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Abstract

Background: In MR-guided in-bore percutaneous needle interventions, typi-
cally 2D interactive real-time imaging is used for navigating the needle into the
target. Misaligned 2D imaging planes can result in losing visibility of the nee-
dle in the 2D images, which impedes successful targeting. Necessary iterative
manual slice adjustment can prolong interventional workflows. Therefore, rapid
automatic alignment of the imaging planes with the needle would be preferable
to improve such workflows.

Purpose: To investigate rapid 3D localization of needles in MR-guided inter-
ventions via a convolutional neural network (CNN)-based localization algorithm
using an undersampled white-marker contrast acquisition for the purpose of
automatic imaging slice alignment.

Methods: A radial 3D rf-spoiled gradient echo MR pulse sequence with white-
marker encoding was implemented and a CNN-based localization algorithm
was employed to extract position and orientation of an aspiration needle from
the undersampled white-marker images. The CNN was trained using porcine tis-
sue phantoms (257 needle trajectories, four-fold data augmentation, 90%/10%
split into training and validation dataset). Achievable localization times and
accuracy were evaluated retrospectively in an ex vivo study (109 needle trajec-
tories) for a range of needle orientations between 78° and 90° relative to the By
field. A proof-of-concept in vivo experiment was performed in two porcine ani-
mal models and feasibility of automatic imaging slice alignment was evaluated
retrospectively.

Results: Ex vivo needle localization was achieved with a median localization
accuracy of 1.9 mm (distance needle tip to detected needle axis) and a median
angular deviation of 2.6° for needle orientations between 86° and 90° to the
By field from fully sampled WM images (resolution of (4 mm)3, 6434 acquired
radial k-space spokes, acquisition time of 80.4 s) in a field-of -view of (256 mm)2.
Localization accuracy decreased with increasing undersampling and needle tra-
jectory increasingly aligned with By. For needle orientations between 86° and
90° to the By field, a highly accelerated acquisition of only 32 k-space spokes
(acquisition time of 0.4 s) yielded a median localization accuracy of 3.1 mm
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1 | INTRODUCTION

Percutaneous needle interventions are commonly per-
formed minimally invasive procedures for diagnostic or
therapeutic purposes.’? To enable targeting of small
lesions,image guidance is employed. Compared to other
imaging modalities, such as computed tomography (CT)
or ultrasound (US), MRI provides excellent soft tissue
contrast and the ability for functional measurements.
In contrast to CT, it does not expose the interven-
tionalist and the patient to ionizing radiation. Despite
these advantages, MR guidance for percutaneous nee-
dle interventions has not yet been adopted for broad
clinical use. One major limitation are complex workflows,
often including time-consuming manual imaging slice
adjustment to align 2D real-time imaging planes with
the needle for appropriate guidance.? Figure 1 illustrates
how potential misalignments of a 2D imaging plane with
a needle determines device visibility.

(a) Needle in-plane

FIGURE 1 GRE images of needle
placement in a pig’s thigh with illustration of
potential slice misalignment. The first row
shows a sagittal plane including the needle.
The second row shows a manually tilted axial
plane, which (a) is fully aligned with the
needle, (b) intersects with the needle, and (c)
does not contain the needle. The placement of
the tilted axial slice is indicated in the sagittal
view by the blue dashed line. In in-bore needle
interventions, (automatic) needle plane
alignment will be necessary if the needle is
not aligned with the chosen real-time imaging
plane as shown in the illustration.

Sagittal view

Needle

artifact

; fw,...«ﬁ

Tilted axial view

and a median angular deviation of 4.7°. For needle orientations between 78°
and 82° to the By field, a median accuracy and angular deviation of 3.5 mm
and 6.8° could still be achieved with 64 sampled spokes (acquisition time of
0.8 s). In vivo, a localization accuracy of 1.4 mm and angular deviation of 3.4°
was achieved sampling 32 k-space spokes (acquisition time of 0.48 s) with the
needle oriented at 87.7° to the By, field. For a needle oriented at 77.6° to the By
field, localization accuracy of 5.3 mm and angular deviation of 6.8° were still
achieved sampling 128 k-space spokes (acquisition time of 1.92 s), allowing for
retrospective slice alignment.

Conclusion: The investigated approach enables passive biopsy needle local-
ization in 3D. Acceleration of the localization to real-time applicability is feasible
for needle orientations approximately perpendicular to By. The method can
potentially facilitate MR-guided needle interventions by enabling automatic
imaging slice alignment with the needle.

device localization, interventional MRI, percutaneous needle intervention

To simplify and accelerate workflows for MR-guided
percutaneous needle interventions and therefore allow
for an easier adoption into clinical practice, techniques
for computer-assisted needle localization have been
developed. So-called passive tracking techniques lever-
age the MR image artifact introduced by the device itself
for localization. The magnetic susceptibility of metallic
devices can cause signal dephasing in the surround-
ing tissue due to locally induced field gradients from
which the device position can be inferred.* Seppen-
woolde et al. introduced so-called white-marker (WM)
imaging® to generate a positive susceptibility-based
contrast for visualization of metallic devices. Additional
magnetic field gradients are played out during spoiled
gradient echo (GRE) image acquisition in a way that
they partially refocus the dephased magnetization near
the interventional device and therefore create a hyper-
intense device artifact on an otherwise partially or fully
dephased background.

