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Spatial single-cell isotope tracing reveals 
heterogeneity of de novo fatty acid synthesis 
in cancer

Elena Buglakova    1,2, Måns Ekelöf    1, Michaela Schwaiger-Haber    3,4,5, 
Lisa Schlicker    6, Martijn R. Molenaar    1, Mohammed Shahraz1, Lachlan Stuart1, 
Andreas Eisenbarth    1, Volker Hilsenstein    1, Gary J. Patti    3,4,5, 
Almut Schulze    6  , Marteinn T. Snaebjornsson    6   & 
Theodore Alexandrov    1,7,8,9,10,11 

While heterogeneity is a key feature of cancer, understanding metabolic 
heterogeneity at the single-cell level remains a challenge. Here we present 
13C-SpaceM, a method for spatial single-cell isotope tracing that extends the 
previously published SpaceM method with detection of 13C6-glucose-derived 
carbons in esterified fatty acids. We validated 13C-SpaceM on spatially 
heterogeneous models using liver cancer cells subjected to either 
normoxia-hypoxia or ATP citrate lyase depletion. This revealed substantial 
single-cell heterogeneity in labelling of the lipogenic acetyl-CoA pool and in 
relative fatty acid uptake versus synthesis hidden in bulk analyses. Analysing 
tumour-bearing brain tissue from mice fed a 13C6-glucose-containing diet, 
we found higher glucose-dependent synthesis of saturated fatty acids and 
increased elongation of essential fatty acids in tumours compared with 
healthy brains. Furthermore, our analysis uncovered spatial heterogeneity 
in lipogenic acetyl-CoA pool labelling in tumours. Our method enhances 
spatial probing of metabolic activities in single cells and tissues, providing 
insights into fatty acid metabolism in homoeostasis and disease.

Lipids are a complex class of biomolecules involved in multiple cellular 
functions as structural components of cellular membranes, energy 
source and signalling molecules1–5. Altered lipid metabolism is a hall-
mark of cancer, as it supports rapid growth and survival and mediates 
oxidative stress resistance6–9, and is affected by nutrient and oxygen 
limitations in the tumour microenvironment10. Cancer cells may adopt 
different routes for lipid provision, thus inducing selective metabolic 
dependencies that could be targeted for cancer therapy.

Most lipids are synthesized from fatty acids (Fig. 1a) that differ 
in their length and degree of saturation, which is the number of dou-
ble bonds in the hydrocarbon chain11. Fatty acid biosynthesis uses 
acetyl-CoA as a substrate to generate palmitate (16:0), a 16-carbon satu-
rated fatty acid (SFA) that can be further elongated and/or desaturated 
and subsequently incorporated into the lipidome. Fatty acid desatu-
ration is critical for cell survival, as the mono-unsaturated fatty acid 
(MUFA) oleate protects cancer cells from lipotoxicity and endoplasmic 
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(TCA) cycle to produce citrate, which serves as a substrate for ATP citrate 
lyase (ACLY) to generate acetyl-CoA. Under hypoxic conditions, glu-
tamine can substitute as a precursor for acetyl-CoA synthesis through 
reductive carboxylation of glutamate19,20. Furthermore, hypoxic can-
cer cells can also use acetate via acetyl-CoA synthetase 2 (ACSS2) to  
generate acetyl-CoA21,22. As ACLY and ACSS2 have also been found to 

reticulum stress inhibits apoptosis and promotes ferroptosis resist-
ance12–17. Hypoxic and Ras-transformed cells take up MUFA to support 
proliferation and survival18.

The cytoplasmic (lipogenic) acetyl-CoA pool used as substrate 
for fatty acid synthesis can be derived from different precursors. In 
normoxia, glucose-derived carbons are used by the tricarboxylic acid 
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Fig. 1 | 13C-SpaceM workflow as applied to interrogate de novo fatty acid 
synthesis. a, Generation of cytoplasmic acetyl-CoA (AcCoA) and subsequent 
fatty acid and lipid synthesis from stable isotope labelled 13C6-glucose. Glucose-
derived pyruvate is metabolized in the mitochondria and exported to the 
cytoplasm in the form of citrate. ACLY converts citrate to acetyl-CoA, thereby 
contributing to the cytoplasmic (lipogenic) AcCoA pool. De novo fatty acid 
synthesis by fatty acid synthase (FASN) results in the formation of palmitate 
(C16:0), which is either further modified or directly incorporated into cellular 
lipids. Exogenously taken up fatty acids are also incorporated into cellular 
lipids but are not labelled. b, Using AIF imaging MS for 13C-SpaceM. Cells are 
grown in medium supplemented with uniformly labelled 13C6-glucose for 72 h. 

The combination of wide-range isolation of parent lipid ions followed by HCD 
fragmentation and selective isolation of fatty acid fragments allows high-
sensitivity measurements of fatty acids incorporated into lipids, conceptually 
similar to bulk extractions followed by saponification but with the benefit of 
retained spatial information and the exclusion of free fatty acids. c, Integration 
of microscopy and imaging MS in 13C-SpaceM to obtain single-cell profiles. Pre-
MALDI microscopy and post-MALDI microscopy images containing information 
about the cell outlines and areas ablated by MALDI imaging are registered. 
Ion intensities from MALDI imaging are assigned to single cells through a 
normalization procedure. AM, ablation mark; HCD, higher-energy collisional 
dissociation; α-KG, α-ketoglutarate.
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provide substrates for histone acetylation23,24, modulation of acetyl-CoA 
metabolism can also affect gene expression programmes in cancer cells.

The advent of single-cell tools has enabled the analysis of indi-
vidual cells within heterogenic populations25. Although single-cell 
transcriptomics and proteomics has provided insights into the het-
erogeneity of transcriptional and translational programmes, these 
methods are insufficient to reveal the dynamics of lipid metabolism. 
For example, expression of carnitine palmitoyltransferase 1 (CPT1) can 
support either catabolic or anabolic metabolic programmes in cancer 
cells26. Thus far, probing metabolism at the single-cell level has been 
challenging due to the lack of technologies available for single-cell 
metabolomics27. Different experimental methods have been applied to 
evaluate the heterogeneity of lipid metabolism in cancer cells, includ-
ing metabolic sensors for malonyl-CoA28 or dendrimers to evaluate 
fatty acid uptake29. A recent study applied dielectric barrier discharge 
ionization on single cells to determine alterations in lipid metabolism 
upon ACLY inhibition in pancreatic cancer cells30. However, these 
methods do not provide sufficient molecular resolution to interrogate 
acetyl-CoA metabolism.

We previously developed a spatially resolved mass spectrom-
etry (MS) pipeline for the detection of intracellular metabolites at a 
single-cell resolution31. Stable isotope tracing has emerged as a pow-
erful approach to determine the contribution of different metabolic 
precursors to the cytoplasmic acetyl-CoA pool19,21,32,33. We now describe 
13C-SpaceM, a single-cell method that combines stable isotope tracing 
with the detection of fatty acids derived from selected lipid classes in 
a spatially resolved manner, using matrix-assisted laser desorption/
ionization (MALDI) in combination with all-ion fragmentation (AIF). 
Like in the original SpaceM method, we integrate MALDI and micros-
copy data and furthermore, perform mathematical modelling of the 
isotopologue distribution of the labelled fatty acids.

We applied this method to interrogate the effect of hypoxia or 
genetic depletion of ACLY on de novo fatty acid synthesis in murine liver 
cancer cells, revealing substantial heterogeneity in the contribution of 
glucose to the cytoplasmic acetyl-CoA pool at the single-cell level. We 
also applied the MALDI-AIF methodology together with mathematical 
modelling to interrogate tissue sections of mouse brains harbour-
ing GL261 glioma cells at near-single-cell resolution. This analysis 
revealed substantial spatial heterogeneity in isotopologue distribu-
tion of de novo synthesized fatty acids, which provides a proxy for the 
labelling degree in the lipogenic acetyl-CoA pool. Overall, our method 
opens new avenues to interrogate spatial heterogeneity in fatty acid 
synthesis and acetyl-CoA metabolism in cancer cells.

Results
13C-SpaceM resolves metabolic states of single cells
We developed 13C-SpaceM for single-cell isotope tracing into fatty acids. 
It builds upon SpaceM, a method for single-cell metabolomics integrat-
ing imaging MS and microscopy for assigning imaging MS pixels to 

individual cells and for quantifying fluorescence and morphometric 
properties of single cells31. To allow the selective interrogation of fatty 
acids esterified in cellular lipids, we included AIF-MS, where lipids in 
the range of 600–1,000 m/z ionized in negative mode were simultane-
ously fragmented and then the fragments in the range of 100–400 m/z 
were detected. The negative ion mode was chosen, as it allows detec-
tion of fatty acid RCOO− ions. By performed imaging MS with the same 
mass range and ionization mode but without AIF, we detected a total 
of 64 lipid species from several lipid classes, including phosphatidic 
acids, phosphatidylinositols (PI), phosphatidylethanolamines (PE) and 
phosphatidylserines (PS). Peaks putatively annotated (corresponding 
to the Level 2 identification guidelines from the Metabolomics Stand-
ards Initiative) from these classes cover a majority of ions isolated in 
all experiments. The presence of the majority of these lipids was con-
firmed by bulk liquid chromatography (LC)–MS/MS (Supplementary 
Tables 1 and 2). The relative abundances of 11 abundant fatty acids 
identified using AIF-MS were closely matched by bulk MS analysis fol-
lowing saponification (Extended Data Fig. 1), confirming representative 
coverage. The MALDI-AIF imaging workflow allows the quantification 
of all isotopologues detected for fatty acids produced using AIF of 
lipids isolated at a fixed mass range of 600–1,000 m/z in the negative 
mode (Fig. 1b). Registration of microscopy images with MS images 
was conducted using SpaceM31 modified to include normalization and 
natural isotope abundance correction before the signal was assigned 
to individual cells (Fig. 1c).

