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Chromothripsis is a frequent form of genome instability, whereby a pre-

sumably single catastrophic event generates extensive genomic rearrange-

ments of one or multiple chromosome(s). However, little is known about the

heterogeneity of chromothripsis across different clones from the same

tumour, as well as changes in response to treatment. Here we analyse single-

cell genomic and transcriptomic alterations linked with chromothripsis in

human p53-deficient medulloblastoma and neural stem cells (n = 9). We

reconstruct the order of somatic events, identify early alterations likely linked

to chromothripsis and depict the contribution of chromothripsis to malig-

nancy.We characterise subclonal variationof chromothripsis and its effects on

extrachromosomal circular DNA, cancer drivers and putatively druggable

targets. Furthermore, we highlight the causative role and the fitness con-

sequences of specific rearrangements in neural progenitors.

Chromothripsis (CT) is a type of genome instability, by which a pre-

sumably single catastrophic event leads to substantial genomic rear-

rangements of one or a few chromosome(s)1,2. Generally considered as

an early event in the evolution of a tumour, CT likely plays a causative

role in the development of a number of tumours by generating mul-

tiple genomic aberrations simultaneously. In line with this, rearran-

gements due to CT were detected in more than 25% of cancer patients

in two large pan-cancer studies3,4. In specific tumour types or mole-

cular subgroups, the prevalence for CT reaches 100%, such as in

medulloblastoma with germline TP53 mutations (Li-Fraumeni syn-

drome, LFS), which is the focus of this study. As in a number of other

tumour types2,5–7, CT is linked with poor prognosis for these patients,

as compared tomedulloblastomas from the samemolecular subgroup

without CT. In the context of TP53 mutations in the germline, it is

conceivable that multiple CT events may occur in different cells and

most of them are not selected for and therefore undetected.

Longitudinal studies on the evolution of CT chromosomes

between matched primary and relapsed tumours showed that CT

patternsmaybe either (i) stabilised (ii) eliminated or (iii) undetected at

initial diagnosis but present in the relapsed tumour4,8,9. Importantly,

elimination as well as newly detected CT chromosomes suggest that a

subset of tumour cells in the initial tumour may potentially lack or
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already carry the CT chromosome. These findings question the para-

digm that CT is a single early event in tumour development, which

would imply that the CT chromosome would be present in the vast

majority of the tumour cells. However, conclusive evidence of the

extent to which CT varies across tumour cells and clones is missing. As

CT was shown to drive tumour development through the activation of

oncogenes and the disruption of tumour suppressor genes4,10, clonal

heterogeneity in CT could also have implications for the role of cancer

drivers and therapeutic targets within CT tumours. In addition, CTwas

linked to compromised function of essential factors such as p53, ATM

and critical DNA repair proteins, suggesting that the inactivation of

specific pathways and checkpoints may facilitate the occurrence of CT

events and/or the survival of the cells after suchanevent2,11,12. However,

direct evidence of potential enabling mechanisms is limited.

Sequencing of cultured cells showed that processes such as

mitotic errors, micronuclei formation, centromere inactivation, chro-

matin bridges but also telomere dysfunction can cause a range of

rearrangements, including CT13–17. Although modelling CT in cell cul-

ture systems has allowed putative mechanisms to be proposed, the

way in which spontaneous CT events occur in human cells remains

largely unknown. It is unclear to which extent mechanisms derived

from artificially inducing CT in vitro reflect CT events in human cancer.

Single-cell DNA sequencing (scDNA-seq) studies in the context of CT

are only beginning to emerge. Pellman and colleagues reported

mechanistic insights into the generation of complex rearrangements

from sequencing cultured clones and single cells from the retinal

pigment epithelial (RPE1) cell line16,17. Korbel and colleagues investi-

gated structural variation in the RPE1 cell line and showed complex

rearrangements for one leukaemia sample as a proof-of-principle18,19.

To study this process in situ, we set off to characterise the hetero-

geneity in CT patterns across tumours. Even though subclonality of CT

was suggested by previous studies20, CT has not been analysed in

primarypatientmaterial and cells obtained fromPDXmodels at single-

cell resolution, and previous single-cell studies on medulloblastoma

have not focused on CT21–25.