(b) Needle intersects plane (c) Needle out-of-plane
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For passive needle localization, the use of convo-
lutional neural networks (CNNs) has been proposed.
Li et al. trained a CNN to detect the needle artifact
in 2D spoiled GRE images of gel- and ex vivo tissue
phantoms, as well as turbo spin echo images from
prostate biopsies® Mehrtash et al. implemented a CNN
to localize needle artifacts from 3D spin-echo images
during prostate biopsies to characterize the needle tip
position and the needle orientation in 3D space.” Weine
et al.implemented a CNN (U-Net architecture®) to local-
ize needle artifacts in 2D images of liver biopsies, using
spoiled GRE as well as WM contrast for the instrument
localization”

3D needle localization can help to facilitate the
interventional procedure, e.g., by enabling automatic
alignment of the imaging planes with the needle. Long
image acquisition times, however, hamper the applicabil-
ity of 3D image-based needle localization techniques in
real-time procedures and alternative approaches have
been proposed. De Oliveira et al. introduced a phase-
only cross correlation method making use of two parallel
tracking slices to detect the position of a passive marker
attached to a biopsy needle.'’ Reichert et al. extended
the method introduced by Oliveira et al., reducing the
acquisition time for the tracking slices by employ-
ing an undersampled radial acquisition."” The method
requires prior knowledge of the needle’s approximate
orientation and location to correctly place the track-
ing slices. Patil et al. proposed a method to localize a
paramagnetic marker that can be attached to interven-
tional devices.'? Using three echo-dephased projection
acquisitions (comparable to WM contrast imaging), the
position of the marker was determined in 3D space.
The technique does, however, not allow an extraction of
the orientation of the device, e.g., for an alignment of
an imaging slice with a needle trajectory. Zijlstra et al.
investigated a method where an undersampled radial
acquisition of 2D WM images was used in combina-
tion with phase correlation template matching.'® The tip
of a titanium biopsy needle, which was inserted into ex
vivo porcine phantoms, was tracked in two orthogonal
slices. For this technique, the orientation of the needle
is assumed to be known a priori, and tracking is not
possible if the needle tip is not visible in at least one
plane. Li et al. trained a CNN to determine the orienta-
tion and position of a needle across a slab of three 2D
imaging slices, e.g., to correct for misalignment of the
needle trajectory.'* This technique also requires prior
knowledge about the approximate needle orientation
and position to orient the slices.

In this work, we investigated a fully 3D image-based
needle localization approach for the purpose of rapid
automatic slice alignment during MR interventions with-
out the need of prior information on needle position,
employing a CNN-based localization algorithm to extract
the position and orientation of a needle from under-
sampled 3D WM images. The CNN was trained using
porcine tissue phantoms. The localization accuracy was

evaluated and compared for different acceleration fac-
tors (applying retrospective undersampling) in an ex vivo
study, as well as in a proof-of-concept in vivo experiment
using two porcine animal models.

2 | METHODS

2.1 | Needle localization technique

For the proposed needle localization method, a research
MR imaging sequence was implemented to acquire
(undersampled) 3D WM images. Based on the WM
images, the position and orientation of a needle were
estimated using a CNN-based localization algorithm.

2.1.1 | 3D radial white-marker acquisition

A radial, rf-spoiled’®'® GRE-based WM 3D imaging
sequence was implemented (Figure 2a). The imple-
mented radial sampling scheme followed a 3D Golden
Angle trajectory (Figure 2b), allowing for retrospective
undersampling.!”” To generate WM contrast, an addi-
tional gradient moment in z-direction (direction of B)
was added to the sequence before the readout gradient.
The WM gradient moment induces an additional phase
to the magnetization, shifting the acquired k-space in z-
direction by 27. In areas with homogeneous magnetic
field, the WM gradient moment dephases the magneti-
zation and enforces signal suppression. As a metallic
needle locally distorts the magnetic field, the locally
induced gradient counteracts the WM gradient near the
device and eventually restores signal in the vicinity of
the needle (WM artifact). As the induced magnetic field
distortion depends on the needle’s orientation to the B
field,'® the WM needle artifact also changes with the
needle’s orientation. Local susceptibility gradient com-
pensation, and therefore WM signal, is maximized for a
needle orientation orthogonal to the By, field and the WM
gradient direction. WM signal is reduced for needle tra-
jectories increasingly parallel to By, as demonstrated in
Figure 2c.

2.1.2 | Localization algorithm

To employ 3D WM imaging for needle localization, a
CNN-based localization algorithm was implemented in
Python. In Figure 3a, the steps of the developed image
processing pipeline are illustrated for a representative
needle placement in a porcine tissue phantom. In a first
step, k-space data is acquired with the WM sequence.
An image is reconstructed from the acquired k-space
data using a Non-Uniform Fast Fourier Transform
(NUFFT) procedure (density correction'® + gridding +
FFT).2° The reconstructed magnitude image is then pro-
cessed by the CNN. A 3D U-Net architecture?’ was
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FIGURE 2 (a) Pulse diagram of implemented radial rf-spoiled spoiled GRE sequence, including an additional WM gradient pulse (green).
(b) k-Space diagram showing 30 spokes of the radial readout trajectory of the sequence. The WM gradient induces a shift of the acquired
k-space in k, direction by 27. (c) WM image acquisition demonstrated for a 22-gauge MR-compatible aspiration needle (Cook Medical,
Bloomington, Indiana, USA) in a gel phantom (HVDE hydrogel, Schauch, Lauffen am Neckar, Germany) at B, = 0.55 T (MAGNETOM Free.Max,
Siemens Healthineers AG, Erlangen, Germany) with the implemented WM sequence [FOV = (256 mm)3; image matrix = (64 px)3; TR = 12.5 ms;
TE = 10 ms; flip angle = 10°; bandwidth = 900 Hz/voxel] for different inclination angles (64 = 90°; 6, = 72°; 63 = 61°) of the needle to the By
field. Tilting the phantom toward the direction of By reduces the WM signal. The needle axis is indicated with the red dashed line.

