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Abstract

Known risk loci for endometrial cancer explain approximately one third of familial endometrial cancer. However, the asso-
ciation of germline copy number variants (CNVs) with endometrial cancer risk remains relatively unknown. We conducted
a genome-wide analysis of rare CN'Vs overlapping gene regions in 4115 endometrial cancer cases and 17,818 controls to
identify functionally relevant variants associated with disease. We identified a 1.22-fold greater number of CNVs in DNA
samples from cases compared to DNA samples from controls (p=4.4 x 107%%). Under three models of putative CN'V impact
(deletion, duplication, and loss of function), genome-wide association studies identified 141 candidate gene loci associated
(» <0.01) with endometrial cancer risk. Pathway analysis of the candidate loci revealed an enrichment of genes involved in
the 16p11.2 proximal deletion syndrome, driven by a large recurrent deletion (chr16:29,595,483-30,159,693) identified in
0.15% of endometrial cancer cases and 0.02% of control participants. Together, these data provide evidence that rare copy
number variants have a role in endometrial cancer susceptibility and that the proximal 16p11.2 BP4-BP5 region contains 25

candidate risk gene(s) that warrant further analysis to better understand their role in human disease.

Introduction

Endometrial cancer is it the most commonly diagnosed
gynaecological cancer in developed countries (Rodriguez-
Palacios et al. 2022). The incidence of endometrial cancer
has been increasing, and a key contributor to this trend is
the rising prevalence of obesity, a major risk factor for this
disease. Other risk factors include reproductive risk factors
such as early menarche, late menopause and nulliparity,
exogenous oestrogen use, and a family history of endome-
trial or colorectal cancer (Lortet-Tieulent et al. 2018). While
much progress has been made to understand the biology of
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endometrial cancer, the genetic risk factors underlying this
disease have not been fully elucidated.

Genetic risk factors for endometrial cancer include inher-
ited pathogenic variants DNA mismatch repair (MMR)
genes associated with Lynch Syndrome (MLHI, MSH2,
MSH6 and PMS2) and the tumour suppressor PTEN.
Genome-wide technologies, such as single nucleotide poly-
morphisms (SNP)-arrays have identified common risk loci
associated with endometrial cancer that confer levels of risk
(odds ratio [OR] <2), and in aggregate explain less than a
third of the estimated familial relative risk for endometrial
cancer (Chen et al. 2016; O’Mara et al. 2018; Wang et al.
2022).

Copy number variants (CNVs) are a form of structural
variation that are pervasive in the human genome and can
disrupt gene function by altering gene dosage, coding
sequence or regulation. The de novo mutation rate of CNVs
is several orders of magnitude higher than the mutation
rate of single nucleotide variants (Zhang et al. 2009). How-
ever, CNVs are typically rare which is consistent with the
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hypothesis that CNVs can be pathogenic and therefore often
under negative selection. A recent study of CN'Vs in 100,000
individuals with European ancestry showed that>98.5%
CNV variants had a minor allele frequency <0.01 (Li et al.
2020).

Rare pathogenic CNVs have previously been identified
in cancer susceptibility genes, including known endome-
trial cancer syndrome genes (Truty et al. 2019). In a MSH2-
associated Lynch syndrome cohort (n=283), 11% of path-
ogenic variants identified in MSH2 were CNVs (Romero
et al. 2013). Similarly, single to multi-exon deletions make
up 22% of pathogenic variants in PMS2, 21% of pathogenic
variants in MSH2 and MLH] and 4% of pathogenic variants
in MSH6 (Lagerstedt-Robinson et al. 2016). In a genome-
wide analysis of 1209 endometrial cancer cases and 528
cancer-unaffected female controls, we previously reported
that rare deletions of likely functional genomic regions (e.g.
exons and CpG islands) were more frequent in cases com-
pared to controls (Moir-Meyer et al. 2015). These results
implicated rare germline deletions of functional and regula-
tory genomic regions as mechanisms for conferring risk of
endometrial cancer.

To identify endometrial cancer CNV risk loci, we per-
formed a gene-centric genome-wide association study
(GWAS) using the OncoArray single nucleotide polymor-
phism (SNP) array on a large cohort (n=21,933) of endo-
metrial cancer cases and healthy controls with European
ancestry. Additionally, we conducted analysis of global CNV
burden in endometrial cancer cases compared to controls.

Methods
Study cohort and genotyping

The study cohort was comprised of female individuals from
28 studies, with cases sourced via the Endometrial Cancer
Association Consortium (ECAC) and healthy female con-
trols from the Breast Cancer Association Consortium (Sup-
plementary Table S1). The characteristics of the cohorts
have been previously described (O’Mara et al. 2018). DNA
samples derived from whole blood were genotyped on the
Infinium OncoArray-500K Beadchip (Illumina) across five
genotyping facilities, all participants were of European
descent. The OncoArray consists of 533,631 probes, half of
which were selected from the HumanCore (Illumina) back-
bone and the other half placed in regions previously associ-
ated with cancer risk (Amos et al. 2017).

