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A B S T R A C T

Glioblastoma is characterized by a pronounced resistance to therapy with dismal prognosis. Transcriptomics
classify glioblastoma into proneural (PN), mesenchymal (MES) and classical (CL) subtypes that show differential
resistance to targeted therapies. The aim of this study was to provide a viable approach for identifying combi-
nation therapies in glioblastoma subtypes. Proteomics and phosphoproteomics were performed on dasatinib
inhibited glioblastoma stem cells (GSCs) and complemented by an shRNA loss-of-function screen to identify
genes whose knockdown sensitizes GSCs to dasatinib. Proteomics and screen data were computationally inte-
grated with transcriptomic data using the SamNet 2.0 algorithm for network flow learning to reveal potential
combination therapies in PN GSCs. In vitro viability assays and tumor spheroid models were used to verify the
synergy of identified therapy. Further in vitro and TCGA RNA-Seq data analyses were utilized to provide a
mechanistic explanation of these effects. Integration of data revealed the cell cycle protein WEE1 as a potential
combination therapy target for PN GSCs. Validation experiments showed a robust synergistic effect through
combination of dasatinib and the WEE1 inhibitor, MK-1775, in PN GSCs. Combined inhibition using dasatinib
and MK-1775 propagated DNA damage in PN GCSs, with GCSs showing a differential subtype-driven pattern of
expression of cell cycle genes in TCGA RNA-Seq data. The integration of proteomics, loss-of-function screens and
transcriptomics confirmed WEE1 as a target for combination with dasatinib against PN GSCs. Utilizing this
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integrative approach could be of interest for studying resistance mechanisms and revealing combination therapy
targets in further tumor entities.

1. Introduction

Glioblastoma (GB) is the most common malignancy of the nervous
system [1]. Even under maximal surgical resection, adjuvant radiation
and chemotherapy, patients show an overall median survival around 15
months after diagnosis [2]. Genomic, methylomic, transcriptomic, and
proteomic studies have revealed molecular heterogeneity between and
within GB samples [3,4] yielding, amongst others, a classification sys-
tem including three RNA-based subtypes: the mesenchymal (MES),
proneural (PN), and classical (CL) [5]. Single-cell and lineage-tracing
studies have underlined the exceptional heterogeneity GB exhibits,
showing a spatial and temporal diversity of subtypes even within the
same patient [6,7]. Further studies have also highlighted a
sub-population of cells termed GB stem-like cells (GSCs), which are
implicated in resistance to chemo-radiotherapy because they can remain
dormant and re-establish tumor growth after treatment is complete
[8–10].

In a previous study, we showed that MES GSCs were more sensitive
to tyrosine-kinase inhibitor dasatinib than PN GSCs [11]. However, a
combination therapy capable of eradicating both MES and PN GSCs
would be more effective against such a heterogeneous disease. In this
work, we hence used two experimental approaches to study dasatinib
response and identify potential combination therapies to improve effi-
cacy against PN cells. First, we generated protein and phosphoprotein
data from treated and untreated GSCs of the MES and PN subtype to
better comprehend the possible subtype-driven molecular response to
dasatinib therapy. Next, we applied a pooled shRNA drop-out screen to
dasatinib-treated MES and PN GSCs. Indeed, shRNA screens have been
previously used to study tumor vulnerability in other cancers [12–14].
In such drop-out screens, the effect of an shRNA-induced gene knock-
down on cell viability is determined. If the knockdown of a particular
gene causes depletion of the transduced cells (i. e. they drop out of the
screen), the gene can be considered essential for GSC viability under
these conditions. In this study, we performed screens including dasatinib
and vehicle treated GSCs from both subtypes to identify genes contrib-
uting to dasatinib resistance, particularly in PN GSCs.

We also sought to computationally integrate the hits from both as-
says to more comprehensively understand the subtype-specific dasatinib
response. Network flow algorithms such as ResponseNet [15] and
SamNet [16] have been previously used to integrate data from multiple
biological assays. These methods work by creating a directed network
with hits from one assay (e. g. proteomics) at the top and from another
assay (e. g. shRNA screen) at the bottom. These hits are connected
through a protein-protein interaction network where edges represent
physical protein-protein interactions (PPI). Flow travels from the top of
the network, through some selected proteins from the PPI, down to the
bottom, resulting in a subnetwork of particularly important proteins that
connect the two datasets. These methods have led to biological insights
about Parkinson’s disease [15] and lung cancer [16] but are limited
because they do not adjust for high-degree hub nodes and cannot handle
hits from more than two biological assays.

In this work, we modified the SamNet algorithm (i. e. SamNet 2.0) to
address these limitations and integrate the proteomics response data
with the shRNA screen hits. Specifically, we implemented SamNet 2.0 to
incorporate baseline RNA expression and reduce hub node bias in the
network flow pattern. Such improvements are critical when not all genes
or proteins in the true network may be evaluated experimentally.
Analysis of the individual assays and integrated network highlighted cell
cycle genes and specifically WEE1 as an attractive target for combina-
tion therapy in PN cells. This hypothesis was validated and mechanis-
tically described in cell line and tumor-bearing cerebral spheroid

models, and further consolidated using GB patient data, suggesting that
WEE1 inhibition in addition to dasatinib could be an effective combi-
nation for eliminating cells of the MES and PN subtypes in GB.

2. Methods

2.1. SILAC (stable isotope labeling of amino acids in cell culture) with
mass spectrometry

NCH711d and NCH705 (MES) and NCH421k and NCH644 (PN) were
cultured with SILAC heavy and light medium (DMEM:F12 with Arg-10
and Lys-6) for 6 doublings. After that, cell pellets were isolated, and
protein extracted according to the phosphoprotein isolation protocol
(see below) for incorporation percentage check. After confirming 95 %
incorporation in ‘heavy’ samples, GSCs containing ‘heavy’ amino acids
were treated with 1 μM dasatinib and ‘light’ GSCs with DMSO vehicle
control for 72 h 1 million cells were isolated for the day-4 time point.
The remaining GCSs were further cultured under the same conditions
and further reseeded and retreated with the same dasatinib concentra-
tion on day 8 and cultured for a further four days, totaling 12 days of
inhibition. GSC pellets were then harvested, and proteins isolated for
proteomics and phosphoproteomics.