implemented (Figure 3b) in Keras with the Tensorflow
framework (Google Brain, Mountain View, California,
USA). The network consists of a contracting path and
an expansive path. In the contracting path, each step
contains two 3 x 3 x 3 convolutions (padded, stride of
1), each followed by a RelLU activation function, and
a 2 x 2 x 2 max pooling operation with a stride of
2 for downsampling. After the last downsampling step,
again two 3 x 3 x 3 convolutions (padded, stride of
1), each followed by a RelLU, are applied (bottleneck
step) before the feature maps are fed into the expand-
ing path. Here, each step consists of a 2 x 2 x 2
upsampling with stride 1 and two 3 x 3 x 3 convolu-
tions (padded, stride of 1), each followed by a ReLU.
After each downsampling step, the number of feature
channels is doubled. After each upsampling step, the
number of feature channels is halved. Skip connec-
tions connect the different steps of the contracting path
with the corresponding steps in the expanding path and
concatenate the respective feature maps. In the final
step, an additional convolution layer with linear activa-
tion reduces the number of feature maps to one. The
network regresses from the input image toward the
needle path, generating a heatmap with the same res-
olution as the input WM image, indicating the detected
needle path. To determine the orientation of the nee-

dle path from the CNN’s output heatmap, it is first
thresholded (> 50% of maximum value). If the thresh-
old heatmap exhibits multiple connected components,
the largest one is selected. Finally, a principle compo-
nent analysis (PCA) is performed, which has previously
been proposed for determining object orientation in MR
scans from CNN-based segmentation .2 The first princi-
ple axis is extracted and interpreted as the needle axis
(passing through the centroid of the CNN heatmap).
The implemeted model will be made public on GitHub
post-publication.

2.2 | Localization study

The CNN was trained using porcine tissue phan-
toms and the proposed needle localization was eval-
uated in an ex vivo study, as well as in in vivo
proof-of-concept experiments using two porcine animal
models.

2.2.1 | Datasets

For the training of the CNN and the evaluation of
the needle localization method, three datasets were
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(a)
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radial spoiled ) o connected
GRE acquisition NUFFT 3D wr_ute-marker CNN 3D I_ocallzatnon component Needle trajectory
w/ white-marker image pixel map + PCA vector
encoding e e _—>
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FIGURE 3 (a) Algorithm for 3D needle localization. The algorithm takes a WM acquisition as input, shown here for an ex vivo porcine tissue
phantom with an aspiration needle. After image reconstruction using a NUFFT, the WM image is passed through a 3D CNN, which was trained
to regress towards the needle path. A PCA is performed on the CNN’s output heatmap (thresholded + largest connected component search),
and the first principal axis is interpreted as the orientation of the needle axis. (b) 3D U-Net architecture of the implemented CNN. Volume
images are passed through the net, undergoing multiple processing steps. Boxes show (image matrix x number of feature maps).

acquired (Table 1). All datasets were acquired at
By = 0.55 T (MAGNETOM Free.Max, Siemens Health-
ineers AG, Erlangen, Germany).

Training dataset

To train the CNN, a 22-gauge MR-compatible aspira-
tion needle (Cook Medical, Bloomington, Indiana, USA)
was inserted into seven porcine phantoms (muscle tis-
sue, permeated with fatty tissue) and WM images were
acquired for a total of 274 different needle trajectories
(see description of training dataset in Table 1). Four-fold
data augmentation was performed by randomly shifting
the reconstructed FOV (ensuring that the entire needle
path within the tissue was always visible in the shifted
FOV). In addition to the acquisition of WM images, con-
ventional rf-spoiled GRE images [FOV = (256 mm)3;
image matrix = (128 px)3; TR =4.5ms; TE = 2.31 ms;flip
angle = 6°; bandwidth = 1600 Hz/pixel] were acquired
of each new needle insertion to extract the ground
truth needle path (Figure 4a). Entry and tip point of

the needle were manually annotated in the 3D GRE
images and label images (Figure 4b) were generated
by connecting the annotated entry and tip point with
a straight line, blurred with a Gaussian filter (standard
deviation = 6 mm). The phantoms were placed in a head
coil for data acquisition as the set-up allowed for easy
repositioning of the phantom without changing the coil
configuration; for every needle trajectory, the phantom
was rotated before reinserting the needle to increase
variation in the data. Needle orientation was randomly
sampled from a predefined angular range, characterized
by the inclination angle 6 of the needle with respect to
the B direction and the azimuthal angle ¢ of the needle
trajectory, describing the angle that the needle encloses
with the sagittal plane (Figure 4c). 6 was sampled over
a range of 6 € [73°, 90°], i.e., the needle was tilted
out of the orthogonal to By towards positive and neg-
ative z-direction. Simultaneously, ¢ was sampled over
a range of ¢ € [0°, 30°] by tilting the needle out of
the yz-plane towards positive and negative x-direction.
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TABLE 1 Description of datasets (WM imaging sequence parameters and sampled needle trajectories) used for training of the CNN and in
the ex vivo study, as well as in the in vivo proof-of-principle experiments.

Ex vivo training set

Ex vivo test set

In vivo proof-of-principle
experiments

Number of phantoms/in vivo

models

Number of images

Needle type

Inclination (6)
Azimuthal angle ()

Insertion depth (I)

Echo time (TE)
Repetition time (TR)

Field of view
Resolution
Flip angle
Bandwidth

Coil set-up

7

Niotal = 257 (n1 = 36, np = 49,

ng = 36, ng = 40, Ng = 19,n6 =
36,n; = 41);

Niotal (aug) = 1028 with four-fold
augmentation; split into
training/validation set: 90%/10%)

22-gauge aspiration needle

6 € [73°,90°]
¢ €[0°,30°]

l € {4 cm,5cm}

TE=10ms
TR=125ms

(256 cm)?
(4 mm)3
10°

900 Hz/px

Head coil

4

Niotal = 109 (n1 = 40, ng = 21,

ng = 19,n4 229)

22-gauge aspiration needle

2

Niotal =3 (N1 = 1,2 =2)

20-gauge (animal 1) and 22-gauge
aspiration needle (animal 2)

6 € [78°,90°] 61 =87.7°;6, = 88.8°;,03 = 77.6°
@ €[0°,30°] ¢1=03%¢p,=15.7%¢3=17.3°
le {4 cm,5cm} ly =11cm;l, =8 cm;l3 =8 cm
TE=10ms TE=10ms

TR=125ms TR=15ms

(256 cm)® (256 cm)®

(4 mm)3 (4 mm)3

10° 10°

900 Hz/px 160 Hz/px

Spine coil + loop coil

Spine coil + loop coil (animal 1 & 2)

/ Spine coil + flex coil (animal 2)

€))

Ground truth
needle path

Annotated
entryspeint

GRE needle
artifact

Axial plane

T Enjcry
" point

Ground truth
needle path

z (Bo)

FIGURE 4 (a) Single slice of spoiled 3D GRE image of an example needle trajectory in a porcine tissue phantom, as used in the ex vivo
study. Needle entry and tip point were manually annotated in the 3D image to determine the ground truth needle path. (b) From the annotation, a
3D ground truth label image was created for the training of the CNN by connecting the tip and entry point with a gaussian-blurred line (standard
deviation = 6 mm). (c) The needle orientation is characterized by the inclination angle 6 of the needle path with the direction of By (z-axis) and

the azimuthal angle ¢ between the needle and the zy (sagittal)-plane.