CNV calling

CNVs were called using CamCNYV, a method designed to
confidently call rare (MAF <3%) CNVs with fewer probes

@ Springer

and higher confidence (Dennis et al. 2021). Quality con-
trol was performed for samples and CNVs (Supplemen-
tary Table S2). Briefly, for each sample a derivative log
ratio spread (DLRS) figure was calculated as the average
variance in Log R Ratio (LRR) intensities of neighbour-
ing probes by genome position over the whole genomes
(Cooper et al. 2015). Samples with a DLRS Fig. 3.5 SD
above the DLRS study mean (DLRS =0.2) were removed.
Principle component adjustment (PCA) of the LRR
intensities at each probe was then performed to reduce
batch effects in probe intensity and adjust for variation
in hybridisation intensity (genomic waves) (Diskin et al.
2008). Following PCA, a second DLRS sample exclusion
was applied, again removing samples with a DLRS 3.5
SD above post PCA-adjusted sample mean of DLRS =0.1.
Samples with excessive heterogeneity (4.89 SD from the
study mean), or those with sex chromosome abnormali-
ties were also excluded from study (Michailidou et al.
2017). Prior to CNV calling, probes with data that failed
to be clustered by Illumina Gentrain algorithm (<0.15),
low intensity probes (mean intensity <0.2) or any with
high LRR variance (two SD above the mean variance of
all probes) were removed. Additionally, CNVs predicted
within immune-related loci (Immunoglobin heavy chain,
T-cell receptor and major histocompatibility complex) or
near centromeres and telomeres were also excluded. Only
CNVs called using 3—200 probes were retained. Previous
published thresholds of excess germline CNV count in
human blood ranged between 30 and 200 CNVs (Aguirre
et al. 2019; Macé et al. 2016). We adopted a lower thresh-
old and excluded samples predicted to carry n> 50 (Sup-
plementary Table S2). The final analysis dataset included
data for 4,115 endometrial cancer cases (371 removed) and
17,818 controls (1,073 removed).

CNV annotation

CNVs were annotated for overlap with protein coding genes
and exons sourced using biomaRt and EnsDB (Hsapiens.
v75) R packages, with the largest Ensembl transcript used to
define gene boundaries (Durinck et al. 2009; Rainer 2017).
All genomic features were restricted to chromosomes 1-23/
X, and any elements mapping to alternative chromosomes
(i.e., sequence scaffolds or mitochondrial chromosomes)
were excluded from analysis. Genomic coordinates were
based on the GRCh37/hg19 genome build. In situations
where genomic data was in an alternative genome build, the
UCSC LiftOver tool was used for conversion to GRCH37/
hgl9 (https://genome.ucsc.edu/cgi-bin/hgLiftOver). All
CNVs were assessed for overlap (=1 bp) with regions of
interest in R using the GenomicRanges package (V1.4)
(Lawrence et al. 2013).
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CNV burden

CNYV burden was estimated between endometrial cancer
cases and controls for: total number of CNVs, the number
of genic CNVs, the number of exonic CNVs and number
of intergenic CNVs, respectively. Each burden analysis
was repeated for CNV deletions, CNV duplications and all
CNVs. Statistical significance of differences in CNV burden
between cases and controls were determined by a two-sided
Student’s t-test, p-values < 0.05 were considered statistically
significant.

Copy number variation (CNV)-GWAS

Associations between CNVs and endometrial cancer were
assessed by performing a gene-specific test using gene
boundaries to define regions of interest. Case and control
CNYV overlap frequency was determined for each gene region
and association was tested by fitting a binomial logistic
regression model. Given the varying modes of effects from
copy number gain and copy number loss, deletions and
duplications were tested independently. Additionally, mod-
els were estimated on putative loss of function. A CNV was
included in the loss of function GWAS if it was either pre-
dicted as a deletion or a duplication that partially overlapped
a gene region. A genome-wide significance threshold was
calculated for each GWAS conducted: this was represented
as 0.05/6014, 0.05/8377 and 0.05/8613 for deletion-only,
duplication-only and loss of function respectively.

Additionally, to explicitly model the level of evidence for
genes already associated with endometrial cancer, the Bayes-
ian false discovery probability (BFDP) approach was applied
(Wakefield 2008) with the prior probabilities assigned at 0.5,
for the genes associated with Lynch syndrome, 0.2 for genes
with previous associations and 0.05 for genes with little to
no prior evidence (Supplementary Tables S5-S7). An upper
bound of 8.0 was applied on the odds ratio for any associa-
tion, all parameters were chosen to reflect the rare nature
and large effect of the tested CNV. Lastly, associations at
p <0.01 were considered as candidate associations.

Overlap with previously identified risk SNPs

SNPs associated with disease risk were directly down-
loaded from the NHGRI-EBI GWAS Catalog (accessed
Jan 2024) for the following traits; endometrial can-
cer (MONDO_0011962, n=84), Type 2 Diabetes
(MONDO_0005148, n=3516) and Obesity (EFO_0001073,
n=297). SNP associated with these traits were expanded to
include any variant in linkage disequilibrium (LD, R*>0.8)
in the ‘EUR’ population from 1000 genomes. Germline

CNVs overlapping candidate endometrial cancer risk genes
were first assessed for direct overlap with SNP, and the can-
didate gene list was compared to GWAS mapped gene(s).