2.2. Proteomics and phosphoproteomics differential analysis

The proteomics and phosphoproteomics data were filtered down to
features present in all samples. Additionally, for the proteomics data,
features were only included if they mapped to a single protein. Ensembl
BioMart [17] was used to account for gene synonyms output by Max-
Quant. In the case where a feature mapped to two proteins, but the first
protein product is a part of the second protein product as well (e. g.
ARPC4 and the ARPC4-TTLL3 readthrough protein), this was considered
as uniquely mapping to the first protein. For the phosphoproteomics
data, phosphosites were named according to their amino acid motif ( ±
7 AA from the phosphosite); multiple instances containing the same AA
motif were collapsed to a single value by taking the mean. Limma was
used for all differential analyses on the log2-normalized quantification
values for the proteins and phosphosites. The Benjamini-Hochberg
method was used to adjust for multiple hypotheses.

2.3. Phosphosite set analysis

PTM-SEA [18] was run on the results from the limma analysis of the
phosphosite data, using the amino acid motifs ( ± 7 amino acids from
the phosphosite) and the flanking sequence human dataset (v.1.9.0)
from PTMSigDB [18]. There were three values tested: 1) the change in
response in MES GSCs (i.e. limma t-value from one-sample t-test of only
MES GSCs), 2) the change in response in PN GSCs (i.e. limma t-value
from one-sample t-test of only PN GSCs), and 3) the difference in
response between MES and PN GCSs (limma t-value from t-test between
MES vs. PN). The t-statistic was used instead of a p-value because
PTM-SEA considers directionality of trends. PTM-SEA was run with the
standard parameters, except the minimum set overlap was reduced from
10 to 5 because of the limited number of phosphosite-sets being
considered with the standard implementation. For further information
on kinase identification please refer to supplementary methods.

2.4. TCGA RNA-Seq samples analysis

The gene expression data [log2(FPKM + 1)] of 230 IDH wildtype
glioblastoma samples were obtained from UCSC Xena (http://xena.ucsc.
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edu). In boxplots, the comparison p-values of gene expression levels
between molecular subtypes were performed by the Mann-Whitney test
using ggpubr (v.0.4.0). ns: p > 0.05, *: p≤0.05, **: p≤0.01, ***:
p≤0.001, ****: p≤0.0001. In heatmaps, the gene expression levels of
cell cycle signatures were scaled and centered by the scale function, and
then clustered by the k-means clustering using ComplexHeatmap
(v.2.6.2).

2.5. Cellecta® DECIPHER® pooled drop-out loss-of-function screen

GSCs (NCH711d, NCH705, NCH421k and NCH644) were transduced
with a target MOI (multiplicity of infection) of 0.5 with the lentiviral
constructs containing module 1 of the DECIPHER library from Cel-
lecta®. Half of the transduced GSCs were harvested at 18 h post-
transduction as a baseline sample. 24 h after transduction, the me-
dium was changed. 72 h after transduction, flow cytometry was used to
verify correct transduction percentage and confirm the desired MOI.
Transduced GSCS were then split into two arms: one was treated with
the respective IC20 concentration of dasatinib, the other with the cor-
responding DMSO dilution. GCSs were further cultured until reaching
8–10 doublings by splitting every 4 days with dasatinib/DMSO reap-
plied to the respective culture and the TagRFP-positivity monitored.
After reaching the desired doubling number, final pellets of the dasatinib
and DMSO arms were harvested for sequencing.

2.6. Data analysis of shRNA DECIPHER screen

Endpoint missing values of shRNAs were treated as zero counts.
Trimmed mean of M values (TMM) normalization was applied. Unspe-
cific filtering was done prior to testing, keeping only shRNAs with more
than 2 counts per million (CPM) in all baseline samples.

To analyze shRNAs for enrichment or depletion, an RNAseq analysis
with edgeR (with a negative binomial model) was used [19]. Endpoint
missing values of shRNAs were treated as zero counts. Significance
testing was carried out on both an shRNA- and gene-level for the
endpoint compared to baseline. Each gene was tested based on the
shRNAs in a gene-set test approach [20]. Genes with a consistent signal
across their corresponding shRNAs should therefore be ranked high. In
addition to comparing PN and MES separately for enriched and depleted
shRNAs under dasatinib and DMSO, samples were tested for shRNAs/-
genes that show a significant difference at endpoint between PN and
MES, all compared to the baseline, i.e., modelling an interaction effect
between type and treatment and accounting for the sample effect. For
visualization, shRNA counts were normalized with results expressed as
log-transformed counts per Million (CPM).

2.7. Implementation of SamNet 2.0

SamNet 2.0 was implemented to gain a better understanding of the
subtype-specific effects of dasatinib on glioblastoma cell lines. The
SamNet 2.0 graph was designed such that proteomic hits received inputs
from the source and shRNA hits had outgoing edges into the terminal
sink node. Proteomics hits for each subtype were proteins significantly
affected by dasatinib (i. e. one-sample t-test was significantly different
from 0), with an absolute mean log2FC greater than 1. The shRNA hits
were selected on two criteria: 1) knockdown of this gene caused
significantly different (p < 0.01) survival effects between the dasatinib-
treated cells and the DMSO treated cells 2) the log2FC in survival be-
tween the dasatinib-treated cells and the untreated cells is more extreme
than 1 in the same direction as the DMSO comparison. Please refer to
supplementary methods for further information on threshold values.

2.8. Generation of human cerebral spheroids

Cerebral spheroids were generated as previously described [21].
Briefly, neural precursor cells (NPCs) were derived from human induced

pluripotent stem cells (hiPSCs) by dual inhibition of SMAD signaling in
medium composed of advanced DMEM/F12 (Thermo Fisher Scientific),
B27 (1 %; Thermo Fisher Scientific), GlutaMax (1 %; Thermo Fisher
Scientific), Pen/Strep (1 %; Thermo Fisher Scientific), and the small
molecules LDN-193189 (1 μM; Miltenyi Biotech), XAV (2 μM; Cell
Guidance Systems) and SB-431542 (10 μM; Cell Guidance Systems).
After 8 days the concentration of LDN-193189 was reduced to 200 nM
and SB-431542 was omitted. NPCs were dissociated into single cells
using TrypLE Express and plated in a U-bottom shaped 96 well-plate
precoated with 0.5 % Pluronic (100000 cells/well) in the same me-
dium (without small molecules) supplemented with 50 μM ROCK in-
hibitor Y-27632 (Cell Guidance Systems). Two days later, aggregates
were transferred into 6 cm-dishes precoated with 0.5 % Pluronic and
medium was changed to DMEM/F12, 1 % B27, 1 % GlutaMax, 1 % P/S,
and non-essential amino acids (1 %; Thermo Fisher Scientific) supple-
mented with EGF and FGF-2 (both 20 ng/ml; Cell Guidance Systems) for
the next 19 days with medium changes every other day. After this
expansion phase, the growth factors FGF-2 and EGF were omitted from
the medium and neuronal differentiation was promoted by inhibition of
Notch signaling as previously described [22].