Insertion depth was manually adjusted between 4 and
5cm.

Ex vivo test dataset

To assess localization accuracy, the same 22-gauge
needle as used for the training dataset was inserted into
four additional ex vivo porcine tissue phantom, and a
test dataset of WM and corresponding reference GRE
images for ground truth needle path extraction (imag-

ing parameters as above) was acquired for a total of
109 needle trajectories (see description of ex vivo test
dataset in Table 1). Needle orientations were sampled
from a range of 6 € [78°,90°] and ¢ € [0°, 30°] (there-
fore sampled only from within the parametric range of
the training set) with manually adjusted insertion depths
between 4 and 5 cm. Data was acquired using a spine
coil (Siemens Healthineers AG, Erlangen, Germany) and
a dedicated interventional loop coil (iLoop Interventional
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Coil 0.55T; NORAS MRI products GmbH, Héchberg,
Germany) as shown in the example in Figure 3a.

In vivo proof-of-concept experiment

In a proof-of-concept in vivo experiment, a 20-gauge
and a 22-gauge MR-compatible aspiration needle (Cook
Medical, Bloomington, Indiana, USA) were inserted into
the thigh muscle of two pigs (see description of in vivo
dataset in Table 1) and a WM image and corresponding
reference GRE image for animal 1 and reference bSSFP
images for animal 2 for the extraction of the ground truth
needle path were acquired [GRE imaging parameters as
above, bSSFP imaging parameters: FOV = (256 mm)?3;
image matrix = (128 px)3; TR = 5.56 ms; TE = 2.78 ms;
flip angle = 70°; bandwidth = 558 Hz/pixel].

2.2.2 | CNN training

To evaluate the performance of the investigated local-
ization method, the CNN was trained on the training
dataset described above. To study feasible acceleration
of the localization method, WM images were recon-
structed from the acquired data using different numbers
of retrospectively cropped k-space spokes: N1 = 6434
(fully sampled for uniform radial k-space coverage®?),
N, = 256, N3 = 128, Ny, = 64, N5 = 32, Ng = 16.
Depending on TR (TR4 = 0.0125 s and TR, = 0.015
s used for ex vivo and in vivo dataset, respectively, as
shown in Table 1), this corresponds to acquisition times
tacq(N1, TR1) = 80.4 s, taeq(N2, TR1) = 3.2 s, taeq(Ns,
TR1) = 1.6 s, t3cq(Ng, TR1) = 0.8 s, t304(N5, TR1) = 0.4
S, tacg(Ns, TR1) = 0.2 s and tyq(N1, TRp) = 96.5 s,
tacq(Nz, TR2) = 3.8 s, tacq(N3, TRQ) =19 s, tacq(N4,
TR2) = 1.0 s,t564(N5, TR2) = 0.5 5, t5q(Ng, TR2) = 0.2 s.
For each undersampling factor, a separate CNN model
was trained to regress from the (undersampled) WM
image to the needle path (label image) using an L2 loss
function and a Stochastic Gradient Decent (SGD) opti-
mizer (number of epochs = 200; learning rate = 0.1;
decay = 1e-6; momentum = 0.9; batch size = 8), result-
ing in a total of six trained models for the corresponding
sampling numbers N4 to Ng.

2.2.3 | Accuracy metrics and performance
evaluation

To evaluate the localization accuracy, two metrics were
defined (Figure 5). Aa describes the angle between the
ground truth needle axis and the detected needle axis.
Hence, it describes the maximum angular deviation of
an automatically selected imaging plane and the needle
axis. If Aa is zero, the needle is parallel to the selected
plane. Ax is a commonly used metric for the evaluation
of detected needle orientation.”'* As was defined as the
distance between the ground truth needle tip position

1
!
1
I
[l
|

FOV

1

Detected
needle
axis

Ground truth
needle axis

/ Tip point e e

Phantom

FIGURE 5 Two metrics were defined for performance evaluation
of the implemented localization algorithm: As is the distance between
the ground truth needle tip and the detected needle axis and Ax is
the angular deviation between the ground truth needle axis and the
detected needle axis.

and the detected needle axis. Therefore, As describes
the maximum distance of the tip to an automatically
selected imaging plane. If As is too large, the tip will not
be visible in the 2D image. Mehrtash et al. had proposed
a similar metric, measuring the distance of the needle
tip to a selected axial plane. Our proposed metric Asis a
slightly more general measure as it does not restrict the
chosen plane to an axial plane but holds as an upper
limit for the distance “needle tip to selected plane” for
arbitrary plane orientations. Ao and As were analyzed for
the samples from the acquired ex vivo test dataset and
the in vivo experiment. To investigate the influence of the
needle’s inclination angle relative to By on the achieved
localization accuracy, the samples from the test dataset
were binned into three subsets covering three ranges
of inclination angles: 6 € (86°,90°]; 6 € (82°,86°]; 6 €
(78°,82°]. The median (+ median absolute deviation) of
As and Aa was calculated for all subsets.

