nLSOCVensured that the test set remained unseenduring training, limiting
predictive models’ performance but enhancing overall.

WeusedSHAPanalysis to identify featureswith critical contribution in
predicting risk of death in XGBoost models50. Higher SHAP values corre-
spond to a higher risk of death. A summary plot was used to visualize the
features’ contribution to predictive model.

Statistical analysis
Descriptive statistics were used to characterize the distribution of baseline
variables for the total CRC cohort, subset 1 and subset 2. Categorical cov-
ariates were summarized using absolute and relative frequencies, while
median and interquartile range were presented for continuous variables.

All statistical analyses were performed using R language program
(version 4.1.2) with R Studio (version 1.4.1717; Boston, USA). We utilized
several R packages for different aspects of the analysis: ChAMP38, limma36,
and minfi37 for DNAm preprocessing; missForest47 for data imputation;
survival and survminer51 for Cox regression; grpreg43 for developing the EN
model; xgboost and survXgboost for developing theXGBoostmodel44;mlr3,
mlr3proba, and mlr3extralearners for hyperparameter tuning52; pec53,
Riskregression48, and compareC54 for model evaluations; and
SHAPforxgboost50 for SHAP evaluation. Statistically significant p-values
were defined as those with two-tailed p < 0.05, after BH correction for
multiple comparisons where necessary.

Data availability
The datasets generated and analyzed during the current study are not
publicly available due ethical and legal restrictions but are available from the
corresponding author on reasonable request.

Code availability
The code is available from the corresponding author upon reasonable
request.
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