Due to suppression of the generation of mesodermal and endodermal
germ layers via dual inhibition of SMAD signaling using SB-431542 and
LDN193189 we facilitate the generation of neuroectoderm. Thereby, the
cell types in our spheroids at the time of coculture with tumor cells are
limited to neurons and astrocytes [23].

2.9. Co-culture of Glioblastoma cells expressing luciferase and GFP with
cerebral spheroids

To establish NCH644 cells stably co-expressing luciferase and GFP,
NCH644 were transduced with pGF1 virus and subsequently sorted for
GFP+-cells using the BD FACS Aria Fusion-3 prior to starting the co-
culture experiment. Spheroids were cultured in advanced MEM
(Thermo Fisher Scientific), B27 (1:100), GlutaMax (1 %), Glucose (5
mg/ml), Pen/Strep (1 %) 7 days prior to the coculture start. The tumor
cell culture (luciferase and GFP-expressing NCH644 GSC line) was
dissociated into single cells using accutase and 7500 tumor cells were
plated together with one spheroid per well of a U-bottom shaped 96
well-plate precoated with 0.5 % Pluronic in the same medium supple-
mented with EGF and FGF (20 ng/ml each). After two days, spheroids
were transferred into a cell culture dish precoated with 0.5 % Pluronic.
Medium was changed every other day. After 7 days of coculture, the
growth factors EGF and FGF were withdrawn and tumor-cell-infiltrated
spheroids were further cultured until day 13. On day 14, drug exposure
to 0.75 μM MK-1775 or 5 μM Dasatinib as single or combinatorial
treatment was started in parallel to a respective DMSO control. Tumor
growth was assessed via luminescence measurements at 4-, 8- and 12-
days post-treatment, in addition to apoptosis and cell proliferation at
day 12. For each treatment condition, 6 spheroids were used to cover
cerebral spheroid heterogeneity and invasion capacity.

2.10. Measuring of bioluminescence of spheroid co-culture

Bioluminescent signals were measured before treatment start, fol-
lowed by measurements every 4 days. For quantification of tumor
growth in the spheroid co-culture experiment, bioluminescent signal
was measured using the IVIS® Lumina LT Series III (PerkinElmer).
Before signal acquisition, spheroid co-cultures were incubated with 150
μg/ml D-luciferin for 30 min at RT. Using a black-walled 96-well plate,
the bioluminescent signal was acquired with an integration time of 15 s
and total flux per defined region was quantified using the Living Image®
software.

2.11. Cell cycle analysis

To study cell cycle phases upon treatment with dasatinib and MK-
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1775 in NCH cell lines, propidium iodide staining was conducted fol-
lowed by FACS analysis. 100 000 cells/mL were seeded in a 12-well
assay plates and treated with single or double treatment of 5 μM dasa-
tinib, 0.75 μM MK-1775 and the respective controls. 24 and 48 h post-
treatment, cells were collected, washed with PBS and dissociated
using Accutase®. After centrifugation, cells were washed with PBS prior
to resuspension in 500 μL PBS. To fix cells, 1.2 mL precooled 70 %
ethanol solution was added drop-wise to the singularized cells while
vortexing. Cells were fixed at − 20 ◦C overnight, then centrifuged for 10
min at 2000 rpm. After a washing step in 1 % BSA in PBS, cells were
resuspended and incubated for 20 min in 500 μL 0.25 % Triton X-100 in
PBS. Followed by a centrifugation step of 5 min at 2000 rpm, cells were
resuspended in 150 μL PI-staining solution (0.1 % Triton X-100 in PBS
supplemented with 50 μg/mL PI and 200 μg/mL RNAseA) and incubated
for 10 min at 37 ◦C and 10 min at RT before acquisition. Cell cycle
phases were analyzed using a LSRFortessa and quantified with FACS-
Diva Software.

3. Results

3.1. Integration of proteomics and loss-of-function screen to overcome
dasatinib resistance in PN GSCs

To reveal the differential response to inhibition in PN and MES GSCs
on a proteomic and phosphoproteomic level, SILAC (stable isotope
labelling in cell culture) with mass spectrometry was implemented in
dasatinib treated GSCs. This was complimented by functional genomics,
using a pooled shRNA drop-out loss-of-function screen targeting around
5000 genes involved in cell signaling and cancer under simultaneous
dasatinib inhibition. To prioritize shRNA screen hits for further valida-
tion, we developed and implemented a significantly improved version of
the SamNet algorithm (named SamNet 2.0). This method allowed for the
integration of shRNA screen hits and proteomic response data, while
also considering the baseline gene expression levels of each gene for
each cell type (Fig. 1).

Fig. 1. Integrated multi-omics approach to tackle resistance to dasatinib in proneural Glioblastoma stem-like cells (PN GCSs). After stable isotope labeling with
amino acids in cell culture (SILAC) and subsequent inhibition with dasatinib, PN and MES GSCs underwent phosphoproteomic analyses using mass spectrometry to
study intracellular signal transduction pathways that are deregulated upon dasatinib treatment (upper part). This was complemented by a functional drop-out
viability screen using a pooled barcoded shRNA library against 5000 human genes combined with dasatinib. This screen exposed several genes whose knock-
down increased sensitivity to dasatinib inhibition and provided targets for combinatory drug inhibition (lower part). Both screen outputs were then integrated using
SamNet 2.0, which also factored in gene expression data (middle part) to reveal possible combination therapy targets. MES = mesenchymal. DMSO = dimethyl
sulfoxide. FC = fold-change. m/z = mass to charge ratio. IC20 = inhibition concentration at which 80 % of inhibited cells show viability.
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3.2. Phosphoproteomics reveal PKA and CDK1 target proteins as possible
mediators of dasatinib resistance in PN GB