The required needle localization accuracy for a suc-
cessful imaging plane alignment generally depends
on the chosen 2D imaging slice thickness, the needle
size, and the size of the needle artifact. Tip visibility is
especially crucial during interventions, e.g., to confirm
correct targeting of a suspicious lesion. The impact
of the defined metric As is, therefore, in particular of
clinical interest to the interventionalist. Consequently,
a needle localization for a successful automatic slice
positioning requires a small As. We investigated the
rate of successful localizations in the ex vivo study by
determining a threshold and requiring As to be smaller
than this threshold. The success rate of the localization
(number of samples with As < threshold / number of
total samples) was determined for the three angular
bins described above and for three different thresholds
(As <4 mm;As < 8 mm; As < 12 mm). Feasibility of auto-
matic slice alignment was additionally demonstrated
by retrospectively reformatting a 2D imaging slice from
a 3D reference image based on the detected needle
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position and orientation for the in vivo experiments and kS
two example needle insertions from the ex vivo test E’é £
dataset. ek = g
S A < @
23] glad
3 | RESULTS 2% H %%
5| a3
Loss curves for training of the U-Net models with sam- 8 £ T 4
pling numbers N; to Ng are given in supplementary &’3
Figure S1. An overview on training, validation, and test 2 E
loss values is given in Supplementary Table S1. He E
On standard PC hardware (Core i7-10850H CPU with Ea g 06
2.70 GHz base frequency; Intel, Santa Clara, California, é <A' m Y " Y B
USA; Quadro T2000 GPU; Nvidia, Santa Clara, Cali- o E % 55 29
fornia, USA), retrospective localization took between 2 2| & Tyon
and 41 s per acquisition (reconstruction times for three g S N8g 154
reconstructed coil channels on CPU (non-parallelized): i S
frecon = 39.4 s for 6434 spokes, tigcon = 1.9 s for 256 S E
spokes, trecon = 1.2 s for 128 spokes, frecon = 0.8 s for g % € € €
64 spokes, tecon = 0.6 s for 32 spokes, tecon = 0.5 s el c E . E o E
for 16 spokes; processing time of needle localization 3 e h: S 2T a®
algorithm < 1's). gE| g|lhlH gt
c < S T Sd S8
Se| Flbs ks s
3.1 | Needle localization SE| 3| kRN
[0} (2]
Figure 6 shows two representative localizations (for gg
6434, 256, 64, and 32 sampled k-space spokes) from £3 . £ . £ . £
the evaluated ex vivo test dataset. In the example shown o8 Ko ¥ o<
in Figure 6a, the needle is oriented with an inclination % 50 2|99 %% 9w
of 6 = 88.1°, therefore approximately perpendicular to 28 382 22 g ©
the By field. Despite increased noise, the WM needle BE ST VY Y
artifact remains clearly visible for images reconstructed 2 2 13 19 1819 1318
from fewer k-space spokes and a localization accuracy g 2
of Aa < 3.4° and As < 2.5 mm could be achieved for % ﬁ
as few as 32 k-space spokes. For the example shown g b = e
in Figure 6b, the needle enclosed an angle of 6 = 78.2° 2 § . EE, , E
with By. Visibility of the WM needle artifact decreased §d se 35 T8
for fewer sampled k-space spokes. For 32 spokes, the £ E H A H H N A
needle artifact can almost no longer be delineated = 2 o o2 a2
from the noisy background in the WM image. While a 23 é AN S
needle localization accuracy of Aa < 3.8° and As < £5| «w 14 1514 Q14
2.2 mm could be achieved for images reconstructed ° =2
from 6434, 256, and 64 spokes, accuracy decreased for ;:':’ %
the image reconstructed from 32 spokes to Aa = 13.9° g § E £ E
and As = 8.3 mm. 55| 5|5 56 =
In Table 2, the medians of the metrics Aa and €582 o2 °
— . L . £ 35| x HoH o4+ HH
As (+ the median absolute deviation) are displayed for 23|8E|lem wu ©«
all investigated undersampling factors with the samples g § a ;, TT% %? %%
of the test dataset binned for the needle inclination R gg 13121818 1318
angle 6. For 6434, 256, 64, and 32 spokes, the achieved E §
accuracies for the metrics are additionally visualized o 3
as boxplots (Figure 7) for the inclination-binned test F & L
dataset samples. Median accuracy across the binned ~ E S & &
samples from the test set can be seen to decrease with w % 08 o& ok
a lower number of spokes, as well as needle trajecto- m G w3 ol
. . . . < O hw nhw o onw
ries increasingly parallel to the By field. For inclination (S co co o

A ‘11 ¥20T ‘60THELYT

dny woiy

ZPa £q 9£€L1°dwiyz001°01/10p/wod Kopim: Kreaquaut

sdny) suonipuo)) pue swia, 3y 298 “[§Z0Z/01/10] U0 Areaqry auruQ Koip ‘wn

SULID)/W0D" KA1

25UDIT suowwo)) aanear) d[qearjdde ayy Kq pausaAos are sapoNIE V() osn Jo sa[ni Joj Areiqry aurjuQ KIAy Uo (suon|



8026 FAUST ET AL.
MEDICAL PHYSICS
6434 spokes 256 spokes 64 spokes 32 spokes
(tacq = 80.43 s5) (tacq = 3.20 5) (t,cq = 0.80 5) (ticq = 0.40 s)
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FIGURE 6 Two examples from the test dataset with inclination angles 6 = 88.1° (a) and 6 = 78.2° (b) to the By field. The first row shows a
manually selected slice of the acquired (undersampled) 3D WM image which contains the WM needle artifact. The second row shows the 3D
WM image as maximum intensity projection (MIP) with an overlay of the CNN localization. The red cross marks the ground truth needle tip and
the red dashed line the ground truth needle axis, the blue dashed line marks the predicted needle axis. The third row shows a reformatted 2D
slice from the reference 3D spoiled GRE image (slice thickness = 4 mm), where the slice position and orientation (tilted transversal slice) were
automatically chosen based on the detected needle path.
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FIGURE 7 Performance analysis of the investigated needle localization technique. The ex vivo test dataset was split into three subsets with

varying inclination angle 6. The angular deviation A«x (a) and the tip distance As (b) are displayed as boxplots for various undersampling factors
(6434, 256, 64, and 32 sampled k-space spokes). Boxes extend over interquartile range (IQR) with whiskers covering 1.5 x IQR. Outliers are

displayed as circles. Medians are indicated by black crosslines.