Pathway analysis

Over-representation analysis was performed in R v3.14
using the gProfiler2 package by applying a hypergeometric
test to assess enrichment, all results presented are Bonfer-
roni corrected (Kolberg et al. 2020). To allow for variation
among candidate endometrial cancer risk genes (p <0.01)
derived from different GWAS, top hits from each GWAS
were assessed independently. Additionally, FUMA-GWAS
was used to test if candidate genes were enriched for genes
reported in the GWAS (Watanabe et al. 2017).

Expression in endometrial tissue and dosage
sensitivity

Expression of candidate genes was assessed in normal and
tumour tissue using publicly available data. The R pack-
ages hpar and ExperimentHub were used to retrieve RNA
levels (Transcripts per million (TPM)) directly from the
Human Protein Atlas repository (L and Martin 2022; Mor-
gan and Shepherd 2022). Genes were grouped into expres-
sion categories using thresholds defined by Expression Atlas
(Papatheodorou et al. 2018). Dosage sensitivities of candi-
date genes were assessed using mRNA expression data and
putative copy number of genes from The Cancer Genome
Atlas- Uterine Corpus Endometrial Carcinoma (TCGA-
UCEC) dataset using the cBioPortalData package from R
(Bonneville et al. 2017; Ramos et al. 2020). Candidate risk
genes were deemed dosage sensitive if there was a positive,
significant (P <0.0001) relationship between copy number
and expression.

CNV validation

Accessible whole-blood DNA samples from the study cohort
were used to validate 17 putative CNV regions. CNV valida-
tion was carried out using NanoString nCounter (NanoString
Technologies, Inc) following the manufacturer’s protocol.
Custom Nanostring probes for CNV regions are listed in
Supplementary Table S3. Where possible, three independent
probe pairs were designed for each CNV unless the region
was too small to accommodate, in which case two probes
were used. nSolver 4.0 analysis software was used to per-
form quality control on raw counts and normalised to a set
of invariant control probe pairs. CNVs were partitioned by
carrier status and count ratios were calculated to call CNV
status.
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Results
Identification of CNVs in the study cohort

A total of 63,349 rare deletions and 48,555 rare dupli-
cations were identified across the 21,933 study partici-
pants, of which 46,234 were unique (25,047 deletions and
21,187 duplications). On average, duplications were 2.4
times larger than deletions (mean length 99 kilobases (kb)
for duplications vs 41 kb for deletions). In total, 10,637
unique protein coding genes were predicted to be encom-
pased by 24,390 unique CNVs, with 40.7% of deletions
and 52.7% of duplications predicted to overlap at least
one gene region (Supplementary Table S4). On average,
we identified 5.10 CNVs per sample (range =0-47) and
2.34 genic CNVs per sample (range =0-47), with 96.3%
of samples estimated to carry at least one CNV. The high-
est minor allele frequency for CNVs called with CamCNV
was 2.2%. The majority of CNVs (79% of deletions and
81% of duplications) identified were only identified in a
single sample (allele frequency =0.0045%) highlighting
the uniqueness of these events.

Explicitly modelling prior knowledge lifted MSH6
to significance however none of the 41 genes with prior
probability 0.2 were significant in either frequentist or
Bayesian analysis. Bayesian analysis showed significant
evidence for 2 additional genes, VWAI and ATAD3C at
a BFDP of 0.0074 however, these both had an adjusted
P value of 0.079. Given the convergence of the Bayesian

and frequentist analysis, subsequent analysis proceeded
with the genes identified in the frequentist analysis; further
details are available in Supplementary Tables 5-7.

Comparison of global CNV burden
between endometrial cancer cases and controls

The impact of an individual’s CNV burden on endometrial
cancer risk was estimated for all CNVs, deletions-only and
duplications-only. On average, the total number of CNVs in
endometrial cancer cases was 1.22-fold greater than con-
trols (p=4.4 X 107%%) and was consistent for CNVs predicted
as deletions (fold change [FC]=1.16, p=1.2X 107%) and
duplications (Table 1, FC=1.31, p=1.5x107%). We further
investigated the genomic location of CNVs and estimated
the burden of CNVs overlapping genes and exons or in inter-
genic regions (Table 1). Compared to the burden analysis
of total CNVs, the estimated burden was greater for CNVs
overlapping genes (FC=1.30, p=2.1x 107 and exons
(FC=1.31, p=7.1x10"*). In contrast, intergenic CNVs
(FC=1.16, p=1.9x1072) displayed reduced burden com-
pared to total CNVs (Table 1).