After SILAC and subsequent inhibition with dasatinib, PN and MES
GSCs underwent phosphoproteomic analysis using mass spectrometry.
To that end, PN and MES GSCs marked with ‘heavy’ and ‘light’ amino
acids were cultured with dasatinib and DMSO over a total period of 12
days (as a long-term endpoint - Fig. 2A, also see Supplementary Fig. 1A
for heavy amino acid incorporation rates). An additional 4-day time
point was used to elucidate the ‘short-term’ inhibition response. Sepa-
ration between MES and PN samples was more pronounced in a prin-
cipal component analysis (PCA) using phosphoproteomics compared to
proteomics data. This is supported by our previous data that showed
subtype-specific responses to dasatinib in GB [11]. Furthermore, sam-
ples on day 4 did not substantially vary from samples on day 12 after
inhibition, neither on a proteomic, nor on a phosphoproteomic level
(Fig. 2B and C). The processed output dataset included the relative
quantification values of 1650 proteins and 1158 phosphoproteins from
24 samples (Fig. 2D and E, Supplementary Figs. 1B and 1C, Supple-
mentary Table 1). We then compared the proteomic response to dasa-
tinib between the MES and PN GSCs by analyzing the 1617 features that
were detected in all samples and that map uniquely to a single protein.
Using TopGO, we found that the 245 proteins down-regulated in MES
but not PN GB are enriched in many gene sets related to translation (e. g.
translational initiation, p = 6.7E-3) and the cell cycle (e. g. G1/S tran-
sition of mitotic cell cycle, p= 6.9E-5, Fig. 2F). When directly comparing
MES and PN subtypes, we identified 197 proteins with a significantly
different response to dasatinib (adj-p<0.01). Of these, 117 proteins
showed a lower mean response in MES GSCs enriched for gene sets
related to DNA replication initiation (p= 2.5E-5) and complex assembly
involved with cell cycle DNA replication (p = 1.3E-7) (Fig. 2G, see
Supplementary Fig. 2A and B for deregulations in MES GSCs, Supple-
mentary Figs. 2C–F for deregulations in PN). On a phosphoproteomic
level, hypergeometric tests using the PhosphositePlus database [24]
were performed to determine whether the differentially deregulated
phosphosites among the 1153 unique phosphopeptides identified in PN
andMES GB are enriched for targets of particular kinases. Protein Kinase
A (PKA) targets (adj-p = 0.039) and Protein Kinase C (PKC) targets
(adj-p = 0.039) were both significantly overrepresented in the differ-
ential phosphosites, suggesting these kinases may have subtype-specific
responses to dasatinib. Fig. 2H highlights the differential phosphosites
that are targets of PKA based on the databases PhosphositePlus or
Scansite [25]. We further investigated the phosphosites on genes related
to the cell cycle (Fig. 2I). CDK1-T161, the activating phosphosite on
CDK1 [26], and RB1-T373, the site on RB1 whose phosphorylation re-
leases E2F and promotes the cell cycle [27], are both significantly
downregulated by dasatinib in MES but not PN GSCs. Although these
data suggest downregulation of the cell cycle in MES GSCs, we also
observe significant upregulation of the activating phosphosite (T170) on
key cell cycle protein CDK7 in mesenchymal cells [28]. Overall, these
data indicate that key cell cycle phosphosites are affected substantially
more in the dasatinib-sensitive MES than the dasatinib-resistant PN
GSCs.

3.3. Pooled shRNA drop-out viability screen identifies WEE1 to sensitize
PN GB to dasatinib inhibition

We used the Cellecta® shRNA DECIPHER® library to identify spe-
cific genes that affect dasatinib response in MES and PN GSCs. After
shRNA lentiviral transduction, GSCs were randomized to dasatinib (or
DMSO) treatment using their respective IC20 concentration (Fig. 3A,
Supplementary Table 3). Cell number and TagRFP-positivity in the GSCs
were monitored to ensure a representation of the library, Supplementary
Fig. 3A). Baseline samples (harvested at 18 h after transduction) and the
dasatinib and DMSO endpoint samples of all screens were isolated,
sequenced and deconvoluted to a read count of the corresponding
shRNA. Internal controls revealed a low standard deviation for the range
of reads in a given shRNA, indicating a good technical quality
(Supplementary Fig. 3B). A separation between baseline, PN and MES
GSCs was noted upon PCA analysis, supporting a subtype-dependent
response to knockdowns via the DECIPHER® shRNA library. Another
component of this separation was driven by dasatinib (Fig. 3B, Supple-
mentary Figs. 4A and 4B). Analysis of fold changes within a given sub-
type revealed depletion of several genes in PN GCSs but not MES GCSs
under dasatinib (Supplementary Table 3, Supplementary Fig. 4C), with
significant top hits ranked according to their p-values (Fig. 3C, Sup-
plementary Fig. 5). The top hit showing the lowest p-value (<0.0001)
was the Wee1-like protein kinase (WEE1), a cell-cycle protein that acts
as a negative regulator for entry into mitosis [29] and that has been
shown to be pivotal to the survival of GSCs [30] (Fig. 3D).

3.4. Integration of proteomics and shRNA drop-out screen confirms
WEE1 perturbation to sensitize PN GCSs to dasatinib

We used the computational SamNet 2.0 method to combine prote-
omics and shRNA screen data and hence prioritize top hits in resistant
PN GCSs. SamNet 2.0 builds on ResponseNet [15] and SamNet [16]
(Supplementary Fig. 6A) and provides two specific advantages
compared to these earlier methods. First, high-degree hub nodes are
penalized so that highly-connected proteins, like ubiquitin, do not
dominate the network solution. Second, SamNet 2.0 allows for the
incorporation of baseline expression data to produce more realistic
optimal networks. To identify subtype-specific pathways, we treated
MES and PN as separate commodities. We set up the directed graph
(Fig. 4A) by connecting the source node (S) to 145 proteins significantly
affected by dasatinib (adj-p<0.01 and abs(log2FC) > 1) in each subtype
separately (31 MES-specific proteins, 23 PN-specific proteins and 91
proteins represented in both subtypes). We connected the terminal sink
node (T) to the 44 shRNA hits (16 MES-specific, 28 PN-specific) that
cause a significantly different effect on depletion in the presence of
dasatinib compared to DMSO (p < 0.05, and abs(log2FC) > 1 compared
to baseline). The proteomics and shRNA hits were then connected to
identify an optimal protein-protein interaction network containing a
small subset of proteins and TopGO was subsequently used to identify
pathways enriched in this network. Many significantly enriched ontol-
ogies were related to the cell cycle, such as “G1/S transition of mitotic
cell cycle” (p = 0.003) and “regulation of cell cycle” (p = 0.02, Sup-
plementary Table 4). We assessed all 29 high quality networks and
observed consistent enrichment for cell cycle related pathways in PN