To validate 13C-SpaceM, we used a spatially heterogeneous model 
containing co-plated cells previously cultured under either normoxia 
(20% O2) or hypoxia (0.5% O2). As fatty acid synthesis exclusively utilizes 
the cytoplasmic acetyl-CoA pool, analysis of the isotopologue distri-
bution of fatty acids allows the assessment of changes in the relative 
contribution of different substrates to the cytoplasmic acetyl-CoA 
pool21. Murine liver cancer cells were cultured in normoxia or hypoxia 
in medium containing U-13C-glucose for 72 h to achieve isotopic steady 
state for palmitate. Pre-MALDI microscopy images overlaying the 
brightfield and green fluorescent protein (GFP) channels for the nor-
moxic (GFPneg) and hypoxic (GFPpos) cells demonstrated equal propor-
tions of both cell populations (Fig. 2a, first panel). Cell segmentation 
and quantification of GFP provided single-cell fluorescence intensi-
ties (Fig. 2a, second panel). After applying an intensity threshold, the 
fraction of unlabelled palmitate (M + 0) was determined in a pixelated 
manner and calculated for single cells (Fig. 2a, third and fourth panels). 
Mass spectra collected at representative pixels from individual cells 
showed labelled palmitate isotopologues (M > 0) only in a normoxic 
cell, while the peak for unlabelled palmitate (M + 0) was predominant 
in the hypoxic cell (Fig. 2b). Thus, 13C-SpaceM was able to accurately 
measure differences in isotopologue patterns of palmitate in response 
to environmental perturbation at the single-cell level.

We also interrogated each condition separately by using 
mono-plated cultures. Figure 2c shows a single-cell scatter-plot 

Fig. 2 | Validating 13C-SpaceM by interrogating de novo fatty acid synthesis 
in spatially heterogeneous normoxia-hypoxia model. a, Illustration of 
microscopy and imaging MS data from the model of co-plated primary murine 
liver cancer cells originally cultured under normoxia (GFPneg) and hypoxia 
(GFPpos). The GFP signal was used for discerning the culturing conditions (white 
and green cell outlines show normoxic and hypoxic cells, respectively). The 
normalized intensities of the M+0 isotope of palmitate (representing the fraction 
of unlabelled palmitate) are shown for MALDI imaging pixels and as assigned 
to the single cells. b, Mass spectra for individual pixels mapped to cells from 
a normoxic cell (white outline) and a hypoxic cell (green outline). The peaks 
corresponding to palmitate isotopologues are marked by grey or green dots.  
c, Discerning cells cultured under normoxia versus hypoxia using 13C-SpaceM for 
the cells mono-plated for each culturing condition. Scatter-plot and histograms 
show the values of the GFP reporter (ground truth for telling the condition) 
and the normalized intensity of the M + 0 isotope of palmitate representing the 

fraction of unlabelled palmitate for single cells. Different colours are used to 
show cells with different true state label, known from the growth conditions for 
the particular well, and different cell state assigned using GFP signal. Prediction 
accuracy refers to the prediction of the true state based on the isotopologue 
distributions. d, Same analysis as in c for spatially heterogeneous co-plated cells 
from both conditions. In this case accuracy refers to prediction of the cell state 
assigned using GFP signal. e, Confusion matrices for the prediction of culture 
condition based on 13C-SpaceM or GFP in cells grown separately and comparison 
of the two predictions for co-plated cells. f, Comparison of single-cell versus bulk 
intensities for the M + 0 isotope of palmitate. Single-cell intensities are from the 
spatially heterogeneous co-plated model. Bulk intensities are from cells of each 
mono-cultured condition subjected to total fatty acid analysis by saponification 
followed by LC–MS. For single-cell data, black lines show average values. For bulk 
data, data are displayed as mean ± s.d. across three replicates.
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displaying log (GFP intensity) as ground-truth readout characteristic 
of condition versus normalized palmitate M + 0 intensity calculated 
using single-cell isotopologue profiles. Cells cultured in hypoxia dis-
played normalized M + 0 intensities close to 0.9, indicating that only a 
small amount of palmitate was synthesized from glucose. This reflects 
either a low rate of de novo fatty acid synthesis or a switch to other 
substrates21. Normoxic cells showed lower normalized M + 0 intensi-
ties, with more heterogeneity compared with hypoxic cells (Fig. 2c). 
Heterogeneity could not be attributed to differences in cell size distri-
bution (Extended Data Fig. 1c) or other morphometric parameters. In 
the co-plated model, cells assigned to the hypoxic condition (log10 GFP 
intensity >3) showed a large fraction of unlabelled palmitate (normal-
ized M + 0 intensity around 0.9) (Fig. 2d), whereas cells with log10 GFP 
intensity <3 displayed a mixed phenotype (normalized M + 0 intensity 
between 0.4–0.8) (Fig. 2d). This was most likely caused by a propor-
tion of hypoxic cells having lost GFP expression, potentially due to 
promoter silencing. Overall, we observed a strong similarity between 
mono- and co-plated cultures (Fig. 2c,d), although separation of the 
two populations was less obvious after co-plating. This could indicate 
an error due to co-sampling of neighbouring normoxic cells, causing 
a slight increase in intensities of labelled isotope peaks and reducing 
the unlabelled fraction. However, the presence of two distinct clusters 
indicates that this error was small, allowing a clear separation between 
the two phenotypes.

We quantified the capacity of 13C-SpaceM to discern the two  
phenotypes in an unbiased manner by assigning the conditions to single 
cells using GFP (log10 GFP intensity >3 indicating hypoxia). When levels 
of unlabelled palmitate were used as classifier, classification accuracy 
of 87% was achieved. We furthermore investigated the potential of 
13C-SpaceM in predicting condition based on isotopologue profiles 
from other fatty acids (16:0, 16:1, 18:0, 18:1 and 14:0). Using a logistic 
regression classifier, we could predict the growth condition with per-
fect accuracy (Fig. 2e, left). In contrast, using GFP alone resulted in 
nearly 25% false negatives for the same population (Fig. 2e, middle), 
whereas the prediction based on 13C-SpaceM (Fig. 2e, right) returned a 
similar number of false negatives derived from GFP (22%). Overall, the 
high prediction accuracy of 13C-SpaceM validates the capacity of this 
method to identify changes in glucose contribution to palmitate and 
thus determine metabolic activity in a spatially heterogeneous model 
at single-cell resolution.

As additional validation, we compared single-cell isotopologue 
profiles with bulk measurements of lipids extracted from pooled cells, 
using a method for the isolation of major phospholipids, neutral lipids 
and ceramides34,35. Lipids were subjected to alkaline hydrolysis (saponi-
fication) to release fatty acids and palmitate isotopologue distribu-
tion was determined by LC–MS. Bulk analysis of palmitate showed 
an overall level of similarity with the pseudo-bulk data determined 
by 13C-SpaceM (Fig. 2f). However, there was a difference in the M + 0 
fraction detected in normoxic cells between bulk and pseudo-bulk 
analysis, potentially due to chemical hydrolysis releasing fatty acids 
from a wider variety of lipids. We therefore applied AIF to bulk LC–MS 
analysis, using negative mode and mass range (600–1,000 m/z) as used 
in imaging MS (Extended Data Fig. 2a). This revealed a high similarity in 

palmitate isotopologue distribution between AIF and saponification, 
confirming that both methods interrogate the same lipid pools. We also 
compared isotopologue distribution of other fatty acids (myristate, 
palmitoleate, stearate and oleate) obtained by imaging MS with bulk 
analysis and found an overall concordance between the two methods 
(Extended Data Fig. 2b,c). Notably, the M + 2 isotopologue for stearate 
and oleate, generated by the elongation of unlabelled precursor, could 
be detected using both methods. The slightly lower intensity for the 
M + 0 isotopologues obtained using 13C-SpaceM could thus either be 
caused by differences in interrogated lipids (Supplementary Table 1) 
or underrepresentation of low abundance isotopologues due to lower 
sensitivity of imaging MS. Overall, we conclude that 13C-SpaceM can 
be used to determine glucose contribution to fatty acid synthesis by 
providing isotopologue distributions reflecting palmitate labelling as 
key readout of this pathway at single-cell level.

Quantifying acetyl-CoA labelling degree in single cells
We next investigated the effect of genetically disrupting components 
of acetyl-CoA metabolism on fatty acid isotopologue profiles detected 
using 13C-SpaceM. ACLY catalysers the conversion of cytoplasmic citrate 
generated from glucose or glutamine into acetyl-CoA (Fig. 1a). We there-
fore engineered cells to express short hairpin RNAs (shRNA) targeting 
murine ACLY under the control of a doxycycline-inducible promoter. 
The same promoter also drives expression of a GFP reporter allowing 
identification of shRNA-expressing cells. We used two non-overlapping 
shRNA sequences (ACYL knockdown (ACLYkd) oligonucleotide (oligo) 
1 and ACLYkd oligo 2) as well as a non-targeting control. Silencing was 
achieved by treating cells with 1 µg ml−1 of doxycycline for 72 h, with 
both shRNA sequences resulting in a comparable level of ACLY deple-
tion (Extended Data Fig. 3a).