Rare CNV association analysis

To identify specific CNVs associated with endometrial can-
cer risk, we conducted GWASs for three different associa-
tion models: a deletion-only, a duplication-only and a loss
of function models (all genic deletions and any partial gene
duplications) (Supplementary Tables S5-7). We performed

Table 1 Global burden

Mean frequency

association analysis of rare

CNVs Genomic feature Cases (n=4115) Controls Mean difference 95% CI p-value*  Fold change
(n=17,818)

CNVs
All 5.99 4.90 1.10 0.97-122 43x10% 122
Deletions 3.26 2.80 0.45 0.37-0.54 1.1x10% 1.16
Duplications ~ 2.74 2.09 0.64 0.56-0.73 1.4x10° 1.31
Genic CNVs
All 2.89 222 0.67 0.59-0.76 2.1x10° 1.3
Deletions 1.40 1.12 0.28 0.22-0.33 22x1072° 1.25
Duplications  1.49 1.09 0.4 0.34-0.46 2.1x1073% 136
Exonic CNVs
All 2.51 1.92 0.59 0.51-0.67 7.1x10™% 131
Deletions 1.19 0.94 0.25 0.2-031 7.0x1072' 127
Duplications ~ 1.32 0.98 0.34 0.28-0.39 4.1x107* 1.34
Intergenic CNVs
All 3.10 2.68 0.42 0.35-0.49 1.9x1072 1.16
Deletions 1.86 1.68 0.18 0.13-0.23 7.0x107'2 1.11
Duplications ~ 1.25 1.00 0.25 0.2-029 2.6x102 125

Student's two-sample ¢ test
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gene-centric tests under the assumption that non-overlap-  genome-wide threshold of significance (Fig. 1; Supplemen-
ping CNVs impacting the same gene locus may have similar ~ tary Table S5). The analysis of duplication variants identi-
effects. The deletion-only model identified a total of 59 gene  fied a total of 58 risk-associated loci (p <0.01), including
loci associated (p < 0.01) with endometrial cancer, includ-  three loci (SLC6A3, ANTXRL and KIF25) that met genome-
ing two loci (SLCOIB3 and SALL3) that met the Bonferroni ~ wide significance (Fig. 1; Supplementary Table S6). The
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Fig. 1 Manhattan plots for CNV-GWAS of 4,115 endometrial cancer Dashed line indicates Bonferroni derived genome-wide significance
cases and 17,818 controls. Genome-wide p-values for deletion-only thresholds at 8.31x 107 for deletion-only, 5.97 x 107 for duplication-
(top), duplication-only (middle) and loss of function CNVs (bottom). only and 5.81 % 107° for loss of function
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analysis of loss-of-function variants identified a total of 116
endometrial cancer risk loci (p <0.01), including seven loci
(SLC6A3, ANTXRL, TERT, SLCOIB3, SALL3, LPCATI and
MSH?2) that met genome-wide significance (Fig. 1; Supple-
mentary Table S7). Candidate genes (p <0.01) identified by
the loss of function model, which includes all deletion vari-
ants, captured 93% (55/59) and 64% (37/58) of the candidate
genes identified in the deletion-only and duplication-only
models, respectively (Supplementary Fig. 1). Additionally,
28 candidate genes were exclusively identified by the loss-
of-function model. Only four genes (LPCATI, TERT, MSH2
and SLC6A3) were identified as candidate risk loci across
all three genome-wide association analyses (Supplementary
Fig. 1). For each of the genes, all duplications partially over-
lapped the respective gene boundaries suggesting a shared
loss-of-function mechanism with deletions. In total 141 can-
didate genes (1,525 unique CNVs, p <0.01) were identified
across the three association models, including 5 genes (190
unique CNVs) that met genome-wide significance.

Associations of candidate CNV risk loci
at established risk associated SNPs

We next sought to assess if any of the 1,525 risk-associated
candidate CNVs had direct overlap with previously iden-
tified GWAS risk SNPs (n=84) for endometrial cancer
risk (Type 2 diabetes [n=23,516] and obesity [n=297]).
Seven cases and three controls had CNVs that colocalised
with two endometrial cancer risk SNPs (rs11263763 and
rs11651052) located in intron 1 of HNFIB (Fig. 2). Fur-
thermore, CNVs overlapping HNFIB were more than six
times as frequent in endometrial cancer cases compared to
controls (OR=7.59, 95% CI=2.29-28.99, p=0.001, Sup-
plementary Table S8). For the traits associated with endo-
metrial cancer risk, 33 Type 2 diabetes-associated and no

obesity-associated SNPs were overlapped by at least one
candidate endometrial cancer CNV, respectively. Of the
141 candidate gene regions assessed, 50 had at least one
CNV overlapping a previously identified risk-SNP. This
was driven by a large, multigenic deletion that mapped to
the proximal 16p11.2 recurrent breakpoints (BP) 4 and 5
(Supplementary Fig. 2A) that overlaps two Type 2 diabetes
risk SNPs (rs8054556 and rs11642340) and 25 risk-asso-
ciated candidate genes. An additional six lead SNPs had
at least one variant in LD (R?> 0.8) that overlapped a risk-
associated candidate CNVs. This included three lead SNPs
associated with endometrial cancer (rs11263761, rs2278868
and rs882380) and three associated with Type 2 diabetes
(rs11651755, rs4430796 and rs8010382). No SNPs associ-
ated with obesity (EFO_0001073) from the GWAS Catalog
(MacArthur et al. 2017) were found to map to the CNV risk
loci.