Here, we leverage bulk and single-cell sequencing assays, com-

bined with fluorescence in situ hybridisation (FISH), immuno-

fluorescence analyses and CRISPR/Cas9 knockouts to investigate the

origins and functional consequences of CT in LFS medulloblastoma.

We generated shallow single-cell DNA- and single-cell RNA-seq profiles

from 663 and 22,500 cells from 7 LFS medulloblastoma samples,

respectively, including three brain tumours and four PDX samples. We

demonstrate the ability to detect CT events using single-cell DNA-seq

in tumours, further unravelling the extent of intra-tumour hetero-

geneity with clonal resolution. In addition, we highlight potential

mechanisms for the formation of extrachromosomal circular DNA

(ecDNA). Using matched single-cell RNA-seq (scRNA-seq) data, we

characterise the malignant cell types and investigate differences to

non-CT medulloblastoma. By integrating scDNA-seq and scRNA-seq

information based on somatic copy number profiles that can be

identified from both data modalities, we shed light into potential

transcriptomic consequences of CT and its impact on tumour evolu-

tion. Finally, we identify a putative role for the SETD2 methyl-

transferase in the early stages of the development of CT

medulloblastomas using functional analyses in neural stem cells.

Results
Rearrangements due to CT can be detected in single
tumour clones
We explored how CT contributes to inter cell genetic heterogeneity

and generates oncogenic drivers that increase cell fitness and tumour

aggressiveness. We performed single-cell DNA and RNA-seq (single-

cell and single-nuclei sequencing; hereafter termed single-cell (sc) seq)

of paediatric medulloblastomas with CT that carry a germline TP53

variant (LFS, n = 7, including 3 patient tumours and 4 patient-derived

xenograft (PDX) models, primary and relapsed, see Fig. 1 & Supple-

mentary Data 1). Medulloblastomas in LFS patients constitute a para-

digm for the understanding of this phenomenon, as CT is present in

close to 100% of these cancers2,26. This patient collective is embedded

in a larger population-scale deep sequencing cohort of patients that

span all molecular subgroups of medulloblastoma (n = 227).

Subclonal CT events contribute substantially to intra-tumour
heterogeneity in LFS medulloblastoma
With CT being present in all LFS medulloblastomas analysed so far2,26,

we asked whether we could characterise the underlying subclonal

heterogeneity using single-cell sequencing. Briefly, to identify sub-

clones and their copy number variation (CNV) profiles, we first esti-

mated total copy number in larger genomic segments in each cell

(500 kb to 1Mb; using scAbsolute27, followed by clustering). This

identifiedbetween 1 and 5distinctgenetic clones per sample (Fig. 2a, b,

Supplementary Fig. 1−7). Next, to study clonal heterogeneity in CT, we

called CNV profiles using aggregate read counts for each clone, which

provided higher resolution (20 kb; Fig. 2a) and enabled the identifi-

cation of CT regions (based on density signature of copy number state

switches3,4; “Methods”). We assessed the consistency of the resulting

CT estimates across clones with matched bulk WGS data3, finding that

85% of CT regions identified by either approach replicated in the other

one (Fig. 2a, SupplementaryData 2). We also assessed the sensitivity of

our strategy to detect CT events as a function of sequencing coverage

(using downsampling; Supplementary Fig. 8a), and we applied our

workflow to an independent single-cell dataset from a cell line with an

inducedCT event, confirming high specificity (Supplementary Fig. 8b).

Finally, we assessed the consistency of patterns of oscillating CNV

changes, as characteristics for CT, across single-cell DNA-seq tech-

nologies in PDXmodels, and found evidence for precursor cells in the

corresponding primary tumour (Supplementary Fig. 9).

Having confirmed the accuracy of the CT identification based on

scDNA-seq, we next set out to study broad patterns of subclonal CT.