angles 6 = (86°, 90°], we find Aa = (2.6 + 1.4)° and
As_(1 9 + 0.6) mm, as well asAoc_(95+47) and
As = (4.7 + 3.0) mm, for 6434 and 16 spokes, respec-
tively. For, e.g., 64 spokes, achieved median accuracy
decreases from Aa = (4.1 + 1.4)° and As = (2.6 + 0.7)
for 0 =(86°,90°]to Aa = (6.8 + 2.7)° and As = (3.5 + 1.5)
mm for 6 = (78°, 82°)].

Figure 8 shows the needle localization for the in vivo
proof-of-concept experiments for Ny = 6434 to N5 = 32
acquired k-space spokes. For needle insertions close to
the transversal plane, localization results of Aa = 3.4°
and As = 1.4 mm (Figure 8a), as well as Aa = 4.1° and
As = 6.9 mm (Figure 8b) for as few as 32 sampled k-
space spokes were achieved. For Figure 8c (needle tilted
out of the transversal plane), localization with Ao = 6.8°
and As = 5.3 mm could be achieved for as few as 128
sampled k-space spokes. Localization failed for 64 and
32 sampled spokes.

3.2 | Automatic slice alignment

For both ex vivo examples in Figure 6,a 2D slice oriented
along the detected needle axis was reformatted from
the respective 3D GRE reference image to retrospec-
tively investigate feasibility of automatic slice alignment.
In the example in Figure 6a, the needle is fully visible
in the automatically selected slice for all investigated
undersampling factors. While the needle artifact was
fully visible for 6434 to 64 k-space spokes in the example
of Figure 6b, the detected needle axis was too oblique
to the true needle path for needle localization below 64
spokes, so that the needle moved out of the reformatted
plane and the tip is no longer visible.

In Table 3, the achieved localization success rate for
the ex vivo study (defined as As being below a certain
threshold) is displayed. The success rate decreases with
higher undersampling and greater inclination of the nee-
dle to the By field. A success rate of > 72% could be
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Animal 1
6434 spokes 256 spokes 128 spokes 64 spokes 32 spokes

(tacq = 96.51 5) (tacqg = 3.84 5) (taq = 1.925) (tacg = 0.96 5) (tocq = 0.48 5)
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FIGURE 8 Proof-of-principle in vivo experiments with two porcine animal models. A 20-gauge (a) and a 22-gauge (b,c) aspiration needle
were inserted into the thigh of two pigs and images were acquired with a spine and a loop coil (a,c) and a spine and a flex coil (b), respectively.
The needles were inserted with an inclination angle to By of (a) 64 = 87.7°, (b) 6, = 88.8°,and (c) 63 = 77.6°. Similar to Figure 5, the first row of
each subfigure shows a manually selected slice from the (undersampled) 3D WM image. The needle WM artifact, as well as residual WM
artifacts from the tissue, is visible. The second row shows the CNN prediction as overlay to a MIP of the WM image. The third row shows a
reformatted slice (slice thickness = 4 mm) from a 3D GRE/bSSFP reference dataset that was selected based on the automatic localization of
the needle.
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TABLE 3 The test set was binned into three subsets with varying inclination angle 6. The proportion of samples was calculated for which a distance As < 4 mm, As < 8 mm or As < 12 mm
was achieved (success rate). Results are color-coded for the success rate: White 2 (success rate > 75%); light grey £ (75% > success rate > 50%); dark grey £ (success rate < 50%).

@ € (86°,90°]

Fully sampled

256 spokes

128 spokes

64 spokes

32 spokes

No. of samples with
(As < 4 mm) / total no. of
samples

No. of samples with
(As < 8 mm) / total no. of
samples

No. of samples with
(As < 12 mm) / total no. of
samples

33/36 = 92%

33/36 = 92%

34/36 = 94%

35/36 = 97%

36/36 = 100%

36/36 = 100%

36/36 = 100%

36/36 = 100%

36/36 = 100%

34/36 = 94%

35/36 = 97%

35/36 = 97%

26/36 = 72%

32/36 = 89%

33/36 = 92%

16 spokes

24/36 = 67%

28/36 = 78%

0 € (82°,86°]

Fully sampled

256 spokes

128 spokes

64 spokes

No. of samples with
(As < 4 mm) / total no. of
samples

No. of samples with
(As < 8 mm) / total no. of
samples

No. of samples with
(As < 12 mm) / total no. of
samples

38/40 = 95%

38/40 = 95%

38/40 = 95%

40/40 = 100%

40/40 = 100%

40/40 = 100%

35/40 = 88%

38/40 = 95%

38/40 = 95%

29/40 = 72%

34/40 = 85%

35/40 = 88%

32 spokes

29/40 = 72%

30/40 = 75%

0 € (78°,82°]

16 spokes

Fully sampled

256 spokes

128 spokes

64 spokes

No. of samples with
(As < 4 mm) / total no. of
samples

No. of samples with
(As < 8 mm) / total no. of
samples

No. of samples with
(As < 12 mm) / total no. of
samples

32/33=97%

32/33=97%

32/33=97%

33/33 = 100%

33/33 = 100%

33/33 = 100%

21/33 = 64%

27/33 = 82%

28/33 = 85%

19/33 = 58%

28/33 = 85%

28/33 = 85%

32 spokes

18/33 = 55%
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achieved for a threshold of As =4 mm across all inves-
tigated undersampling factors between 6434 and 32
spokes for inclination angles 6 = (86°,90°]. For 6 = (78°,
82°], a success rate of > 82% could still be achieved for
a threshold of As = 8 mm for as few as 64 spokes.