Validation of putative rare CNVs

We attempted to validate 17 CNVs (localised to 12 genes),
selected from a range of allele frequencies (0.005%-1.49%),
in 11 samples using NanoString technology. In total, 12 risk-
associated candidate genes were assessed with eight (80%,
8/10) deletions and one (50%, 1/2) duplication validated
(Table 2). These data support the reported predictive accu-
racy of the CamCNYV tool (Dennis et al. 2021). This included,
validation of three deletions overlapping the known endo-
metrial cancer risk genes (MSH2 and PMS?2) in three cases.
These three validated CNVs (chr2:47,637,511-47,673,515,
chr2:47,639,553-47,639,699, chr7:6,029,431-6029586)
overlapped CNVs predicted in a further 26 samples (20
cases, 6 controls). In total, there were 73 CNVs (46 deletions
and 27 duplications) overlapping MLH1, MSH2, MSH6 and
PMS?2 in 86 samples (1.28% of cases and 0.19% of controls).

Scale 20 kb}
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{ hg19
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Copy number variants
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GWAS catalog: Endometerial cancer risk variants
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Fig.2 Overlap of putative endometrial cancer risk copy number variants with previously identified endometrial cancer risk and type II diabetes
risk variants. Copy number deletions (red) and duplications (blue) in the region of HNFIB

@ Springer



Human Genetics (2024) 143:1481-1498

1487

Table 2 Validation results for

; Gene/Loci MAF* Probes OR (CI)® p-value Nanostring Validation
predicted CNVs

Deletions
16pl11.2 0.05% 47 6.05 (1.83-23.05) 3.74E-03 100% (1/1)
CTNNA3 2.58% 17 1.07 (0.87-1.32) 5.13E-01 100% (1/1)
MSH?2 0.05% 2-18 6.07 (1.93-19.13) 2.08E-03 100% (2/2)
MUTYH 0.02% 7 17.34 (1.93-155.14) 1.07E-02 100% (1/1)
NPL 0.65% 3 1.83 (1.27-2.62) 1.10E-03 100% (2/2)
PMS?2 0.07% 2 4.95 (1.78-13.68) 1.99E-03 100% (1/1)
FTO 0.10% 25 2.67 (1.11-6.44) 2.91E-02 100% (1/1)
SKAPI 0.13% 13 3.06 (1.46-6.42) 3.02E-03 100% (1/1)
SALL3 0.09% 15-19 16.29 (5.40-49.12) 7.16E-07 0% (0/2)
XRCC1 0.01% 2-3 8.66 (0.78-95.57) 7.70E-02 0% (0/5)

Duplications
KIF25 2.01% 37 1.64 (1.33-2.03) 4.77E-06 100% (2/2)
SLC6A3 0.49% 9-15 8.57 (5.23-14.02) 1.34E-17 0% (0/3)

MAF minor allele frequency, OR odds ratio, CI confidence intervals (95%)

“Frequencies based on array data

°Qdds ratios and p-value were calculated using logistic regression

A 600 kb deletion at 16p11.2 was validated in one sample
(Table 2) using two NanoString probes targeting two dif-
ferent sequences located at chr16:29,653,084-29653175
and chr16:29,875,711-29,875,781. A third
probe (16pl11_2_389916_32171.1:87) located at
chr16:30,125,121-30125192 within the predicted deletion
region had insufficient counts (< 100 average counts, Sup-
plementary Table S9). Additionally, two risk-associated
deletions overlapping NPL (ORpg; =1.8, p=0.001; Sup-
plementary Table S5) and SKAPI (ORpg; =3.1, p=0.003;
Supplementary Table S5) were confirmed in two samples
and one sample, respectively.

Pathway analysis of candidate endometrial cancer
risk genes

Due to high degree of overlap between loss of function
and deletion-only models (Supplementary Fig. 1), pathway
analysis was independently performed on candidate endo-
metrial cancer risk genes for duplication-only and loss-of-
function CNV-GWASs (Fig. 3, Supplementary Table S10).
The most significantly enriched pathway for loss-of-function
CNV-GWAS is 16p11.2 proximal deletion syndrome (MIM:
611,913; p=6.3x107), driven by the recurrent 600 kb long
deletion (chr16:29,595,483-30,159,693) identified in six
endometrial cancer cases and four controls (0.15% vs 0.02%
respectively). This recurrent deletion encompasses 25 genes
entirely with 24/25 genes solely impacted by this deletion.
The one exception, MAP3K, had a single small deletion (28
kb) in one other case sample.

Moreover, when GWAS-SNP gene sets were tested for
enrichment, many of the traits over-represented were driven
by those overlapped by this CNV (Fig. 4; Supplementary
Table S11). Interestingly, these traits included the enrichment
of genes previously linked to body fat distribution (arm fat
ratio) (p=1.2x107).