We induced ACLY silencing in cells cultured in the presence of 
U-13C-labelled glucose and interrogated them with 13C-SpaceM or bulk 
MS. Figure 3a shows isotopologue distribution for palmitate in the cells 
expressing non-targeting shRNA and after knockdown of ACLY induced 
by the two oligonucleotides. For the control cells, isotopologue distri-
bution peaks at M + 10 in both bulk and single-cell analyses (Fig. 3a, left). 
Pseudo-bulk analysis of 13C-SpaceM data showing averages across all 
single cells indicates a higher M + 0 fraction compared with the bulk 
analysis (normalized peak intensity of 0.6 compared with 0.3). This is 
in line with the results for the normoxia-hypoxia model in Fig. 2f and, 
as discussed earlier, can be explained by differences in the specific lipid 
pools interrogated by the two methods. ACLY silencing using either 
oligo induced a marked shift in isotopologue distribution, with lower 
mass isotopologues being increased (Fig. 3a, middle and right). This is 
in line with our expectation that ACLY silencing reduces the contribu-
tion of glucose to the cytoplasmic acetyl-CoA pool.

The distribution of the pseudo-bulk intensities across the iso-
topologues detected after ACLY silencing using oligo 1 suggested the 
presence of two populations with distinct responses to gene silencing. 
We therefore used the power of single-cell analysis to deconvolve pal-
mitate labelling in individual cells from the three conditions (control, 
ACLYkd oligo 1 and ACLYkd oligo 2). We calculated the acetyl-CoA pool 
labelling degree for each cell by applying a binomial model (described 

Fig. 3 | Single-cell quantitative analysis of lipogenic acetyl-CoA production 
and heterogeneity. a, Comparison of bulk (top) and single-cell (bottom) analysis 
of isotopologue distribution for palmitate after 72 h of ACLY gene silencing and 
culture in the presence of 13C6-glucose. Bulk data, generated by saponification 
and subsequent LC–MS, are displayed as mean ± s.d. across three replicates. For 
single-cell data, generated by MALDI with AIF, black lines show average values. 
b, Normalized single-cell isotopologue distributions for two individual cells, 
one from the control and the other from ACLYkd oligo 1 (shown as bar plots). 
Lines show fit of the fatty acid labelling binomial model: horizontal lines for 
M + 0 showing an estimated uptake and connected lines for M + 2i showing 
(1 − uptake) × binomial(i), where i is a variable from 1 to 8 indicating the even 

isotopic peaks. Legend shows parameters of the binomial model fit. c, Single-cell 
analysis of the estimated acetyl-CoA pool labelling degree (p) as calculated using 
the fatty acid labelling binominal model for the three conditions: control (grey), 
ACLYkd oligo 1 (blue) and ACLYkd oligo 2 (orange). Green dashed line shows 
95% quantile of the GFP intensity distribution in the control condition, which 
was used to classify cells as GFPpos versus GFPneg. d, Spatial metabolic imaging 
of de novo fatty synthesis for the control, ACLYkd oligo 1 and ACLYkd oligo 2 
conditions. Abundance of different palmitate isotopologue peaks is displayed 
in different channels: M + 0 (blue), M + 2 (green) and M + 8 (red). Each channel is 
normalized to the TIC.
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in Methods), with the estimated value p quantifying the fraction of 
labelled acetyl-CoA derived from glucose in the cytosolic acetyl-CoA 
pool. This model can be applied to each single-cell profile of isotopic 
intensities of any fatty acid by estimating p, which leads to best approxi-
mation of the data (the number of acetyl-CoA units, n, is equal to half 

the number of carbon atoms in each fatty acid, for example n = 8 for 
palmitate). Figure 3b shows examples of such modelling for two cells, 
a control cell (grey) and an ACLYkd oligo 2 cell (blue). As expected, the 
ACLYkd cell demonstrates a lower acetyl-CoA pool labelling degree 
(p = 0.43 versus 0.61).
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Acetyl-CoA pool labelling degree (p) for all single cells in the three 
populations was plotted against the intensities of the GFP knockdown 
reporter (Fig. 3c). This showed a clear difference between the control 
cells and cells with ACLY knockdown, with knockdown resulting in 
lower values of p (histogram peak in control at 0.6 compared with 
0.35 in ACLYkd oligo 1 and 0.4 in ACLYkd oligo 2). Moreover, the dif-
ferences between the two ACLY knockdown conditions were also 
clearly visible. Oligo 1 resulted in a bimodal distribution of the values 
of p, with a visibly higher variance (values ranging from 0.2 to 0.65). 
A bimodal distribution in single-cell results often indicates the pres-
ence of two subpopulations. Notably, one mode of the distribution for 
the acetyl-CoA pool labelling degree in the ACLYkd oligo 1 condition 
displayed values for p in the range of 0.5–0.6 that overlapped with 
the values exhibited by control cells (p = 0.5–0.7). This can be inter-
preted as the presence of a subpopulation of ‘poorly silenced’ cells, 
where the knockdown was not sufficiently induced. Indeed, ACLYkd 
oligo 1 cells with high values of p (above 0.5) also display GFP intensi-
ties similar to those of wild-type cells, possibly due to the loss of the 
doxycycline-inducible expression cassette. The second mode of the 
distribution of the acetyl-CoA pool labelling degree (p) for ACLYkd 
oligo 1 cells had a much lower value (p = 0.35). This was clearly below 
the mode of the distribution of p for ACLYkd oligo 2 cells (p = 0.42). 
This indicates the presence of a ‘strongly silenced’ subpopulation of 
ACLYkd oligo 1 cells in which silencing was highly efficient, resulting in 
a strong reduction of acetyl-CoA labelling. This was contrasted by the 
results using oligo 2, where the acetyl-CoA pool labelling degree (p) 
as well as GFP reporter intensity displayed more homogenous values. 
Thus, 13C-SpaceM was able to detect heterogeneity in ACLY knockdown 
cells and identify different subpopulations.

Spatial information provided by 13C-SpaceM offers another view 
at cellular heterogeneity. Figure 3d shows ion images for three iso-
topologue peaks of palmitate (M + 0 in blue, M + 2 in green and M + 8 
in red) for the three conditions (control, ACLYkd oligo 1 and ACLYkd 
oligo 2). The M + 2 peak was chosen as the most discriminative for 
the phenotype of low acetyl-CoA labelling specific to the ‘strongly 
silenced’ population among ACLYkd oligo 1 cells. The M + 8 peak was 
chosen as a representative for the control condition where fatty acids 
contain a high proportion of 13C. Thus, the difference between M + 2 
and M + 8, as shown in Fig. 3a, can serve as an indicator of the rela-
tive contribution of glucose to the cytoplasmic acetyl-CoA pool and 
thus be used to display heterogeneity. The data were acquired with a 
pixel size of 10 µm with cells having an average area of 550 µm2, cor-
responding to 12 pixels per average cell. Ion images for ACLYkd oligo 
1 showed a marked heterogeneity in the intensities of M + 2 and M + 8 
isotopic peaks for palmitate that visualizes the presence of two dis-
tinct subpopulations in this condition. Notably, the observation that 
these two subpopulations were spatially heterogeneous ruled out a 
batch effect or technical artifacts and indicates a single-cell effect. In 
contrast, ACLYkd oligo 2 cells showed a more homogenous distribu-
tion of palmitate M + 8 and an overall lower abundance of the M + 2 
peak. This degree of single-cell and spatial heterogeneity cannot be 
revealed through bulk analysis, demonstrating the unique advantages 
of the 13C-SpaceM method.

13C-SpaceM differentiates fatty acids by relative uptake
We next considered that when isotopic steady state for a given fatty acid 
pool has been reached and the labelling degree of lipogenic acetyl-CoA 
is sufficient (distribution of labelled isotopologues does not overlap 
with M + 0), 13C-SpaceM data could be used to determine the relative 
uptake of different fatty acids compared with their de novo synthesis 
at a single-cell level. For each fatty acid, this was achieved by first per-
forming natural isotope correction, normalizing all isotopologue peaks 
to the sum of all peaks, approximating isotopologue intensities with 
the binomial model described in Methods, and taking the value of the 
‘uptake’ from the model. Figure 4a, top, shows single-cell values of the 
relative uptake for the detected fatty acids: SFAs myristate, palmitate, 
stearate as well as MUFAs palmitoleate and oleate, as determined in 
the control liver cancer cells. The levels of relative uptake at 60–90% 
(and thus de novo synthesis of 10–40%) are close to the reported rate 
of 30% of de novo lipogenesis in patients with non-alcoholic fatty liver 
disease36. The two MUFAs, palmitoleate and oleate, showed a substan-
tially higher relative uptake compared with the corresponding SFAs 
palmitate and stearate. This indicates that these cells mostly utilize 
uptake rather than de novo synthesis to obtain MUFAs. The results on 
the average levels were confirmed in the bulk LC–MS-based isotope 
tracing (Fig. 4a, bottom).