For the investigated in vivo cases, the needle path
was fully visible in the reformatted 2D GRE slice in the
example of Figure 8a for images reconstructed from
6434 to 64 k-space spokes (Aa < 2.2°; As < 2.4 mm).
The detected needle axis was slightly more oblique to
the true needle axis and the needle artifact moves out
of the automatically reformatted image plane for the
needle localization on the 32-spoke image (Aa = 3.4°;
As = 1.4 mm). However, the tip of the needle is still
visible in the automatically aligned plane. For the exam-
ple in Figure 8b, the needle is visible in all reformatted
2D bSSFP slices. Tip visibility is limited except for the
fully-sampled case with As exceeding the chosen slice
thickness of 4 mm. For case Figure 8c, automatic plane
alignment was successful forimages reconstructed from
6434 (Aac=1.9°;As = 0.3 mm) to 128 spokes (Aa = 6.8°;
As = 5.3 mm). As needle localization failed for higher
acceleration factors (64 and 32 spokes), slice alignment
was not feasible.

4 | DISCUSSION

In this work, a method for rapid 3D needle local-
ization from WM images via a CNN-based algorithm
for the purpose of automatic imaging slice alignment
was implemented and evaluated. The proposed tech-
nique was successfully demonstrated in an ex vivo
study and an in vivo proof-of-concept experiment by
localizing needles from retrospectively undersampled
images. Feasibility of automatic slice repositioning was
demonstrated retrospectively.

High undersampling factors allowed for rapid localiza-
tion of needles oriented approximately perpendicular to
By. In the conducted ex vivo study, localization accuracy
was found to generally decrease with fewer sampled k-
space spokes and for needle trajectories increasingly
parallel with Bj. For the conducted in vivo experiments,
needle localization for a needle insertion tilted out of
the transversal plane was equally found to be more
challenging than for needle placements approximately
orthogonal to the orientation of the By field. While the
WM needle artifact is clearly visible in the fully recon-
structed images in the examples of Figure 6 from the
ex vivo dataset, image noise can be seen to impair the
visibility of the needle artifact for images reconstructed
from an increasingly undersampled k-space. As the sig-
nal magnitude of the WM needle artifact is reduced for
smaller inclination angles as demonstrated in Figure 2c,
it was increasingly difficult to delineate the WM nee-
dle artifact against the background for low numbers of
sampled k-space spokes. The reduced visibility of the

needle artifact appeared to confound the correct deter-
mination of the needle’s position and orientation by the
CNN, leading to reduced localization accuracy for fewer
sampled k-space spokes and inclination angles closer
to Bg. In the conducted ex vivo study, inclination angles
sampled from a range 6 = [78°, 90°] were investigated.
Accuracy is expected to further decrease for angles out-
side this range, essentially limiting the proposed rapid
localization technique to needle trajectories close to the
transversal plane. Transversal trajectories are, however,
common for many MR-guided needle interventions >4

Rapid 3D needle localization as investigated in this
work can enable automatic slice repositioning in MR-
guided interventions. Based on the determined device
position and orientation, 2D real-time imaging planes
will be aligned with the needle, ensuring needle visi-
bility. Without a method for automatic slice positioning,
manual iterative repositioning of the imaging planes by
the MR technician is necessary. Manual repositioning
requires additional time with full attention to the repo-
sitioning procedure. For the automatic positioning of a
2D imaging slice, the required accuracy of the needle
localization will depend on the utilized slice thickness,
but also on the needle size and the size of the nee-
dle artifact. Image plane alignment using the proposed
rapid 3D needle localization method was successfully
demonstrated retrospectively for ex vivo and in vivo nee-
dle insertions. Although tip visibility was limited in the
in vivo example of Figure 8b for an accelerated image
acquisition (slice thickness of 4 mm too aggressive for
achieved As), the reached partial slice alignment will still
be of high value during an intervention if the needle was
lost from the 2D real-time images before. A partial slice
alignment can serve as a starting point for manual read-
justment, or, alternatively, a method acquiring several
adjacent slices to automatically correct for slight mis-
alignments of the needle as proposed by Li et al."* could
be used. Slice thickness can also be increased to bet-
ter visualize the needle tip. It was shown that, taking the
tip-to-predicted needle axis distance (As) as an indica-
tor of a successful slice positioning, satisfactory results
can generally be achieved with the proposed technique
from fully sampled images, as well as for an accelerated
image acquisition (Table 3). Sampling only 16 k-space
spokes still yielded successful results in some cases for
needle orientations approximately orthogonal to By. It is
important to note that such a large reduction of sampled
k-space (402-fold acceleration compared to full radial
k-space sampling) is most likely not required for the
use case of automatic slice positioning. Even for lower
undersampling and, therefore, higher acquisition times,
the method can still be rapid enough to enhance the
workflow of an intervention, as a manual adjustment of
a slice position can involve multiple iterative steps and
would typically require more time. Therefore, our method
has the potential to speed up the MR interventional
workflow.
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While the image processing time of the localization
algorithm was constant, reconstruction times for the 3D
WM images varied with the implemented off-line recon-
struction, depending on the number of sampled spokes.
Image reconstruction times can be further decreased by
using dedicated hardware, e.g., GPUs 2% For an applica-
tion of the investigated localization method for automatic
slice repositioning during an intervention, a new slice
alignment would, in many cases, also not be required to
be interleaved with every single 2D real-time measure-
ment. It could, e.g., be triggered by the user with a button
click on an on-demand basis. In practice, a user of the
investigated method could balance a required threshold
of As with the acceptable acquisition time for the local-
ization, as the implemented Golden Angle sampling for
the radial WM-encoded sequence allows to dynamically
adapt the number of acquired radial k-space lines. As
described above, the ideal number of acquired k-space
spokes to balance time efficiency and localization accu-
racy, i.e., to reach a certain threshold of As, depends on
needle angulation and required slice thickness of real-
time imaging planes, whereby the choice of a certain
slice thickness can depend, e.g., on the size of the tar-
geted lesion, the type and size of the needle and the size
of the needle artifact.