The gene expression data Human Protein Atlas and The
Cancer Genome Atlas (TCGA) were used to assess the expres-
sion in the endometrium of the genes within the 16p11.2
deletion (n=25). Additionally, TCGA-UCEC data was used
to correlate the expression of each gene with the number of
DNA copies (dosage sensitivity, Supplementary Table S12,
Supplementary Fig. 3). In normal endometrial tissue, one
gene had no detectable expression (C1607f92), eight genes
had low expression (0.5 < Transcripts per million [TPM] < 10;
ZG16, ASPHDI, TBX6, DOC2A, Cl6orf54, SPN, KCTD13,
GDPD?3) and the remaining 16 exhibited high levels of expres-
sion (10 < TPM < 1000). Of the eight ‘low’ expression genes,
only the expression levels of TBX6 and KCTD13 positively
correlated with gene dosage. In contrast, of the more highly
expressed genes in normal tissue, all except TMEM?219 and
PRRT? had a gene dosage effect in endometrial tumour tissue
(p<0.0001). Overall, expression levels correlated positively
with gene dosage (p <0.0001) for 16/25 genes in endometrial
tumour tissue, supporting the possibility that CN'V-related
impact on function results in gene expression changes and a
potentially abnormal phenotype (Supplementary Table S12;
Supplementary Figs. 2b).
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Term name P-value

MSH6

DUP LOF

PMS2

MSH2

STK11
MAPK3*
KIF22
PAGR1
TAOK2*
INOSOE*
PPP4C*
TAF4
TERT
GNAS
VWA1
PRTT2*
YPEL3*
DMGDH
BHMT
SLC7A5
PTGIS
CCDC8
CD36
EPCAM
CHRM
CTSB
SNTG1
SKAP1
16p11.2.A*
Stress
Membrane

8.13

16p11.2 proximal deletion syndrome x10-32

Diseases of Mismatch Repair 0.0012

Defective Mismatch Repair Associated With MSH6 0.0202

Somatic hypermutation of immunoglobulin genes 0.001

Somatic diversification of immune receptors via somatic

mutation 0.0014

Neoplasm of the anterior pituitary 0.465

Neoplasm of the pituitary gland 0.465

Pancreaticadenocarcinoma 0.0209

Cardiac diverticulum 0.0185

Choline catabolism 0.0264

IAmino-acid betaine catabolic process 0.0299

Cellular response to DNA damage stimulus 0.2345

Cellular response to stress 0.0427

Plasma membrane region 0.0496

Fig.3 Significantly over-represented pathways for candidate genes
derived from duplication-only (DUP) and loss of function (LOF)
CNV_GWAS. Significantly enriched pathways are ordered by
adjusted p-value (most-to-least significant) of 58 and 116 can-
didate genes derived from duplication-only and loss of function
GWAS. Reactome (REAC) (Fabregat et al., 2018), KEGG (Kane-
hisa et al., 2019), WikiPathways (WP) (Slenter et al., 2018), Gene
Ontology (GO) (Ashburner et al., 2011), Human Phenotype Ontol-
ogy (HP) (Kohler et al., 2019) were selected as annotation data-
bases. Heatmap on left depicts which CNV-GWAS candidate genes

Discussion

While a proportion of endometrial cancer cases that are not
currently explained by known genetic risk factors will be
explained by epistatic and gene-environment interaction, it is
likely that some risk loci have yet to be identified. The objec-
tive of this study was to identify rare, germline CNVs that
may be associated with endometrial cancer predisposition.
We have utilised a large SNP array dataset from the Endo-
metrial Cancer Association and Breast Cancer Association
Consortium to conduct a CN'V-based GWAS of endometrial
cancer. A small proportion (~3%) of the cases cohort are
likely to be attributed to Lynch Syndrome, however these
data were not available within the study cohort (Ryan et al.
2019).

The number of rare CNVs we predicted per individual
(5.1 CNVs per individual) is consistent with other case—con-
trol studies in breast (5.4 CNVs per individual) and ovarian
(5.3 CNVs per individual) cancer cohorts using the same
CNV calling methods (Dennis et al. 2022; DeVries et al.
2022). (DE) In our study, endometrial cancer cases had a
1.2-fold greater number of CNVs compared to controls.
This is consistent with our previous analyses of a cohort
of endometrial cancer cases and controls, that reported an
increased burden of rare deletions involving genes and other
likely functional regions (Moir-Meyer et al. 2015). However,
the increased CNV burden is not observed between ovarian
cancer cases and controls (DeVries et al. 2022). The cause of
the discrepancy in CNV burden between studies is unclear.
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were overrepresented. Gene sets on right side of figure encompass
multiple genes: 16p11.2A=SPN, QRPT, Cl6orf54, ZG16, MAZ,
MVP, CDIPT, SEZ6L2, ASPHDI, KCTD13, TMEM?219, HIRIP3,
DOC2A, Cl6orf92, ALDOA, TBX6, GDPD. Stress=CYPIBI,
FGF12, PPARA, BCLAFI, POLQ, FANCM, ERCC2, GML. Mem-
brane=SLC6A3, SLCO1B3, DLG2, TMEM231, SLC19A1, SLC4A?7.
Genes denoted with * denote additional gene loci identified via recur-
rent 16p deletion identified in LOF CNV-GWAS but were also repre-
sented in other enriched pathways