We next investigated the relationships between the relative 
uptake of different fatty acids in the same cells. This was conducted 
by plotting and analysing the single-cell values of relative uptake for 
each fatty acid versus the others. This analysis showed no correlation 
of the relative uptake of myristate with any of the other fatty acids 
(Fig. 4b, first column). This lack of correlation is expected, as myristate 
was reported to be produced by de novo FA synthesis only to a small 
degree. Instead, myristate is mainly generated by the shortening of 
palmitate via peroxisomal β-oxidation or the elongation of lauric 
acid37. In contrast, single-cell relative uptake values for palmitate, 
palmitoleate, stearate and oleate showed strong positive correlations 
(Fig. 4b, columns 2–4). Thus, we can differentiate fatty acids by their 
sources specifically by exogenous uptake versus de novo synthesis. 
The lack of correlation for the single-cell uptake values for myristate 
likely reflects the specific mechanism of production or uptake of this 
fatty acid. Together, these data show that 13C-SpaceM can be used to 
determine relative uptake versus synthesis of different fatty acids at 
the single-cell level (Fig. 4c). However, it should be noted that this 
estimation may only apply to the lipid pools queried by the MALDI 
imaging MS method used here, as the relative contribution of fatty 
acids that are derived from uptake may well differ between lipid classes  
and/or pools.

Next, we investigated the effect of ACLYkd on fatty acid uptake. 
Spatial analysis and visualization demonstrated a strong single-cell 
heterogeneity in the relative uptake of either palmitate or oleate in a 
mixed population of control and ACLYkd oligo 2 cells (Fig. 4d,e). More 
detailed and quantified analysis, by plotting the single-cell relative 
uptake values separately for control and ACLYkd oligo 2, showed that 
ACLY-silenced cells increased the uptake of palmitate (histogram peak 
at 0.55 in control compared with 0.61 in ACLYkd), with each popula-
tion displaying a unimodal symmetric distribution (Fig. 4f). Oleate 

Fig. 4 | 13C-SpaceM differentiates fatty acids by their relative uptake in 
single cells. a, Fatty acid uptake in the control cells as determined for myristate, 
palmitate, palmitoleate, stearate and oleate; SFAs in green and unsaturated fatty 
acids in blue. Single-cell data with each point representing a cell, black horizontal 
lines showing median values (top). Data from bulk stable isotope tracing 
(bottom). b, Correlation of uptake of different fatty acids. Dashed line represents 
the diagonal. For each pair of fatty acids, the linear fit is shown as a grey line, with 
the fit parameters shown in the legend. c, Diagram showing mechanisms involved 
in fatty acid synthesis, desaturation and uptake. d, Spatial metabolic imaging 
of the palmitate uptake (normalized M + 0 fraction) in co-plated cells from 
control and ACLYkd oligo 2 populations. Each square corresponds to one MALDI 

pixel. Pixels with the total intensity of the fatty acid isotopes below the set limit 
of detection (1,000) are shown in black. Cell outlines are green for GFPpos cells 
(control) and white for GFPneg cells (Aclykd.oligo2). Pixels are coloured according 
to the normalized M + 0 describing the uptake contribution for a given fatty acid. 
Image shows representative section of one out of six replicates. e, Same analysis 
as in d for oleate. f, Single-cell analysis of changes in fatty acid uptake upon ACLY 
knockdown for palmitate, palmitoleate, stearate and oleate. Dashed lines are the 
diagonal. For each condition the linear fit is shown in the corresponding colour, 
with the fit parameters shown in the legend. FATP, fatty acid transport proteins; 
LDLR, low density lipoprotein receptor; SCD, stearoyl-CoA desaturase.
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uptake, which was already higher compared with palmitate uptake in 
the control cells, was also increased after ACLY knockdown (histogram 
peak at 0.85 in control compared with 0.95 in ACLYkd). In addition, we 
observed an asymmetric (skewed) unimodal distribution of the oleate 

single-cell relative uptake values for the ACLYkd population, with more 
cells showing high relative uptake values. This indicates that some cells 
of the population respond to ACLY silencing by selectively inducing the 
uptake of MUFAs, such as oleate.
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Tissue heterogeneity of fatty acid and acetyl-CoA synthesis
Our results have shown that combining MALDI imaging MS with AIF to 
detect esterified fatty acids instead of the lower-abundant free fatty 
acids substantially increases sensitivity and allows the analysis of iso-
topologue distribution to assess cytoplasmic acetyl-CoA labelling at 
the level of single cells. This prompted us to apply this methodology to 
tumour tissue sections at a near single-cell spatial resolution, to inves-
tigate whether metabolic constraints imposed by the tumour microen-
vironment, such as differential access to nutrients and/or oxygen result 
in intra-tumoural heterogeneity in terms of glucose contribution to the 
cytosolic acetyl-CoA pool or the relative contribution of fatty acid uptake 
versus de novo synthesis. We analysed brain tissue sections from mice 
that had been orthotopically implanted with GL261 glioma cells express-
ing mutant isocitrate dehydrogenase 1 (IDH1) and red fluorescent protein 
(RFP). The mice were fed either an unlabelled or U-13C-glucose-containing 
liquid diet for 48 h before tissue collection. Sections from the same tissue 
samples had been analysed previously using MALDI- and DESI-imaging 
MS to study the incorporation of glucose-derived carbons into various 
different metabolites including free (non-esterified) fatty acids38. That 
analysis revealed spatial differences in isotopologue distribution of free 
palmitate and stearate between tumour and non-tumour regions of the 
brain, but did not provide sufficient spatial resolution to fully appreciate 
intra-tumoural heterogeneity38.

We first applied our methodology to analyse the esterified fatty 
acid composition in brain sections from tumour-bearing mice that 
were fed a 12C-glucose diet. Comparison of the total ion count (TIC) 
with brightfield and fluorescent imaging revealed high ion counts 
throughout the whole brain, including the tumour area (Fig. 5a). The 
tumour area (Fig. 5a, TIC plot, boxed) was analysed using a higher reso-
lution (10 µm pixel size) compared with the rest of the tissue section 
(50 µm). Spatial analysis of different fatty acids revealed a high amount 
of heterogeneity in fatty acid abundances in the non-tumour-bearing 
hemisphere, with individual structures such as the corpus callosum 
and anterior commissure identified based on their fatty acid compo-
sition alone, with both regions being high in oleate (18:1) and low in 
palmitate (16:0), stearate (18:0) and arachidonate (20:4) relative to 
surrounding brain tissue (Fig. 5b). While palmitate, stearate, oleate 
and arachidonate were present at similar levels both in tumours and 
the surrounding brain, myristate (14:0) and palmitoleate (16:1) were 
substantially increased in the tumour tissue. Notably, the essential 
fatty acids linoleate (18:2) and α/γ-linolenate (18:3) were also selectively 
higher in the tumour compared with the rest of the brain tissue (Fig. 5b).

We next analysed tissues from tumour-bearing mice that had 
been fed a diet containing U-13C-glucose for 48 h and determined 
the isotopologue distribution of the five major esterified fatty acids 
derived from de novo fatty acid synthesis selectively in the tumour 
tissue (Fig. 5c and Extended Data Fig. 4a,b). The three SFAs, myristate 
(14:0), palmitate (16:0) and stearate (18:0), showed a high relative 
abundance of 13C incorporation, with isotopologue distributions peak-
ing at M + 10, M + 12 and M + 14, respectively (Extended Data Fig. 4a,b). 
These results suggest that myristate was almost exclusively derived 
from de novo fatty acid synthesis, as the intensity of M + 0 was very low 
compared with the other isotopologues. As myristate is important for 

the post-translational modification of important signalling proteins39, 
this finding suggests that glioma tumours may selectively upregu-
late myristate synthesis to promote their growth. In contrast, the two 
MUFAs, palmitoleate (16:1) and oleate (18:1), showed a higher relative 
abundance of the M + 0 isotopologue (Extended Data Fig. 4a,b). In 
addition, stearate and oleate exhibited a pronounced abundance of the 
M + 2 isotopologue, indicative of elongation from unlabelled precur-
sors (palmitate and palmitoleate, respectively). This was in line with 
the previous analysis demonstrating prominent fatty acid elongase 
activity in these tumours38.

To analyse this in more detail, we calculated the fraction of all 13C 
isotopologues of the total 1 − (M + 0)/∑n(M + n) , representing the 
fraction of the respective fatty acid that was derived from de novo 
synthesis. This revealed that the majority of palmitate in the tumour 
was derived from de novo fatty acid synthesis within the timeframe of 
the 13C labelling (Fig. 5c). In contrast, the fraction of palmitoleate 
derived from de novo fatty acid synthesis was lower (Fig. 5c), despite 
palmitoleate being enriched in the tumour tissue (Fig. 5b). Oleate 
showed a higher labelling degree than palmitoleate (Fig. 5c), but this 
was mostly linked to the high proportion of the M + 2 isotopologue 
(Fig. 5c and Extended Data Fig. 4a,b), which is formed by elongation of 
unlabelled palmitoleate. Considering that the tumour-bearing mice 
were fed a 13C-glucose diet for only 48 h38, it is likely that isotopic steady 
state for these fatty acids was not reached and thus any exact quanti-
fication of the contribution of de novo synthesis or uptake in the 
tumour is not possible. Nevertheless, we found that the pool sizes for 
palmitate, stearate and oleate were in a similar range, whereas the pool 
size of palmitoleate was far smaller (Fig. 5c, bottom row). Thus, the low 
fraction of palmitoleate and oleate derived from de novo synthesis was 
not due to their pool sizes being larger relative to that of their precur-
sors. This indicates that these fatty acids are not derived from de novo 
synthesis within the timeframe of the labelling but rather originate 
from uptake. These findings suggest that tumours have limited 
Δ9-desaturase activity, provided by stearoyl-CoA desaturase and rely 
on the microenvironment for the provision of MUFAs.