Fig. 2. Phosphoproteomics reveal reduced PKA and cell-cycle signaling after dasatinib inhibition in MES GSCs. (A) Scheme of the (phospho)proteomic screen. Initial
analysis of ‘heavy’ samples revealed an incorporation rate of heavy proteins of over 95 % of total captured proteins. (B) 3D Principal Component Analysis (PCA) of
GSCs after dasatinib inhibition. Included are replicates of (n = 3) day-4 and (n = 3) day-12 time point samples. PC = Principal Component. PCA for proteomics data.
(C) Identified peptides for each sample (GSC and time point). (D) PCA for phosphoproteomics data. (E) Identified phosphosites for each sample (GSC and time point).
(F) Simplot showing pathways significantly downregulated in MES (NCH711d and NCH705) but not PN (NCH421k and NCH644) GSCs upon 1 μM dasatinib in-
hibition. (G) p-values of the top 10 significantly downregulated pathways in MES and not PN GSCs. (H) Boxplot of Protein Kinase A (PKA) targets. Blue =MES, green
= PN. Included are 15 phosphosites considered to be PKA targets by PhosphositePlus or Scansite that showed significant (adj-p <0.05) deregulation in PN compared
to MES GSCs upon dasatinib inhibition (two-sided t-test). (I) Boxplot of cell cycle proteins. Blue = MES, green = PN. Significantly differential phosphosites related to
cell cycle pathways are shown on the x-axis. MES = mesenchymal, PN = proneural, GSC = GB stem-like cell. PC = principal component. DMSO =

Dimethuylsulfoxide.

O.T. Alhalabi et al. Cancer Letters 605 (2024) 217265 

6 



Fig. 3. Pooled shRNA drop-out viability screen reveals WEE1 to sensitize PN GB to dasatinib inhibition. (A) shRNA screen workflow. (B) Principal Component
Analysis (PCA) of GSCs in pooled shRNA screen. MES = shades of blue, PN = shades of green. A general overview of the different GSC subtypes and screening
conditions is provided, with islands of different GSC subtypes labelled. (C) Top hits of pooled barcoded shRNA screen. Shown are the p-values and logCPM read
values for each condition (CPM = counts per million). Genes are ranked according to the p-value (dark green: lowest; white: highest). Negative foldchanges are
represented by red bars, positive foldchanges by blue bars. (D) Dot plot of foldchanges of all genes targeted by the DECIPHER® screen. Shown is the difference in
foldchange between the dasatinib and the DMSO screen in PN (y-axis) and MES (x-axis) GSCs. A PN hit is as close to 0 on the x-axis as possible and as negative on the
y-axis as possible, provided it reaches significance (bigger dot sizes correspond to the lower p-values). Top hits from (C) are shown in red. FC = foldchange, Dasa =
dasatinib. DMSO = Dimethyl sulfoxide.
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networks, such as the aforementioned “regulation of cell cycle” in 27/29
networks (p < 0.05). In the optimal network, many of nodes connect the
differential proteins to the shRNA hits of WEE1 and KIF11 (Kinesin
Family Member 11), which both play key roles in the cell cycle [31,32]
(Fig. 4B). We also observed many interactions related to cell cycle
regulation, such as 14-3-3 proteins (for example YWHAB - Tyrosine
3-Monooxygenase/Tryptophan 5-Monooxygenase) promoting WEE1
stability [33] and PIN1 (Peptidylprolyl Cis/Trans Isomerase,
NIMA-Interacting 1) inactivating WEE1 [34,35] (Supplementary
Table 4). MES-specific proteins enriched for pathways related to DNA
damage, such as “nucleotide excision repair, DNA Damage Recognition”
(p = 3.0E-6) and “apoptotic DNA fragmentation” (p = 1.0E-4,
Fig. 4C–Supplementary Table 5).

3.5. WEE1 inhibitor MK-1775 shows synergistic effects in combination
with dasatinib in PN GSCs

We performed inhibition experiments on PN and MES GSCs using
dasatinib combined with MK-1775, a small molecular inhibitor of
WEE1, to confirm the output of the integration dataset. Data analysis via
SynergyFinder showed higher synergistic effects in PN GSCs with
reduced cell viability 48 h after combination treatment (model-score δ
= 23.05 for NCH644, (Fig. 5A–B), and δ = 17.81 for NCH421k, Sup-
plementary Fig. 6B) compared to MES GSCs (δ = 4.97 for NCH705,
Fig. 5D–E, δ = 4.66 for NCH711d, Supplementary Fig. 6C). Under the
most synergistic concentrations, cell death was significantly higher in
PN than MES GSCs at 48 and 96 h (Fig. 5F). Optimal combinatory doses

of dasatinib and MK-1775 were similar when calculated using two
different synergy models (zero interaction model and bliss independent
model, Fig. 5G). Cerebral spheroids were utilized to further validate the
robustness of this effect in a more complex tissue setting. The treatment
of tumor-bearing (concomitantly luciferase- and GFP-expressing
NCH644) cerebral spheroid co-culture was performed in two separate
experiments (4-day and 8-day inhibition), including four conditions:
Vehicle control, single dasatinib and MK-1775 treatments and a dasa-
tinib and MK-1775 combination therapy (Fig. 5H). A significant
reduction of tumor growth in the combination treatment group
compared to single treatment and vehicle was observed over time
(Fig. 5I and Supplementary Fig. 6D). Strikingly, while tumor growth
under MK-1775 was only marginally different to the combination
therapy 4 days post-treatment, further observation at day 8 and 12
showed a divergence in tumor size between the combination and single
MK-1775 therapy, with the former showing complete eradication of
tumor cells at day 12 post-treatment. In line with the bioluminescence
measurements, GFP and Nestin quantified via Immunofluorescence (IF)
at day 4 post-treatment showed a significant reduction in signal under
combination therapy compared to the other groups, indicative of
depletion of NCH644 GCSs within the co-culture (Fig. 5J–L). Ki67
expression showed a similar effect, indicating reduced proliferation
under combination therapy (Supplementary Fig. 6E).