Analysing rare variants is often more challenging than
common variants due to the larger sample sizes needed to
reach statistical significance (W. Chen et al. 2022). How-
ever, the chosen CNV calling method, CamCNYV was spe-
cifically designed to detect rare variants from genotyping
array data while reducing false positives (Dennis et al.
2021). The estimated false discovery rate (FDR) for CNVs
called using CamCNYV reduces with increasing probe cov-
erage, with the FDR for deletions called by five probes or
more estimated at 5.8% and dropping to 1.2% with 10 or
more probes. Approximately 53% of deletions were called
with > five probes, and 27% of deletions with > 10 probes,
increasing our confidence in these findings. Consistent with
the estimated FDR for CamCNYV, 83% of candidate deletions
were validated by Nanostring in deletions called with 2-47
probes. Interestingly, 67% of CNVs called with 2 probes
were validated, including two deletions in the Lynch syn-
drome genes MSH2 and PMS2. CamCNYV is less reliable
for duplication with a FDR for >3 probes calls estimated at
62.4% (Dennis et al. 2021). However, approximately 48% of
duplications were called using ten or more probes where the
FDR is estimated at 8.5%. In this study, we validated three
singletons CNVs using NanoString, further increasing our
confidence in CamCNVs ability to detect rare, true events.

One way to overcome difficulties associated with rare
variant analysis is to perform region-based aggregation
tests of multiple variants (Lee et al. 2014). In contrast to
SNPs, the impact on a gene by different overlapping CN'Vs
are assumed allowing the aggregation of these CNVs. This
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Fig.4 Gene set enrichment analysis for candidate risk genes derived
from duplication-only (DUP) and loss of function (LOF) CNV-
GWAS. FUMA gene set enrichment analysis results for candidate
genes derived from DUP and LOF CNV-GWAS (n=58 and n=116,
respectively). Adjusted p-values presented. Gene sets on right side

approach allowed us to identify genes overlapping with rare
CNVs that were associated with endometrial cancer risk,
including genes previously implicated in risk by SNP-based
association studies. Rare CNVs are over 800 times more
likely to be deleterious when compared with single nucleo-
tide variants of the same frequency (Abel et al. 2020). A
strength of this study was the loss of function CNV-GWAS
in which we tested CNVs based on their likely impact of
gene regions. A total of 28 gene regions were found to be
significantly associated with endometrial cancer in the
loss of function CNV-GWAS. LPCATI, TERT, MSH2 and
SLC6A3 were consistently associated with endometrial can-
cer risk across the three models (deletions-only, duplica-
tions-only and loss of function), suggesting a shared loss
of function mechanism across CNV type. It is unclear how
the loss of function of LPCAT1, TERT or SLC6A3 might
contribute to endometrial cancer risk. LPCAT1 is involved
in lipid metabolism (Nakanishi et al. 2006) a cellular pro-
cess which when disrupted may be associated with increased
endometrial cancer risk (Rosato et al. 2011). TERT has mul-
tiple functions including maintenance of telomere ends, and
its activity can have oncogenic effects, such as promoting
cell growth and proliferation of cancer cells (Yuan et al.
2019). SLC6A3 functions as a dopamine transporter, as can
be found overexpressed in cancers, including renal cell car-
cinoma and gastric cancer (Hansson et al. 2017).

Our loss of function GWAS recapitulated risk associa-
tions identified in endometrial cancer SNP-studies, includ-
ing variants involving SKAPI (O’Mara et al. 2018; Painter
et al. 2018). A corresponding transcriptome wide associa-
tion study (TWAS) demonstrated that decreased expression
of SKAP]I in blood was associated with an increased risk
of endometrial cancer (Kho et al. 2021a, b). In this study
we report a risk association between loss-of-function vari-
ants involving SKAPI (OR: 2.4, p=0.008) and endometrial

encompass two sets of genes, all of which are at 16p11.2 and driven
by recurrent deletion identified. 16p11.2.A=SEZ6L2, ASPHDI,
KCTD13, TMEM219, TAOK2, HIRIP3, INOSOE, DOC2A, ALDOA,
PPP4C, TBX6, YPEL3, GDPD3. 16p11.2.B=TMEM219, TAOK2,
HIRIP3, INOSOE, DOC2A, ALDOA, PPP4C

cancer risk, which is consistent with these findings. A novel
finding from this study is the association between dele-
tions involving NPL and endometrial cancer risk (OR: 1.8,
p=0.001). NPL regulates intracellular levels of sialic acid,
with functional studies demonstrating genetic disruption of
NPL leads to sialic acid accumulation (Wen et al. 2018).
Increased sialic acid levels, or hypersialyation is commonly
seen in tumour tissues and leads to accelerated cancer pro-
gression (Biill et al. 2014; Dobie & Skropeta 2021; Sun et al.
2020). Moreover, high levels of sialyation in endometrial
cells has been shown to promote endometriosis outbreaks
via TGF- f1 (Choi et al. 2018). Given the shared biological
aetiology between endometrial cancer and non-cancerous
gynaecological diseases such as endometriosis (Kho et al.
2021a, b; Painter et al. 2018), the association identified
between deletions involving NPL and endometrial cancer
risk warrants further investigation.