The CNN used for the localization was trained on
ex vivo porcine tissue phantoms, which were placed
in a head coil to simplify the data acquisition of the
training set (the set-up allowed to easily move, switch,
and rotate phantoms for the fast generation of training
data). As demonstrated by the successful localization,
the network generalized well to the dedicated interven-
tional coil set-up (loop + spine coil) used for the ex
vivo test dataset, as well as the in vivo animal experi-
ment (loop + spine coil and flex + spine coil), where a
slightly different needle type was used for animal 1. The
in vivo set-up also involved more complex anatomy, and
therefore different background artifacts, a different nee-
dle insertion depth as well as slightly different imaging
parameters (changed bandwidth and TR). This indi-
cates a high robustness of the CNN-based WM needle
detection. Future work will further explore the reliabil-
ity of the proposed method, especially when translating
the technique to more challenging in vivo scenarios
where patient motion can be expected (e.g., breathing
for interventions in the abdomen). However, as described
above, the Golden Angle approach allows to adapt
the number of acquired k-space spokes, and therefore
the acquisition time, to the expected amount of patient
motion.

Various approaches for MR needle localization for the
purpose of automatic slice alignment have been inves-
tigated in the past. As described in the Introduction,
Reichert et al."" localized a marker attached to a needle
outside the body using two undersampled 2D tracking
slices. An accuracy of 1 mm was reported, acquiring in
total four radial lines of k-space. The use of an external

MEDICAL PHYSICS——=!

marker and the requirement to pre-position the tracking
slice might pose constraints for certain workflows com-
pared to a direct localization approach of the needle
with the 3D WM concept proposed in this work. As the
marker is localized and not directly the needle, possible
bending of the needle inside the body tissue also must
be taken into consideration. Using three echo-dephased
spatial projections, Patil et al. could localize a param-
agnetic marker, which can be attached to interventional
devices, with an accuracy of 4.5 mm.'? As no informa-
tion on the orientation of the device is extracted, the
technique would, compared to the proposed method of
this work, not allow for the alignment of a slice with a
needle trajectory. Using a 3D CNN-based localization
approach, Mehrtash et al” achieved an average accu-
racy of 2.80 mm for needle tip localization and 0.98°
deviation for needle orientation. With acquisition times
on the order of one minute for the acquired conven-
tional spin-echo images, the technique is not optimized
for the application of automatic slice alignment in real-
time workflows in contrast to the proposed method of
this work, which was specifically designed for rapid 3D
needle localization. Also using a CNN-based approach,
Li et al. localized the needle in a slab (thickness of
15 mm) of three 2D slices with a median accuracy of
2.2 mm in position and 1.2° in orientation.'* Compared
to the proposed fully 3D-based method of this work,
the technique requires prior information on the nee-
dle position and orientation to align the imaging slices.
While both these CNN-based needle localization meth-
ods use loss functions related to cross-entropy and
dice loss as commonly used in segmentation tasks, we
have decided to implement L2 (mean squared error)
loss to train our network. Needle artifact appearance
depends on needle type and material parameters, as
well as sequence type (spin-echo vs. gradient echo)
and sequence parameters? It is, therefore, not straight-
forward to determine the position of the needle axis
from the needle artifact. It has been shown, however, that
CNNs can regress from the needle artifact to the nee-
dle axis."* The aim of retrieving the needle axis/needle
vector from the input White-Marker images can, there-
fore, be seen as a regression task, rather than a pure
segmentation task, with the squared L2 norm being a
common loss function for regression tasks.?® Creating
an accurate binary segmentation label of the White-
Marker needle artifact and the background would also
require a manual pixelwise annotation in 3D. The cre-
ation of a Gaussian heatmap of the needle axis as
used in the regression task requires only the mark-
ing of two positions and is a lot more time efficient.
Recently, Zhou et al?’ proposed the use of a vision
transformer as an alternative to the CNN architecture
for Deep-Learning based needle segmentation from
3D intra-procedural MR images, delivering promising
results (1.48 mm and 0.98° for tip- and axis localization
error). While their implementation was not intended to
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be used for real-time slice alignment (acquisition time
13 s), the implementation of a transformer architec-
ture into our 3D WM framework could pose a future
development step and might enable direct image-to-
needle vector regression without the requirement of a
PCA postprocessing step, which is challenging with the
CNN architecture?® However, more training data might
be required to achieve good localization accuracy??

The rapid 3D localization technique investigated in
this work can be seen as complementary to 2D tracking
approaches. Existing 2D needle localization techniques
reach submillimeter accuracy for tip localization and
allow the determination of the needle orientation in
the 2D slice with an accuracy on the order of one
degree 513 For all 2D techniques, position and orien-
tation of a slice containing the needle must be known
beforehand. In contrast, the 3D approach investigated in
this work enables localization of the needle without prior
knowledge of the location and automatic positioning of
a 2D imaging slice, and in this way could be included in
real-time imaging sequences as a fast tracking block. A
2D tracking technique can then subsequently be used to
follow motion of the needle in the 2D imaging slice for
accurate needle tip localization. The 3D WM approach
could also be used to reduce the manual steps that are
required to reposition the 2D imaging plane when the
needle is not visible in the chosen slice, e.g.,because the
planned and actual needle trajectory or needle insertion
point do not match, or the needle is lost from the slice
due to patient motion.

5 | CONCLUSION

In this work, we proposed, implemented, and evaluated
a novel method for rapid CNN-based 3D passive nee-
dle localization using a WM acquisition for application in
automatic slice positioning to facilitate MR-guided nee-
dle interventions. The method was investigated in an
ex vivo study. Needle localization was also successfully
demonstrated in in vivo proof-of-concept experiments.
The investigated approach was shown to allow for fast
localization of a needle without prior knowledge of its
location. This can potentially enable speed up of percu-
taneous needle intervention workflows, since it can help
to avoid manual positioning steps for the 2D real-time
imaging planes.
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