Fig. 4. Integration of phosphoproteomic data and DECIPHER® drop-out viability screen shows WEE1 as a target for synergistic combinational therapy in PN GSCs.
(A) SamNet 2.0 directed graph. The graph begins with a source node (S) that has outgoing subtype-specific edges into nodes that represent proteins deregulated in
response to dasatinib. These proteins are represented by rectangles (blue = MES-hit, green PN-hit, blue and green = deregulated in both. The gray nodes represent
proteins not included in either screen, where each edge indicates a physical interaction between proteins. Since the interactions are bidirectional, the flow in the
network can go either way. Diamonds at the end of the flow depict hits of the shRNA screen, with outgoing edges into the terminal sink node (T). (B) Cell cycle
proteins connect vulnerabilities upon PN GSC dasatinib inhibition. Each node is divided into blue and green, depending on the PN (green) vs MES (blue) flow, with
the size proportional to the node’s share in total flow. Label colors represent the type of node: red is a proteomic hit, yellow/orange is an shRNA hit, and black is a
non-hit protein from the PPI. (C) Optimal network yields DNA Damage Proteins in MES GSCs. Each node is divided into blue and green, depending on the PN (green)
vs MES (blue) flow, with the size proportional to the node’s share in total flow. Label colors represent the type of node as in B).
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3.6. Cell cycle regulation could explain differences in WEE1 inhibition
efficacy in PN and MES GSCs

Given the relevance of WEE1 and cell cycle proteins for subtype-
specific dasatinib response, we characterized the nature of WEE1
expression across GSC subtypes and normal brain. On a protein level,
WEE1 showed significantly higher expression in PN GCSs compared to
MES GCSs and astrocytes (Fig. 6A). When examining The Cancer
Genome Atlas (TCGA) dataset, GB patient tumors showed a higher RNA
expression of WEE1 RNA to normal brain tissue (Fig. 6B). However,
RNA-Seq data of GB patients showed WEE1 expression to be the lowest
in the PN subtype compared to other subtypes (Fig. 6C) and in our GSC
model, no differences were noted in the mRNA levels ofWEE1 between
MES and PN GSCs (Fig. 6D, measured by gene expression profiling [GEO
accession: GSE159609] see Supplementary Fig. 7A for MES- and PN-
specific OLIG2 and CD44 expression) This discrepancy between WEE1
protein and mRNA levels highlights the importance of proteomics in the
context of this study. To provide a mechanistic explanation for the dif-
ferences observed between PN and MES GSCs, we examined the extent
of the activating WEE1-mediated CDK1 phosphorylation in both sub-
types, and the effects of dasatinib or MK-1775 on this phosphosite (Y15).
Notably, both total and phosphorylated CDK1 levels were higher in PN
GSCs, confirming the observations from the phosphoproteomic data. As
expected, given that CDK1 is the direct substrate of WEE1, MK-1775
dramatically reduced CDK1 phosphorylation in both subtypes,
whereas dasatinib appeared to reduce CDK1 phosphorylation inMES but
not PN GCSs (Fig. 6E). This potentially explains the resistance of PN
GSCs to dasatinib treatment that could be attributable to differences in
cell-cycle regulation between the PN and MES subtypes. By applying a
GOBP (Gene Ontology Biological Process) cell-cycle signature on TCGA
GB patient RNA-Seq data from tumor samples of different subtypes (CL,
PN and MES), we noticed a subtype-based clustering pattern, with a
statistically significant MES-dominated cluster (p-value = 6.266e-09,
Fisher’s exact test, Fig. 6F). This was also apparent through different
patterns of alignment on Uniform Manifold Approximation and Projec-
tion (UMAP) plots (Fig. 6G, UMAP1+UMAP2 embedding values of MES
tumors were significantly different from other subtypes, Mann-Whitney
U test, Supplementary Fig. 7B). Furthermore, the combination of dasa-
tinib and MK-1775 for 48 h leads to an accumulation of cells in both the
G2/M and the S-phases of the cell cycle with an accompanying drop in
cells in the G1 phase in PN GSCs but not MES GSCs (Fig. 6H and Sup-
plementary Fig. 7 C-F). This could indicate that while some cells are
being forced to progress through the cycle, others are stalling in S-phase
due to the combined stress from DNA damage and the effects of the
inhibitors. This dual action could lead to a paradoxical accumulation of
cells in S-phase, as the cells are unable to effectively complete DNA
replication or repair damage. Taken together, these data highlight the
implication of the differential cell cycle regulation in PN and MES GCSs

in manifesting the selectively damaging effects of combined WEE1 and
dasatinib inhibition in PN GCSs. As WEE1 usually serves to shield cells
from mitotic catastrophe by preventing G2/M transition of cells
harboring fulminant DNA damage [36], we tested the hypothesis as to
whether this could explain the sensitivity observed in PN GCSs. Indeed,
treatment with combination of dasatinib and MK-1775 induces higher
levels of γH2Ax in PN than MES GSCs, suggesting higher levels of DNA
damage in PN GCSs through the combination (Fig. 6I).

4. Discussion

Combination therapies can provide a promising option for tumor
eradication, especially in the case of GB, where tumor heterogeneity and
swiftly emerging resistance to treatment underscore the importance of
addressing multiple facets of tumor biology to consolidate longer re-
sponses to therapy. We previously observed that MES GSCs were sen-
sitive and PN GSCs particularly resistant to dasatinib in vitro. This is why
identifying potential combination therapy targets to improve the effi-
cacy in PN GSCs and in doing this, unravelling possible subtype-specific
response, is of paramount importance. To accomplish this, we collected
phospho(proteomic) data to characterize response to dasatinib in PN
and MES GSCs and performed a loss-of-function shRNA screen to iden-
tify potential targets for therapy. We then developed a novel computa-
tional approach to integrate different data inputs and help prioritize
shRNA screen hits for functional validation.

Network analyses have been previously used to determine pathway
vulnerabilities in oncological diseases [15,37]. The method imple-
mented in this work (SamNet 2.0) significantly improves the existing
network flow ResponseNet and SamNet flow algorithms. Specifically, it
prevents highly-connected proteins from dominating the flow pattern
and curates gene expression data to yield more realistic ‘solutions’. This
approach particularly fits the datasets at hand since not all human genes
are captured by proteomics or targeted by shRNA data. By ‘filling the
gaps’, this network integration approach allowed for connecting the
strongest hits from these two assays through additional potentially
relevant genes. SamNet 2.0 revealed significant flow through cell cycle
genes and into the WEE1 node for the PN subtype, highlighting this as a
priority for validation experiments.