Obesity traits are well established risk factors for endo-
metrial cancer (Aune et al. 2015; Painter et al. 2016), at
least partly due to the accumlation of unopposed oestrogen
(Lukanova et al. 2004). In this study, pathway enrichment
analyses of candidate endometrial cancer risk genes revealed
a strong over-representation of genes involved in 16p11.2
proximal deletion syndrome (MIM: 611,913), that is charac-
terised by clinical heterogeneity and incomplete penetrance
(Fetit et al. 2020). Proximal 16p11.2 BP4-BP5 deletions are
highly pleiotropic and have been associated with many neu-
rocognitive phenotypes, neurological tumours, morbid obe-
sity and epilepsy (Auwerx et al. 2024; Bijlsma et al. 2009;
Egolf et al. 2019; Fetit et al. 2020; Jacquemont et al. 2011;
Shinawi et al. 2010; Ventura et al. 2019). This is consistent
with genetic correlation between obesity traits and endome-
trial cancer risk (O’Mara et al. 2018). Repetitive regions at
16p11.2 result in recurrent structural changes, the most com-
mon of which being a proximal 16p11.2 BP4-BP5 deletion
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at chrl16: 29.6—30.2 Mb (Zufferey et al. 2012). We observed
a risk-associated deletion among ten women at this locus,
that is completely retained within this clinically defined
region. Microdeletions at 16p11.2 result in a predisposition
to obesity, with reciprocal deletions and duplications being
respectively associated with obesity and being underweight,
highlighting a gene dosage mechanism (Bochukova et al.
2010; Jacquemont et al. 2011; Macé et al. 2017; Walters
et al. 2010). Expression levels for some but not all genes
within the proximal 16p11.2 BP4-BP5 have previously been
shown to correlate with copy number in pluripotent stem
cells, lymphoblastoid cell lines and adipose tissues (Jac-
quemont et al. 2011; Roth et al. 2020; Walters et al. 2010).
To our knowledge, this is the first time the relationship
between gene copy and expression of genes involved in this
deletion have been assessed in endometrial tissue and our
results suggest potential dosage effects for the majority of
genes assessed. Interestingly, the transcription factor TBX6
is expressed at low levels in normal endometrial tissue but
a correlation between TBX6 gene dosage and expression
was identified in endometrial tumour tissue. 7BX6 has been
implicated as a candidate gene for another associated clini-
cal manifestation of microdeletions at 16p11.2 which leads
to a complete absence, or underdevelopment, of the female
reproductive system (with Mayer-Rokitansky-Kiister-Hauser
syndrome [MRKH; MIM: 277000]). Studies have reported a
significant association of 16p11.2 deletions among individu-
als with MRKH, potentially indicating that genes near this
locus are involved in uterine development (Chen et al. 2021;
Gatti et al. 2018). Results from this study support loss-of-
function at this region is associated with endometrial cancer
risk, with possible risk mechanisms being linked to obesity
and/or uterine development.

Despite this being the largest endometrial cancer CN V-
dataset analysed to date, the rarity of the CN'Vs identified
results in limited power for detecting significant associa-
tions. We therefore used a nominal threshold of p <0.01 to
prioritise gene regions as candidate risk genes. Explicitly
modelling prior associations with a generous prior did not
materially alter our results providing some assurance that
the genome wide adjustment used in our standard analysis
is best practise, at least with our current knowledge of the
genomic landscape of endometrial cancer. With this current
study we aimed to identify a broad array of candidates, and
thus all results reported on require further validation in inde-
pendent datasets. We acknowledge that this is a limitation
of the study, however in silico assessment and prioritisa-
tion was employed as a way to compliment the empirical
approach. Pathway analysis of candidate genes revealed an
enrichment of obesity and cancer pathways and identified
multiple genes/loci that warrant further investigation.

In summary, we have conducted the largest CNV-GWAS
for endometrial cancer predisposition. We have shown a
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global burden of rare CNVs and support the association
between increased genomic load of rare CNVs and endome-
trial cancer risk. Our prioritisation workflow led to the iden-
tification of 141 candidate endometrial cancer susceptibility
genes, many of which have plausible biological mechanisms
to suggest an involvement in endometrial cancer susceptibil-
ity. Clinical features previously associated with proximal
16p11.2 BP4-BP5 deletions, including predisposition to obe-
sity and congenital reproductive tract development, make
this a particularly intriguing risk association that warrants
further study.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00439-024-02707-9.
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