We next used the isotopologue distribution of palmitate to calcu-
late the fraction of the cytosolic acetyl-CoA pool derived from glucose 
on a pixel-by-pixel basis, similar to the in vitro analysis (Fig. 3c), to gen-
erate a spatial representation of acetyl-CoA labelling in the tumour. This 
revealed a significant degree of spatial intra-tumoural heterogeneity, 
with glucose contribution to the cytosolic acetyl-CoA pool (p) ranging 
from 0.45 to 0.70 (Fig. 5d). It should be noted that the observed vari-
ability in p was not due to differences in TIC, which was quite uniform 
across the sample (Fig. 5d). Close inspection of selected areas with high 
and low p further highlighted the differences in palmitate isotopologue 
distribution (Fig. 5e). Thus, MALDI imaging MS coupled with AIF is 
capable of determining the labelling degree of the cytosolic acetyl-CoA 
pool to visualize spatial intra-tumoural metabolic heterogeneity in 
tissue sections at near-single-cell resolution.

Characterizing essential fatty acid metabolism in glioma
Our finding that the essential fatty acids linoleate (18:2) and 
α/γ-linolenate (18:3) accumulate exclusively in the tumour (Fig. 5b) 

Fig. 5 | 13C-SpaceM reveals intra-tumoural heterogeneity of fatty acid 
synthesis at a near-single-cell resolution. a, Left to right: brightfield image 
of a cryosection from the brain of a tumour-bearing mouse after orthotopic 
implantation of GL261 glioma cells. Visualization of RFP-expressing glioma cells 
in the brain. Staining of the cryosection with 4,6-diamidino-2-phenylindole 
(DAPI) overlapped with the RFP and brightfield channels. Visualization of TIC 
obtained by MALDI imaging MS and AIF. Square denotes a region where data were 
acquired at a near-single-cell resolution (10 µm pitch as opposed to 50 µm pitch 
for the rest of the section). Scale bar ends at the highest point of intensity in the 
image. b, Visualization of the localization of ten different esterified fatty acids in 
a section from a tumour-bearing brain. NL value (highest signal intensity in the 

image) for each fatty acid is shown above the image. ac, anterior commissure; 
cc, corpus callosum. c, Fractions of palmitate, palmitoleate, stearate and oleate 
derived from fatty acid synthesis during the labelling period (48 h) visualized 
by displaying the sum of all labelled isotopologues as a fraction of the sum of all 
isotopologues (1 − (M + 0)/Σn(M + n)) (top). The unlabelled isotopologue (M + 0) 
for palmitate, palmitoleate, stearate and oleate normalized to the TIC (middle). 
Sum of all isotopologues shown as a fraction of the TIC; scale bar shows fraction 
of TIC (bottom). d, Visualization of the TIC and the degree of labelling of the 
cytoplasmic acetyl-CoA pool (p) in the tumour. e, Isotopologue distributions 
derived from a high and a low p area of the tumour (marked by yellow and black 
squares in d, respectively).
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raised the question whether these fatty acids are also processed fur-
ther, as their derivatives serve as precursors for the synthesis of lipid 
mediators, such as prostaglandins and leukotrienes that play important 

roles in cancer3. We therefore analysed the specific isotopologue dis-
tributions of several derivatives of essential fatty acids, namely 20:3, 
20:4, 20:5, 22:4 and 22:5 (Fig. 6a). We found that the M + 2 isotopologue 
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fractions of all except 20:5 were enriched in the tumours (the pool size 
for these fatty acids was either similar or higher in the tumour region 
relative to the brain, which excludes the possibility of this being an 
artifact of not having reached isotopic steady state). This suggests 
that glioma tumours not only take up essential fatty acids from the 
microenvironment but also process these further by elongation and 
desaturation. The enzymes required for essential fatty acid metabo-
lism, fatty acid elongase 5 (ELOVL5), fatty acid desaturase 1 (FADS1) 
and fatty acid desaturase 2 (FADS2) are upregulated in low-grade  
glioma (Fig. 6b,c). Our data also suggest differences in the processing 
of omega-3 and omega-6 essential fatty acids, as eicosapentaenoic acid 
(20:5), a PUFA exclusive to the omega-3 branch (Fig. 6b), shows no label 
incorporation (Fig. 6a). This suggests that the tumour mostly engages 
in the processing of omega-6 essential fatty acids, which can give rise 
to pro-inflammatory lipid mediators, such as prostaglandin E2 (PGE2).

Taken together, we have presented 13C-SpaceM, a sensitive and 
robust method for spatial isotope tracing into esterified fatty acids in 
single cells, and used a similar methodology to analyse tissue sections 
at near single-cell resolution. We demonstrated how this method can 

be used to study fatty acid uptake, acetyl-CoA metabolism, and activ-
ity of de novo fatty acid synthesis in single cells. In tissue sections of 
mouse glioma, we could show spatial intra-tumour heterogeneity of 
acetyl-CoA synthesis. The novelty of this method lies in employing 
AIF-MS combined with mathematical modelling for isotopologue 
analysis of labelled fatty acids. Using AIF helps to enhance the sen-
sitivity of the analysis at high spatial resolution, while mathematical 
modelling provides quantitative information on lipogenic acetyl-CoA 
pool labelling. Our development addresses the need to investigate 
the activity of metabolic pathways by resolving single-cell and spatial 
heterogeneity with high molecular sensitivity.

Discussion
The advance of spatial and single-cell -omics technologies has  
revolutionized biology and provided insights into the genetic and 
phenotypic heterogeneity of cell populations at the levels of tissues, 
organs and whole organisms25. This is of particular importance in 
cancer, as tumours consist of multiple sub-clones of cancer cells as 
well as a highly diverse population of stromal cells that can change 
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in a spatial and temporal manner40. Complementing the paradigm of 
genetic heterogeneity41, the concept of metabolic heterogeneity and 
plasticity in cancer is emerging42–44, particularly as the metabolic state 
of cancer cells is influenced by non-genetic factors, including nutrients 
and oxygen in the tumour microenvironment42. Recent technologi-
cal advances in MS, including electrospray ionization (ESI), MALDI or 
dielectric barrier discharge ionization in combination with advanced 
computational methods enabled the detection of polar metabolites 
and lipids from single cells30,31,45. While these methods have provided 
unprecedented insight into the metabolic states of single cells, they 
fail to capture dynamic metabolic processes or flexibility of the meta-
bolic network. Stable isotope tracing has emerged as gold-standard to 
reveal metabolic activity in cells and tissues in bulk46 and in a spatially 
resolved manner38,47, but was so far not demonstrated in single cells, 
mostly due to sensitivity limits.

We developed 13C-SpaceM, a method to combine stable isotope 
tracing with spatial single-cell metabolomics to monitor de novo fatty 
acid biosynthesis at single-cell resolution. 13C-SpaceM builds upon the 
previously published SpaceM method31 with several modifications, 
including additional data analysis for the quantification of multiple 
isotopologues of fatty acids. In particular, we included a binomial 
model to determine the labelling degree of the lipogenic acetyl-CoA 
pool from fatty acid isotopologue data for individual cells48. The use 
of AIF to release esterified fatty acids results in high sensitivity and 
resolution. Nevertheless, this largely restricts our analysis to fatty acids 
released from a subset of lipid classes that are effectively ionized in 
negative mode, primarily acidic glycerophospholipids. Despite these 
limitations, this approach is sufficient to determine the contribution of 
a labelled substrate (for example glucose) into the lipogenic acetyl-CoA 
pool based on isotopologue distribution of fatty acids, which was a 
major aim of this study.

We validated the ability of 13C-SpaceM to detect changes in 
glucose-dependent fatty acid synthesis at single-cell resolution by 
co-plating cells from different metabolic states (hypoxia/normoxia). 
This model was chosen as hypoxia leads to a global reprogramming of 
lipid metabolism10. Spatial single-cell isotope tracing by 13C-SpaceM 
clearly separated the two cell populations based on the strong 
increase in palmitate M + 0 fraction in hypoxic cells. This is caused by 
inhibition of pyruvate dehydrogenase49, leading to reduced flux of 
glucose carbons into the TCA cycle and subsequently the lipogenic 
acetyl-CoA pool. Hypoxia also promotes the reductive carboxyla-
tion of glutamine19,20 and synthesis of acetyl-CoA from acetate21,22. In 
addition, hypoxia reduces fatty acid synthesis and stimulates fatty 
acid uptake18,50 which also increases the proportion of the palmitate 
M + 0 fraction.

We also assessed the application of 13C-SpaceM to monitor the 
effect of genetic perturbations of the metabolic network. Bulk and 
single-cell analyses revealed a marked shift in palmitate isotopologue 
distribution following silencing of ACLY, the enzyme catalysing the 
conversion of citrate to acetyl-CoA. Using a binomial model to quantify 
fractional labelling from the isotopologue distribution21, we estimated 
the labelling degree of acetyl-CoA in control and ACLY-silenced single 
cells. In agreement with previous studies using bulk analysis in ACLY 
wild-type versus knockout mouse embryo fibroblasts23, silencing of 
ACLY caused a reduction in the fractional labelling of acetyl-CoA from 
glucose but only a minor increase in the M + 0 fraction of palmitate. 
This suggests that other substrates, such as acetate, are used to syn-
thesize acetyl-CoA when ACLY is absent23. We also revealed substantial 
heterogeneity in fractional labelling of lipogenic acetyl-CoA within the 
ACLY-silenced cell populations, suggesting differences in efficiency 
of the shRNA sequences completely obscured in the bulk analysis. 
As acetyl-CoA is also a substrate for protein post-translational modi-
fication, methods to quantify acetyl-CoA synthesis from different 
substrates at single-cell level can provide insight into genetic and 
environmental factors that drive heterogeneity in cancer.