On a molecular level, WEE1 phosphorylates and thereby inhibits
CDK1 [38], thus inducing a G2-M cell-cycle checkpoint arrest. This is
particularly relevant for cancer cells as they tend to have deficiencies in
the G1-S checkpoint and depend on a functional G2-M checkpoint for
DNA repair before mitotic entry [29]. WEE1 has indeed been implicated
in the growth and progression of breast cancer, leukemia, and glio-
blastoma [39].

In addition to the computational integration of proteomics and the
shRNA loss-of-function screen, this study was further complemented by
phosphoproteomic data. Phosphoproteomic profiling is indeed useful in

Fig. 5. Synergistic dasatinib and WEE1 inhibition in PN GCSs. (A) Dose-response viability plot with matrix plot showing concentrations with the most synergistic
area and (B) Synergy score (δ) based on the ZIP (zero interaction potency) model after dasatinib and MK-1775 treatment depicting synergistic effects of dasatinib and
MK-1775 in PN NCH644. GSCs were treated with different concentrations of dasatinib (1.25–20 μM) and MK-1775 (0.375–6 μM) for 48 h. Cell viability was
determined via CellTiter-Glo® assay (n = 3). Red denotes synergism, green denotes antagonism (n = 3). (C) Propidium-iodide (PI) staining 48h (black) and 96h
(gray) after treatment of PN NCH644 GSCs with the combination dose showing the highest synergistic score (5 μM dasatinib, 0.75 μMMK-1775), with controls using
vehicle (DMSO: Dimethylsulfoxide) and single treatments of dasatinib and the WEE1 inhibitor MK-1775 (n = 3). (D) Dose-response viability plot with matrix plot and
E) Synergy score (δ) based on the ZIP model MES NCH705. (F) PI staining 48h (black) and 96h (gray) after treatment of PN NCH644 GSCs with the combination dose
showing the highest synergistic score with different controls (n = 3). (G) Depiction of the most optimal combination concentrations with calculated synergy scores as
determined by the ZIP and BLISS independence model in all GSCs. (H) Experimental set-up and treatment intervals of the NCH644 cerebral spheroid co-culture
experiment with 5 μM dasatinib, 0.75 μM MK-1775 and a combination. (I) Luminescence intensity of photons emitted from each spheroid as a surrogate mea-
sure for response to 96h treatment in four groups, measured at treatment start (day 0) followed by measurements every 96h for a total of 12 days. Six spheroids were
used per condition, p-values for different time points are indicated under the graph, two-way ANOVA corrected with Tukey’s test for multiple comparisons was used.
(J) Quantification of anti-GFP and (K) Anti-nestin staining signals upon different treatment modalities as indicated at day 4 after treatment. Signal was normalized to
number of cells (based on DAPI). Error bars depict standard error of the mean (SEM), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, n.s.: not significant, one-
way ANOVA corrected with Tukey’s test for multiple comparisons. (L) Representative images after day 4 of treatment showing GFP and DAPI signals in co-culture
spheroids under different treatment conditions. Co-culture spheroids were stained with anti-GFP marking tumor cells (green) and DAPI was used as a DNA marker
(blue) to correct for different co-culture spheroid sizes. 6 spheroids were used per condition and 2-3 slices per spheroid.
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characterizing the cell kinome in the context of inhibition by targeted
therapy with kinase inhibitors like dasatinib. In this study, comparing
PN (resistant) to MES (sensitive) GSCs showed a reduction of CDK1

target phosphorylations and in turn cell cycle-related pathways in MES
and not PN GSCs. Indeed, CDK1 target phosphorylations, particularly
those associated with cell cycle signaling, are not suppressed under

(caption on next page)
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dasatinib in PN GCSs. Since CDK1 is also a well-known regulator of the
cell cycle at its G2/M phase transition [40] and is regulated by WEE1,
this further strengthened the hypothesis that WEE1 activity could
explain the persistence of PN GSCs under dasatinib. CDK1 has been
previously studied for inhibition in cancer [41] and implicated in
shorter survival in GB [42]. A further important observation of the
phosphoproteomic profiling was revealed through the global compari-
son of 4-day vs 12-day samples after dasatinib inhibition, showing no
substantial differences between time points and suggesting that resis-
tance mechanisms manifest at a relatively early timepoint of inhibition,
which is in line with what has been previously reported in GB [43].

A previous phosphoproteomic screen has shown that WEE1 inhibi-
tion exposes a vulnerability in PN GB cell lines when compared to
normal brain (no other subtypes were included in the study) [44]. In our
work we have shown through in vitro and tumor-bearing cerebral
spheroid experiments why combination with dasatinib is more effective.
Firstly, this effect was shown to be specific to PN GSCs when compared
to the MES subtype. Secondly, the synergistic value of applying dasati-
nib and MK-1775 compared to monotherapy was shown, and thirdly, as
shown in tumor-bearing spheroid experiments for the same treatment
interval, tumor growth was thwarted in combination therapy (up to day
12) compared tomonotherapy with theWEE1 inhibitor MK-1775, where
tumor growth resumed after the end of exposure.

Regarding the observed synergy, WEE1 has been implicated to be
part of a wider resistance adaptation after PI3K inhibition, a pathway
that also interacts with the SRC pathway (inhibited by dasatinib), since
both are involved in mediating signals of growth factor receptors [5,45].
However, a previous report of kinase gene expression analysis showed
how the inhibition of WEE1 sensitizes GB to ionizing radiation and
postulated that WEE1 could save cells from a ‘mitotic catastrophe’ [36].
This hypothesis was extended to the combination of WEE1 inhibitors
and DNA-damaging agents in general [46]. Since dasatinib, along with
kinase inhibition, has been shown to cause DNA damage in many tumor
entities [47], it is reasonable to suggest that adding WEE1 inhibition to
dasatinib could enhance its DNA-damaging effects, as previously
demonstrated in Burkitt lymphoma [48]. Indeed, the combination of
dasatinib and WEE1 inhibition, as applied in this study, has also been
mechanistically linked to DNA damage potentiation in ovarian cancer
[49].