Across samples, we identified both clonal and subclonal CT regions

(considering 4/6 samples with two or more clones, Fig. 2b, c). For

example, in LFS-MBP Nuclei, we identified clonal CT regions on chro-

mosomes 4, 7, 16 andX and subclonal events on chromosomes 5, 12, 14,

17, and 19 (Fig. 2a). While all but one of these CT events (chromosome

12) were also detected in bulk WGS data, bulk profiling cannot dis-

criminate between clonal or subclonal CT events. On the level of indi-

vidual CNV events, as expected, the majority of events overlapped one

of the identified CT regions (62%), reflecting the high density of copy

number breakpoints caused by CT. This was despite non-CT associated

CNVs altering a considerably larger fraction of the genome (24% non-

CT; 7% CT associated), highlighting the specific role of CT in driving a

large number of CNV breakpoints (e.g., chromosome 7 inset Fig. 2a).

Similar patterns were observed across the full dataset, with 36-67% of

the CNV events overlapping CT regions (Fig. 2d). These findings are in

linewithdata fromNotta et al.28 frombulk analyses inpancreatic cancer,

supporting thenotion that themajority of theoverall genome instability

in CT tumours can be attributed to a small number of CT events.

Critically, the role of CT as driver of CNV events was also evident

when considering subclonal CNVs. Across samples, between 43% and

45% of all subclonal CNV events were overlapping with CT regions

(Fig. 2e). Collectively, our data underline a broader relevance of CT,

not only asa driver of tumour instability per se, but specifically also as a

driver of a substantial fraction of subclonal genomic alterations,

thereby extending previous knowledge derived from bulk data that

could not differentiate between clonal and subclonal CT28.

Chromothripsis is a major event for the formation of extra-
chromosomal circular DNA structures (ecDNAs)
Extrachromosomal circular DNA (ecDNA) fragments carrying ampli-

fied oncogenes were previously suggested to be generated by CT2,10
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but have not been studied extensively at the single-cell level in

tumours. Seminal studies, primarily in cell lines, have characterised the

evolutionary dynamics of ecDNAs29, segregation patterns30, structural

heterogeneity31 and associated oncogene expression32,33. However, the

relationship between intra-tumour heterogeneity in ecDNAs and in CT

is still unclear. To detect and quantify putative ecDNAs, we searched

for small fragments of a fewMbhighly amplified carrying oncogenes in

the scDNA-seq data (Fig. 3a, sample MB243-Nuclei). By assembly from

the matched bulk data, we confirmed that these amplified fragments

were indeed circular DNA structures carrying oncogenes (e.g., GLI2,

Fig. 3b). Interestingly, their copy number varied from 5 to more than

100 copies per nucleus in the single-cell data, suggesting an additional

level of heterogeneity (Fig. 3c; “Methods”).

We observed no correlation between the number of copy-number

segments per chromosome detected in each single cell and the copy

number of ecDNAs, with some cells with only 4 or 5 breakpoints still

harbouring very high copy numbers of the ecDNA region (Fig. 3d).

While CT scoring on a single cell level is less robust than at clone level

(Supplementary Fig. 8a), cells with so fewbreakpoints on chromosome

2 are unlikely to be chromothriptic in this location. This could be

explained by the presence of cells carrying the ecDNA, but having lost

the CT chromosome. The presence of cells carrying only the ecDNAs

but without the derivative CT chromosome suggests that the ecDNAs

themselves may possibly provide a stronger selective advantage. In

tumours with two or more ecDNAs originating from distinct chromo-

somes, the amounts of ecDNAs generated from different loci were

tightly correlated only in a minority of cases, with most nuclei char-

acterised by the presence or absence of each individual ecDNA (Sup-

plementary Fig. 10a, b). We detected substantial heterogeneity across

clones but also across cells within clones in the number of ecDNAs,

suggesting that the number of ecDNAs is not directly linked with the

copy-number profiles, or subclonal CT status, on this chromosome

(Fig. 3e, Supplementary Fig. 10b, d). Essentially, this shows that ecD-

NAs further add to the intra-tumour genetic heterogeneity. Cells with

extreme levels of ecDNAswere rare andusually didnot clusterwith any

other cell from the same tumour, suggesting that above a given

threshold, the number of copies might not further increase the

selective advantage for clonal expansion (Supplementary Fig. 10a). It is

conceivable that within a certain range a given oncogene may provide

a selection advantage, but too high levels of specific oncogenes may

become detrimental for the cell, as suggested by the concept of

oncogene overdose34. The presence of ecDNAs was associated with

higher RNA expression of oncogenes carried on the ecDNAs,with large

variations in expression within tumours (Fig. 3f).