Fatty acid uptake via the scavenging receptor CD36 has been 
shown to facilitate metastasis formation and stem cell phenotypes 
in cancer51,52. We therefore used 13C-SpaceM to determine the relative 
proportion of de novo synthesis and uptake of five non-essential fatty 
acids at single-cell level. This revealed substantial heterogeneity in 
the relative uptake of different fatty acids, with a higher proportion 
of uptake for palmitoleate and oleate compared with palmitate, sug-
gesting high demand for MUFAs. Moreover, ACLY silencing caused a 
general shift from de novo synthesis to uptake of palmitate and oleate, 
consistent with a recent single-cell lipidomics study observing reduced 
levels of PC species containing saturated and MUFAs upon chemical 
inhibition of ACLY in pancreatic cancer cells30.

We also applied our methodology to brain sections from mice 
bearing glioma xenografts, enabling the visualization of different 
esterified fatty acids in tumour and non-tumour tissue. This revealed 
highly selective partitioning of individual fatty acid species to specific 
brain structures, which could be further explored by integrating our 
results with spatial transcriptomics data from the brain atlas26 or future 
correlative studies combining imaging MS and other spatial omics 
techniques. We also used tissue from mice fed a liquid diet containing 
U-13C-glucose for 48 h to achieve deep labelling of the entire metabolic 
network, including lipids53. Isotopologue analysis revealed a strong 
induction of synthesis of SFAs, myristate, palmitate and stearate, in 
tumour tissue compared with the surrounding brain, thus confirming 
previous results obtained in the same model38. This is in agreement 
with previous studies indicating that fatty acid synthesis is required for 
brain metastasis in breast and other cancers54,55. However, by compar-
ing isotopologue patterns between saturated and MUFAs, we found 
that tumours contained a high proportion of MUFA not derived from 
de novo synthesis, suggesting that these may be taken up. This was 
unexpected, as it has been proposed that MUFAs are relatively scarce 
in in the brain microenvironment, making desaturation an essential 
metabolic requirement for brain metastasis55. Monitoring metabolism 
using 13C-imaging MS coupled to AIF thus provides insight into dynamic 
fatty acid provision in tumour and healthy tissues.

In addition, we used the palmitate isotopologue distribution to 
determine acetyl-CoA labelling in tumour tissue in a spatial manner. 
This revealed substantial spatial heterogeneity, possibly caused by 
differences in local availability of nutrients and oxygen in different 
tumour areas or by genetic heterogeneity of the implanted cells. The 
observed differences in palmitate isotopologue pattern, increase in 
M + 0 and shift toward isotopologues with lower mass were remarkably 
similar to those observed after exposure of cancer cells to experimental 
hypoxia or silencing of ACLY. It has been shown that ACLY promotes 
cell migration in glioblastoma through mechanisms involving histone 
modification56. Moreover, a recent spatial transcriptomics and prot-
eomics study defined hypoxia as a major driver of long-range tissue 
organization in glioma57. It will be interesting to integrate 13C-SpaceM 
data with other spatial approaches to obtain deeper insight into mecha-
nisms of metabolic heterogeneity in cancer.

Finally, we applied our methodology to analyse the metabolism 
of essential fatty acids in glioma. Notably, tumours showed evidence 
for elongation and desaturation of omega-6 essential fatty acids. This 
agrees with elevated expression enzymes responsible for the metabo-
lism of omega-6 essential fatty acids observed in human low-grade 
glioma. Altered fatty acid metabolism is a hallmark of glioma58 and 
an increase in the ratio of omega-3 and omega-6 fatty acids has been 
described as a marker of aggressive disease59.

Our results present 13C-SpaceM as a methodology for spatial 
single-cell isotope tracing, able to monitor de novo fatty acid syn-
thesis, composition of lipogenic acetyl-CoA and fatty acid uptake in 
heterogenous cell populations exposed to genetic and environmental 
perturbations. Through additional modifications of this approach, 
for example by applying different metabolic tracers or by selecting 
specific subsets of lipids using ion mobility separation, 13C-SpaceM 
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could provide more specific information about lipid metabolism at 
single-cell resolution. Furthermore, with increased spatial resolution 
of MALDI imaging, and by complementing the analysis with single-cell 
segmentation in microscopy images, this method could be extended 
to single-cell isotope tracing in tissue sections. Finally, results can also 
be integrated with other spatial omics data, such as transcriptomics or 
proteomics, to obtain deeper insight into the metabolic programmes 
of cells and tissues.

Limitations
Fatty acids analysed using the MALDI-AIF method applied here are 
derived from a subset of lipids that are effectively ionized in the negative 
mode. Some abundant lipid species, including phospatidylcholines, 
triglycerides and sphingomyelins, are underrepresented. Compar-
ing data from MALDI-AIF with bulk MS after saponification revealed 
high concordance, indicating that fatty acids in the lipids sampled 
by MALDI-AIF are representative of the total lipidome. Notably, iso-
topologue distribution of fatty acids derived from de novo synthesis 
faithfully reflects labelling degree of the lipogenic acetyl-CoA pool at 
isotopic steady state independently of the identity of sampled lipids. 
However, the selectivity of the MALDI-AIF method has to be considered 
for the estimation of fatty acid uptake, as the proportion of fatty acids 
derived from uptake may differ depending on lipid class. In addition, 
our methodology can only provide information on relative substrate 
contribution to the lipogenic acetyl-CoA pool as opposed to absolute 
contribution, as the size of this pool cannot be quantified. Increased 
relative contribution from one substrate can either be caused by an 
increase in absolute contribution or by reduced contribution from 
another source. This limitation could be partially overcome by measur-
ing relative contribution of several substrates in parallel. It also has to 
be considered that different fatty acid pools may reach isotopic steady 
state at different times after label addition. Accurate quantification 
of the relative contribution of de novo synthesis and uptake for dif-
ferent fatty acid species may require previous determination of time 
required to reach isotopic steady state. In the case of the in vivo model, 
isotopic steady state was likely not reached for fatty acids within the 
48-h labelling period38. Thus, labelling data need to be interpreted 
under consideration of pool size data. Of note, this limitation does 
not apply to the assessment of substrate contribution to the lipogenic 
acetyl-CoA pool, as isotopic steady state for this pool is reached within 
a few hours of labelling32.

Methods
Cell culture for the normoxia-hypoxia model
Primary murine liver cancer cells derived from a Myc- and Akt-driven 
tumour model (MycOE; AktMyr; Tp53−/−)15 were a gift from D. Dauch (Uni-
versity of Tübingen). HEK293 cells were from ATCC and used at low 
passage. Cells were cultured in glucose-free DMEM (Sigma Aldrich) sup-
plemented with 1 mM acetate, 2 mM glutamine and 10% dialysed FCS 
after addition of 25 mM of either 12C-glucose (Sigma) or U-13C-glucose 
(Cambridge Isotopes) in a 37 °C incubator with 5% CO2 either under 
normoxia (20% O2) or hypoxia (0.5% O2) for 72 h. The time point of 72 h 
was chosen to make sure that isotopic steady state for palmitate had 
been reached. Hypoxic conditions (0.5% O2) were induced in a hypoxia 
workstation (H35, Don Whitley). The cells cultured under hypoxic 
conditions were modified to express GFP as a marker. For co-plating 
experiments, normoxic and hypoxic cells were detached using trypsin, 
mixed using 10,000 cells of each condition, plated on the same glass 
slide and allowed to attach for 3 h before fixation.

Western blot analysis
Cells were lysed in RIPA buffer (150 mM NaCl, 50 mM Tris, pH 8.0, 1% 
(v/v) NP-40, 0.5% (w/v) sodium deoxycholate and 0.1% (w/v) SDS) with 
protease and phosphatase inhibitors for 30 min and cleared by cen-
trifugation. Proteins were quantified using BCA (Thermo Scientific). 

Proteins were separated by SDS–PAGE and blotted onto PVDF mem-
brane (Immobilon), treated with blocking solution (5% BSA) and incu-
bated with primary and secondary antibodies in 5% BSA. Signals were 
detected on a ChemiDoc (Bio-Rad). Antibodies used were anti-ACLY 
(Cell Signalling, 4331) at 1:100 dilution and anti-β-tubulin (Cell Signal-
ling, 2148) at 1:5,000 dilution.

ACLY knockdown
For the ACLY knockdown, we used the same primary murine liver 
cancer cells as in the hypoxia model. shRNA sequences targeting 
murine ACLY or non-targeting controls were cloned into LT3-GEPIR 
(Addgene); the shRNA sequences used were (TGCTGTTGACAGTGA 
GCGACCGCAGCAAAGATGTTCAGTATAGTGAAGCCACAGATGTATACT 
GAACATCTTTGCTGCGGCTGCCTACTGCCTCGGA), (TGCTGTTGAC 
AGTGAGCGAACCAGTGTCTACTTATGTCAATAGTGAAGCCACAGATGTAT 
TGACATAAGTAGACACTGGTCTGCCTACTGCCTCGGA) and (TGCTGTTG 
ACAGTGAGCGCAGGAATTATAATGCTTATCTATAGTGAAGCCACAGATG 
TATAGATAAGCATTATAATTCCTATGCCTACTGCCTCGGA) for ACLYkd 
oligo 1, oligo 2 and non-targeting control, respectively. Lentiviral par-
ticles were produced in HEK293 cells after transient transfection of 
the packaging vectors psPAX.2 and pMD.G2 (Addgene, #12260 and 
#12259). After viral transduction, liver cancer cells were selected with 
puromycin and used at low passage. Induction of shRNA expression was 
achieved by treating cells with 1 µg ml−1 doxycycline (Sigma) for 72 h. 
For stable isotope tracing, cells were cultured in glucose-free DMEM 
supplemented with U13C6-glucose (Cambridge Isotope laboratory) and 
1 mM acetate for 72 h.