Congruent to these observations, increased yH2Ax levels, indicative
of DNA damage, and accumulation of cells in the G2/M and S-phase of
the cell cycle, were noted after combination of dasatinib and the WEE1
inhibitor in PN compared to MES GSCs, hinting towards a higher level of
DNA damage in the PN cells. Because RNA-Seq GB patient data analysis
shows how PN and MES subtypes demonstrate divergent expression of
cell cycle genes indicative of a different pattern of cell-cycle regulation,
it could be conceivable that this differential and apparently WEE1-
vulnerable PN GB cell cycle regulation could be exploited to

propagate DNA damage through combination with the otherwise inef-
fective dasatinib, driving PN GCSs into mitotic catastrophe. In the real-
world setting of a heterogeneous tumor, concomitant WEE1 inhibition
and dasatinib treatment could therefore provide an effective combina-
tion to address both the dasatinib-sensitive MES and the combination-
sensitive PN-subpopulations in a GB tumor.

5. Conclusion

This work highlights useful methods that are crucial for under-
standing cancer resistance, such as (phospho)proteomics and functional
shRNA screens. Additionally, we show the utility of computational
integration for prioritizing future validation experiments and reveal
possible targets for synergistic therapy of dasatinib and targeting WEE1
in proneural Glioblastoma. With substantial heterogeneity in many
tumor entities, our findings detail a useful approach that can be repur-
posed and modified in other studies to investigate subtype-specific drug
effects in other cancer entities.
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Conceptualization. Mona Göttmann: Writing – original draft, Valida-
tion, Investigation, Formal analysis, Data curation. Maxwell P. Gold:
Writing – original draft, Visualization, Software, Resources, Formal
analysis, Data curation, Conceptualization. Silja Schlue: Investigation,

Fig. 6. PN GCSs show a different WEE-1 mediated cell-cycle regulation pattern. (A) Western blot showing WEE1 protein levels in astrocytes and PN (NCH421k,
NCH644) and MES (NCH705, NCH711d) GSC subtypes. β-Actin served as a loading control. Band intensities are shown, normalized to β-Actin and then to astrocytes
(B) WEE1 mRNA expression in GB compared to normal brain tissue (data from Ref. [50], unpaired student’s t-test, ****p < 0.0001). (C) Boxplots showing TCGA GB
RNA-Seq WEE1 expression in MES, CL and PN GB patient samples ***p < 0.001, **p < 0.01. (D) mRNA levels of WEE1 in the MES and PN GSC subtypes from gene
expression profiling data (GEO accession: GSE159609). E) Western blot showing protein levels of WEE1, CDK1, and P-CDK in DMSO (− /− ), dasatinib (5 μM) and
MK-1775 (0.75 μM) single or in combination treated PN NCH644 and MES NCH705 cells (48 h), α-tubulin served as a loading control. Band intensities are shown,
normalized to α-tubulin and then to the PN DMSO samples. (F) Heatmap with unsupervised clustering analysis of the TCGA GB RNA-Seq data patient cohort
reclassified according to the signatures (n = 265), showing 3 clustering groups with patterns of subtype-dependent clustering upon calling genes of GOBP Cell Cycle
signature. Patient samples are distributed horizontally, with colors denoting GB subtype, genes from the gene set are listed vertically. (G) Uniform Manifold
Approximation and Projection (UMAP) plot showing TCGA GB RNA-Seq patient sample distribution of different subtypes (MES, CL, PN) upon calling genes of the
GOBP Cell Cycle signature. (H) Assessment of cell cycle phases by using PI-staining as measured by FACS in PN (NCH644) after treatment with DMSO (− /− ), 5 μM
dasatinib, 0.75 μM MK-1775 or the combination for 48 h, data shown after excluding live cells (subG1 phase was removed). Significances are displayed for DMSO
treatment comparisons (mean ± SEM, p-values are indicated in the graph, two-way ANOVA corrected with Tukey’s test for multiple comparisons, *<0.05,
**<0.01*** < 0.001, **** <0.0001, NCH644 n = 3. (I) (Left) Representative Western blot showing protein levels of γH2Ax in PN NCH644 and MES NCH705 GCSs
48h after dasatinib (5 μM) and MK-1775 (0.75 μM) combination or single-treatments or with DMSO (− /− ), β-Actin served as a loading control. MES =mesenchymal,
PN = proneural, CL = classical. (Right) Quantification of band intensities from three independent experiments, mean ± SD, one-way ANOVA corrected with Tukey’s
test for multiple comparisons, *<0.05, ***<0.001.

O.T. Alhalabi et al. Cancer Letters 605 (2024) 217265 

12 



Formal analysis. Thomas Hielscher: Software, Formal analysis. Murat
Iskar: Visualization, Software, Project administration. Tobias Kessler:
Supervision, Resources. Ling Hai: Visualization, Formal analysis. Tolga
Lokumcu: Methodology. Clara C. Cousins: Visualization, Software,
Formal analysis. Christel Herold-Mende: Resources. Bernd Heßling:
Visualization, Validation, Methodology, Investigation. Sandra Hor-
schitz: Validation. Ammar Jabali: Visualization, Validation. Philipp
Koch: Supervision. Ulrich Baumgartner: Validation. Bryan W. Day:
Resources, Formal analysis.Wolfgang Wick: Supervision. Felix Sahm:
Supervision. Sandro M. Krieg: Supervision. Ernest Fraenkel: Super-
vision, Methodology. Emma Phillips: Writing – review & editing,
Writing – original draft, Validation, Supervision, Funding acquisition,
Data curation. Violaine Goidts: Writing – review & editing, Writing –
original draft, Project administration, Funding acquisition, Formal
analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

Thanks to Lea Hansen Palmus, Kathrin Schramm, David T. W. Jones,
Sevin Turcan, Frederik Bethke, Laura Puccio and Gabriele Müller for
assisting with experiments and expertise. The mass spectrometry protein
analysis was carried out by the DKFZ Proteomics Core Facility (PCF – Dr.
Dominic Helm).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.canlet.2024.217265.

References

[1] D.N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W.
K. Cavenee, H. Ohgaki, O.D. Wiestler, P. Kleihues, D.W. Ellison, The 2016 world
health organization classification of tumors of the central nervous system: a
summary, Acta Neuropathol. 131 (2016) 803–820.

[2] M. Weller, M. van den Bent, M. Preusser, E. Le Rhun, J.C. Tonn, G. Minniti,
M. Bendszus, C. Balana, O. Chinot, L. Dirven, P. French, M.E. Hegi, A.S. Jakola,
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