We experimentally validated the presence of ecDNAs by FISH in

the tumour BT084, focusing on the CT event on chromosome 2

(Fig. 3g). For this purpose, we combined a FISH probe for GLI2, an

oncogene carried by ecDNAs in this tumour, and a Xcyte 2 probe

allowing us to visualise distinct regions of chromosome 2 with differ-

ent fluorophores. The vast majority (close to 80%) of the analysed

metaphases showed four copies of chromosome 2, with three copies

of similar size and one shorter copy. We occasionally detected meta-

phases with three or five copies of chromosome 2, consistent with the

single-cell CNV data showing intra-tumour heterogeneity regarding

the presence of the CT chromosome across cells mentioned earlier.

To further assess the link between CT and ecDNAs in Sonic

Hedgehog (SHH) medulloblastoma, we searched for ecDNAs in bulk

WGS of SHHmedulloblastoma (n = 46) and performed CT scoring (see

“Methods”). Remarkably, medulloblastomas with ecDNAs showed a

significantly higher CT prevalence (Fig. 3h), confirming the association

suggested in a previous study in onemedulloblastoma via inference of

the ecDNA structure from bulk WGS2. In addition, we identified a sig-

nificant correlation between the presence of ecDNAs and CT pre-

valence across nine tumour types, suggesting that CT is not only one

way how ecDNAs are generated, but might be the major way (Fig. 3i).

Together with our results from single-cell DNA-seq, these data show

that CT and ecDNAs co-occur within the same tumours, while not

necessarily being conserved within the same individual cells

throughout tumour evolution.

Integrating copy-number variation with transcriptional hetero-
geneity in medulloblastomas with chromothripsis
Beyond selective advantages provided byCT,we set out to characterise

broader consequences of CT, in particular on the transcriptome of

these tumours. While previous studies have considered scRNA-seq

profiling to characterisemedulloblastoma heterogeneity35,36, the extent
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to which a highly rearranged genome in CT medulloblastoma has

transcriptional consequences is not well understood. We performed

10X single-cell (from PDX samples) and single-nuclei (from patient

tumours) RNA-seq of the same samples subjected to single-cell DNA-

seq (Fig. 4a, “Methods”), yielding 15,259 single-nuclei and 7241 single-

cell (PDX) transcriptomes respectively (after QC; Supplementary

Data 4; hereafter referred to as scSeq for both cells and nuclei). A joint

embedding of cells across the entire dataset revealed, as expected,

substantial heterogeneity between patients, tumours and their corre-

sponding PDX models (Supplementary Fig. 11). Thus, we conducted

clustering in each sample, followed by annotation using literature-

derived36–38 marker genes (Supplementary Data 5). This approach

identified (Fig. 4b–e) three major malignant cell states (tran-

scriptionally close to granule neuron progenitors, as expected, Sup-

plementary Fig. 12a), which were detected both in nuclei and PDX,

characterised by: SHH signalling activity (e.g., GLI2), proliferation (e.g.,

MKI67, TOP2A) and neuronal development and differentiation (e.g.,

RBFOX3, NEUROD1). Motivated by prior work identifying these three

malignant cell states also in non-CT SHH medulloblastomas35, we pro-

jected these single-cell profiles into an existing single-cell reference

atlas of non-LFS SHH MBs (using ingest; “Methods”). This integration

confirmed the transcriptional similarity between the CT tumour sam-

ples and the non-LFS SHHMBs, where samples matched primarily with

the SHH group (Supplementary Fig. 12b, c), which is in line with clas-

sification results obtained from DNA methylation (Supplementary

Fig. 12d). Collectively, these results indicate that, despite pronounced

genomic differences between CT and non-CT medulloblastomas from

the same molecular subgroup, the cellular programmes are qualita-

tively shared between both groups.