Analysis of fatty acids and lipids using LC–MS
For bulk LC–MS, cells were washed with cold 154 mM ammonium 
acetate, snap frozen in liquid nitrogen and collected in methanol:H2O 
(80:20, v/v) with added standards (for fatty acids, 10 µl 100 µM 
palmitate-2,2-D2 (Eurisotop, DLM-1153-0)/1 × 106 cells For lipids 
(SPLASH LIPIDOMIX, Avanti Polar Lipids, 330707-1EA) 10 μl per sam-
ple). Subsequently, 30 μl 0.2 M HCl, 2 × 100 μl CHCl3 and 2 × 100 μl H2O 
was then added with vortexing in between. The suspension was centri-
fuged at 16,000g for 5 min at room temperature, the lower lipid phase 
was then washed with synthetic polar phase (CH3Cl:methanol:H2O, 
58:33:8, v/v/v) and evaporated to dryness under N2 at 45 °C. For lipid-
omics the samples were resuspended and subjected to LC–MS analysis. 
For fatty acid analysis lipid extract was saponified by resuspension in 
methanol:H2O (80:20, v/v) containing 0.3 M KOH, heating at 80 °C for 
1 h and washed twice with 0.5 ml hexane. After addition of 50 μl formic 
acid, fatty acids were subsequently extracted twice with 0.5 ml hexane 
and evaporated to dryness under N2 at 45 °C. For LC–MS analysis the 
fatty acids, were dissolved in 100 μl isopropanol and 5 μl of each sample 
was applied to a C8 column (Accucore C8 column, 2.6-µm particle size, 
50 × 2.1 mm, Thermo Fisher Scientific) at 40 °C, with mobile phase A 
consisting of 0.1% formic acid in CH3CN:H2O (10:90, v/v) and solvent 
B consisting of 0.1% formic acid in CH3CN:H2O (90:10, v/v). The flow 
rate was maintained at 350 μl min−1 and eluent was directed to the 
ESI source of a mass spectrometer from 3 min to 27 min after sample 
injection. MS analysis was performed on a Q Exactive Plus Orbitrap 
mass spectrometer (Thermo Fisher Scientific) applying the following 
settings: sheath gas, 30; spray voltage, 2.6 kV. Capillary temperature 
320 °C, aux gas heater temperature: 120 °C and S-lens voltage was 
55. A full scan range from 150 to 460 (m/z) in negative ion mode was 
used. The resolution was set at 70,000. The maximum injection time 
was 100 ms with an AGC target of 1 × 106. For lipidomic analysis, lipids 
were separated on a C8 column (Accucore C8 column, 2.6 µm particle 
size, 50 × 2.1 mm, Thermo Fisher Scientific) mounted on an Ulitmate 
3000 HPLC (Thermo Fisher Scientific) and heated to 40 °C. The mobile 
phase buffer A consisted of 0.1% formic acid in CH3CN:H2O (10:90, 
v/v) and buffer B consisted of 0.1% formic acid in CH3CN:IPOH:H2O 
(45:45:10, v/v/v). After injection of a 3-µl lipid sample, 20% solvent B 
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was maintained for 2 min, followed by a linear increase to 99.5% B within 
5 min, which was maintained for 27 min. After returning to 20% B within 
1 min, the column was re-equilibrated at 20% B for 5 min, resulting in a 
total run time of 40 min. The flow rate was maintained at 350 µl min−1 
and the eluent was directed to the ESI source of the QE Plus from 2 to 
35 min. MS analysis was performed on a Q Exactive Plus mass spectrom-
eter (Thermo Fisher Scientific) applying the following settings: scan 
settings, scan range of 200–1,600 m/z in full MS mode with switching 
polarities (neg/pos) and data-dependent fragmentation; resolution of 
70,000, AGC target of 1E6; max. injection time of 50 ms. HESI source 
parameters: sheath gas of 30; aux gas of 10; sweep gas of 3; spray voltage 
of 2.5 kV; capillary temperature of 320 °C; S-lens RF level of 55.0; aux 
gas heater temperature of 55 °C; fragmentation settings: resolution of 
17,500; AGC target of 1E5; and max. injection time of 50 ms. Peaks cor-
responding to the calculated fatty acid or lipid masses (± 5 ppm) were 
integrated using El-Maven (https://resources.elucidata.io/elmaven) 
and correction for natural 13C isotopic abundance was conducted 
using IsoCorrectoR60.

Analysis of fatty acid distribution and isotopologue 
distribution by direct infusion MS
For the analysis of fatty acid distribution and isotopologue dis-
tribution using direct infusion, saponified fatty acids, collected 
as described above, were resuspended in 50:50 solution A and B  
(A, H2O:ACN:isopropanol 2:10:88 and B, H2O:ACN 60:40 both with 
10 mM ammonium acetate). Samples were injected by direct infusion at 
20 μl min−1 for 2 min whereas spectra were acquired for a total of 8 min 
(3 min before and after injection to establish baseline) using the follow-
ing scan parameters: full MS scan range of 69–1,000 m/z, AGC target 
1 × 106, resolution of 70,000 in negative mode, maximum injection time 
100 ms. HESI source parameters were as follows, sheath gas flow rate 6, 
spray voltage 3.20 kV, S-lens RF level 50 and aux gas temperature 120 °C. 
For AIF, samples were not saponified and lipid extract was resuspended 
the same as described above. All parameters were the same except 
that the scan type was AIF, precursor masses were collected in the 
range of 600–1,000 m/z, the scan range was 200–350 m/z, fragmenta-
tion was carried out using CE of 50 and the maximum injection time  
was 200 ms.

Microscopy
After cell culturing, the cells were washed with PBS, fixed using Histofix 
(Roth, 87.3) for 10 min, stained using 4,6-diamidino-2-phenylindole 
(DAPI), washed 3× in PBS and then desiccated in a Lab Companion Cabi-
net Vacuum Desiccator for 30 min at room temperature and −0.08 MPa. 
Pre-MALDI brightfield and fluorescent microscopy (620 and 460 nm) 
images were obtained with a DS-Qi2 camera (Nikon Instruments) with 
a Plan Fluor ×10 (numerical aperture of 0.30) objective (Nikon Instru-
ments) mounted on a Ti-E inverted microscope (Nikon Instruments). 
The pixel size was 0.64 μm. For the hypoxia experiment, additional 
pre-desiccation microscopy images were collected. Rigid registration 
of pre-desiccation and post-desiccation microscopy images was per-
formed using the Affinder plugin in Napari (https://www.napari-hub.
org/plugins/affinder). The cells were imaged in brightfield micros-
copy after MALDI imaging, using the same microscopy setup and 
parameters.

Microscopy image analysis
Cells in the brightfield channel of pre-MALDI microscopy were seg-
mented using a custom Cellpose model61 trained on manually anno-
tated fragments of images. Since the primary cell culture contains cells 
of varying size, segmentation for the largest cells had to be manually 
corrected. Ablation marks were detected in the post- MALDI micros-
copy by manually fitting a grid of circular shapes. Registration of the 
pre- and post-MALDI images was carried out using the SpaceM software 
tool as previously published31.

MALDI imaging of single-cell samples
The MALDI matrix 1,5-diaminonaphthalene (DAN) was applied to a sur-
face density of 3 μg μm−2 immediately before MALDI analysis using a TM 
sprayer (HTX Technologies). Atmospheric pressure MALDI imaging was 
performed using an AP-SMALDI5 ion source (TransMIT) coupled to a Q 
Exactive Plus Orbitrap mass spectrometer (Thermo Fisher Scientific). 
Raster pitch was 10 × 10 μm, with the laser attenuator angle set to 33°. 
The MS method used was set up as AIF in negative ion mode, with an 
isolation range of 600–1,000 m/z and a scan range of 100–400 m/z at 
140,000 resolution with 500 ms maximum ion injection time. Frag-
mentation was performed using higher-energy collisional dissociation 
at a normalized collision energy (NCE) of 25. This energy level was 
determined by a manual stepped collision energy experiment, where 
we saw no improvement in fatty acid signal/noise by going as high as 
45 NCE. Only one collision energy can be used per ion injection and one 
ion injection was performed per pixel. Thus, data acquisition for this 
type of experiment is limited to one collision energy.

SpaceM analysis
The 13C-SpaceM method is based on SpaceM described in detail previ-
ously31. The key differences are in using AIF (see ‘MALDI imaging of 
single-cell samples’ section) and processing obtained profiles (see the 
respective section of Methods). In brief, SpaceM integrates microscopy 
images and the MALDI images by detecting the MALDI ablation marks, 
overlaying them with the segmented cells and performing ablation 
marks-cells deconvolution by applying a mathematical formula. This 
results in single-cell profiles of molecules detected by the MALDI imag-
ing MS.

Constructing single-cell isotopologue profiles. MALDI images for 
unlabelled samples were annotated with METASPACE62 at 5% false dis-
covery rate to determine the most abundant detected fatty acids. For 
each fatty acid, intensities corresponding to theoretical isotopologue 
peak masses were extracted. Raw intensities were normalized for natu-
ral isotope abundance using IsoCor63, after which every isotopologue 
distribution was normalized by its sum. Ablation marks with a total raw 
intensity of less than 200 for a given fatty acid were removed from the 
analysis. Ablation marks which had at least 30% overlap with the cell mask 
were considered intracellular. After normalizing spectra in each pixel, 
the median of values in the intracellular ablation marks was assigned as a 
single-cell readout for each isotopologue peak. The resulting single-cell 
isotopologue distribution for every fatty acid was normalized by its sum 
again. Scanpy v.1.8.1 (ref. 64) was used for all single-cell data analysis.

Calculation of single-cell features. For each well of a multi-well 
slide, the median intensity of the GFP channel outside the cell masks 
was subtracted from the image and the logarithm of the maximum 
GFP intensity inside the cell mask was used to characterize single-cell 
GFP signal. Both in normoxia/hypoxia and in ACLYkd experiments, the 
95th percentile of the GFP signal in the GFP-negative wells was used as 
a threshold to assign cells to either GFP-positive or GFP-negative state.

In addition to the normalized isotopologue peak intensities, a 
binomial model for the fatty acid synthesis described previously32 
was used. Fatty acids are synthesized by randomly taking two-carbon 
monomers from the cytosolic acetyl-CoA pool. Therefore, if the frac-
tion of labelled monomers equals p, the probability that a given fatty 
acid has 2i labelled carbons can be described with the following model:

Pbinom (k) = (nk)p
k(1 − p)n−k, k = 0, 1,… ,n

I0 = Uptake + (1 − uptake) × Pbinom(0)

Ii = (1 − uptake) × Pbinom(i), i = 1, 2,… ,n
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where uptake is the fraction of the unlabelled FA directly taken from the 
medium, p is the labelling degree of cytosolic acetyl-CoA pool and n is 
the number of acetyl-CoA molecules used for the synthesis (number of 
carbons in the fatty acid/2). Longer fatty acids can be synthesized both 
using labelled palmitate made by the cell de novo and unlabelled palmi-
tate; therefore, we used a modified model for stearate and oleate (C18):

I0 = Uptake + (1 − uptake) × Pbinom (0)

I1 = (1 − uptake) × (uptakeC16 + (1 − uptakeC16) × Pbinom (1))

Ii = (1 − uptake) × (1 − uptakeC16) × Pbinom(i), i = 2, 3,… ,n

where uptakeC16 is the fraction of palmitate (C16) taken from the 
medium.

Fitting a binomial model to the single-cell isotopologue distri-
butions allows summarizing them as two numbers: uptake, which 
characterizes the fraction of the fatty acid which was not synthesized 
de novo but directly taken from the medium and acetyl-CoA pool label-
ling degree p, which describes relative contribution of the labelled 
substrate to the fatty acid synthesis compared with other carbon sub-
strates consumed by the cell. The limitation of this method is that if 
overall substrate usage is very low, such as in the hypoxia/normoxia 
experiment, it becomes impossible to reliably fit a binomial distribu-
tion and estimate the uptake fraction, therefore it was only used for 
the ACLYkd experiment data analysis.

Orthotopic glioma mouse model
Tissue sections were prepared from mouse brains used for a previ-
ous study38. The experiments were approved by the Institutional Ani-
mal Care and Use Committee at Washington University (assurance 
no. A338101, protocol 19-0930 and 22-0304) and were performed 
in accordance with the recommendations in the Guide for the Care 
and Use of Laboratory Animals of the National Institutes of Health 
(NIH). In brief, murine glioma cells (GL261-RFP, transduced with IDH1 
R132H) were implanted into female mice (C57BL/6J, 8 weeks old). After 
8 days, mice were fed a liquid diet containing unlabelled glucose or 
U-13C-labelled glucose (Cambridge Isotope Laboratories) ad libitum 
for 48 h as previously described38,53. Brains were embedded in 5% wt. 
carboxymethyl cellulose in water and stored at −80 °C. The 10-µm thick 
sections were collected on Superfrost Plus slides (Thermo Fisher Sci-
entific), dried under vacuum, stored at −80 °C and shipped on dry-ice. 
Serial 10-µm thick tissue sections were mounted on Superfrost Plus 
slides in Fluoroshield mounting medium with DAPI (aqueous, Abcam) 
and used for fluorescence microscopy to verify tumour location on a 
Leica DMi8 Thunder Imager (RFP, excitation 540–580, DC 585, emission 
592–668 and exposure 1.3 s; DAPI, excitation 375–435, DC 455, emission 
450–490, exposure 59 ms)38.

MALDI tissue imaging
Imaging of brain sections was performed using the same sample prepa-
ration method and instrumentation described for single cells. For each 
whole-brain section, one image of the tumour and immediate environ-
ment was first acquired at 10 × 10 µm pitch, followed by an image of the 
rest of the tissue section at 50 µm pitch. The laser attenuation angle 
was set to 32°, the isolation range was 600–1,600 m/z, product scan 
range 100–600 m/z and the NCE set to 30.

Data analysis for tissue imaging
Each tissue image was converted to the imzML format and annotated 
with METASPACE62 in the same way as the single-cell data. Compared 
with processing data from the cells, no cell segmentation was per-
formed and all data analysis was performed on single MALDI pixels 
(with the pitch of 10 µm within the tumour area and with 50 µm within 

the rest of the tissue section). The same normalization and AcCoA pool 
labelling degree modelling was applied as for the cells and figures 
were exported as spatial heatmaps using the same custom script as 
for single-cell data

Statistics and reproducibility
No statistical method was used to predetermine sample size. No 
statistical method was used to determine sample size. Single-cell 
experiments were performed on a single biological replicate, cov-
ering between 900–2,000 cells per condition. The variance was a 
result of different cell densities for the same imaged area. The mouse 
experiments were performed on four different mice, plus one animal 
without the isotope labelling treatment for use as control. This sample 
number was determined by sample availability from a previous study 
and no sample size dependent statistics were used. There were no 
relevant sample groups in this study for which randomization was 
applicable. One out of six technical replicates for the co-cultured 
cells (wild-type and ACLYkd oligo 2) was excluded as it did not pass 
quality control. Investigators were not blinded to allocation during 
experiments and outcome assessment. No animals were excluded from  
the analysis.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All MALDI data in this paper are available at https://metaspace2020.
eu/project/buglakova-2024. Raw data and the final single-cell data are 
available through accession no. S-BSST1436. Source data are provided 
with this paper.

Code availability
The code for producing the results and figures is available at https://
github.com/Buglakova/13C-SpaceM.
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Extended Data Fig. 1 | a) Box plots displaying mean and distribution of 
normalized intensities of 11 different fatty acids detected by 13C-SpaceM in 
normoxic and hypoxic cells. The box shows the quartiles of the dataset. Whiskers 
extend to show the range from Q1 – 1.5 IQR to Q3 + 1.5 IQR, where IQR is the inter 
quartile distance. The points that do not fall inside this range are considered 
to be outliers and are shown explicitly. b) Normalized intensities of 12 fatty 

acids released from total lipids isolated by saponification from normoxic cells 
and quantified using bulk MS with direct infusion. Error bars reflect standard 
deviation of the mean calculated from three biological replicates. c) Histogram 
of the distribution of cell area as determined by imaging for cells cultured in 
normoxia and hypoxia.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | a) Comparison of isotopologue profiles of palmitate 
determined by bulk mass spectrometry after saponification (left graph) and 
all-ion fragmentation (right graph) from cells cultured in normoxia. Error 
bars reflect standard deviation of the mean calculated from three biological 
replicates. b) Single-cell isotopologue profiles for myristate, palmitoleate, 

stearate and oleate derived using 13C-SpaceM from cells cultured in normoxia. 
Black lines show average values. c) Isotopologue profiles for myristate, 
palmitoleate, stearate and oleate derived using bulk MS after saponification 
from cells cultured in normoxia. Error bars reflect standard deviation of the mean 
calculated from three biological replicates.
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Extended Data Fig. 3 | a) Immunoblot of protein lysates showing efficiency of ACLY knockdown using two shRNA sequences (ACLYkd oligo1 and ACLYkd oligo 2) 
compared to non-targeting control (shNT). Tubulin B (TUBB) is shown as loading control. This is an n = 1 western blot from a representative experiment using this 
knock down system for ACLY depletion.
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Extended Data Fig. 4 | a) Isotopologue fractional images for myristate (14:0), 
palmitate (16:0), palmitoleate (16:1), stearate (18:0) and oleate (18:1) in tumour 
tissue (tumour #1) from a mouse orthotopically implanted with GL261 IDH1 
mutant glioma cells and fed with a liquid diet containing U-13C6-Glucose for 
48 hours. Colours represent fraction of each isotopologue of the sum of 
all isotopologues for each fatty acid. b) Isotopologue fractional images for 

myristate (14:0), palmitate (16:0), palmitoleate (16:1), stearate (18:0) and oleate 
(18:1) in tumour tissue (tumour #2) from a mouse orthotopically implanted 
with GL261 glioma cells and fed with a liquid diet containing U-13C6-Glucose for 
48 hours. Colours represent fraction of each isotopologue of the sum of the all 
isotopologues for each fatty acid.
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