To dissect more subtle transcriptional differences between CT

and non-CT medulloblastomas, we leveraged three existing bulk RNA-

seq data resources (46 fresh-frozen39 and 173 FFPE40,41
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somes with evidence for chromothripsis (CT; estimated using ShatterSeek, see
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composed of normal cells) identified by hierarchical clustering of cell-level CNV

profiles estimated from scDNA-seq. Barplots denote the fraction of bootstrap
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or low confidence (grey) CT highlighted. Stacked bar plots on the right indicate

the percentage of the genome altered by each of the 5 types of copy number

alterations for each sample. d Percentage of individual CNV segments classified as

clonal or subclonal CT associated, or clonal and subclonal non-CT associated.

e Number of CNV segments with subclonal copy number changes that overlap

with regions identified as CT versus segments outside CT regions. Source data are

provided as a Source Data file.
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medulloblastomas with and without CT; see “Methods”; Supplemen-

tary Fig. 12e–h, SupplementaryData 6). Differential expression analysis

between CT and non-CT SHH medulloblastomas identified a union of

916 differentially expressed genes across both FF and FFPE samples

(FDR <0.05, Log2FC < −1 | Log2FC > 1, Benjamini-Hochberg adjusted,

two-sided Wald test, accounting for SHH subgroups, “Methods”). The

intersection of both gene lists yielded 4 genes which were up-regu-

lated, (MKI67IP, GLI2, CLASP1 and TSN), all of which are reported to be
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important for chromosomal translocations, SHH signalling, or MYC

targets. Conversely, 14 genes were significantly down-regulated,

including AHNAK, LRP1, CDKL5, and HIST1H3J. Altogether, the com-

bined transcriptome analysis hinted towards strikingly subtle differ-

ences between CT and non-CT tumours, given the substantial

difference in aggressiveness of CT as compared to non-CT

medulloblastomas.

Next, to more explicitly study the effect of CT-induced CNVs on

single-cell transcriptomes, we set out to integrate scDNA-seq and

scRNA-seq profiles at the level of the subclones. Briefly,weusedbroad-

scale genome-wide CNV profiles estimated from scRNA-seq (using

inferCNV42, “Methods”, Supplementary Fig. 13, 14) to align individual

cells to the most likely clone of origin (Supplementary Fig. 13, 14).

While this approach was able to confidently assign at least 20 cells to

each scDNA-seq clone (alignment confidence estimated using per-

mutations; “Methods”), a large proportion of RNA cells did not have a

unique match to a scDNA-seq clone. To increase the fraction of cells

with well-defined mappings, we collapsed clones with ambiguous

assignments. This approach allowed us to align RNA cells to between 2

and 4 clones per sample (11 clones in total, out of 16 before collapsing)

which correspond to an scRNA-seq assignment rate of 62 and 98% of

scRNA-seq cells (Supplementary Data 7, Supplementary Fig. 15). For

example, out of 5 scDNA clones in LFS-MB-PDX, cells from scRNA

could be assigned to 4 distinct genomic groups, reflecting that major

CNV events could be detected in both modalities (Fig. 4f). Notably,

even though we observed an enrichment of certain cell types in each

genetic clone, the dominant source of variation in the scRNA-seq data

was cell type rather than clone (Fig. 4g, Supplementary Fig. 16). The

clone labels also allowed us to identify molecular signatures of indi-

vidual clones, such as differentially expressed genes and pathways

(Supplementary Fig. 16 and Supplementary Data 8, FDR <0.05, two-

sided Wilcoxon rank sum test, Benjamini-Hochberg adjusted, one
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Fig. 4 | Large-scale genomic alterations drive transcriptional heterogeneity in

medulloblastoma with chromothripsis. a Overview of the experimental proce-

dure to generate the single-cell and -nuclei RNA-seq data for the 7 samples in this

study. Top: single-nuclei RNA-sequencing (blue, tumours). Bottom: single-cell RNA-

sequencing (green, PDX). UMAP embedding for tumour samples (n = 3), profiled

using single-nuclei RNA-seq (left, 15,259 cells) and PDX (n = 4) profiled using single-

cell RNA-seq (right, 7241 cells). Cell types annotatedusing literature-derivedmarker

genes indicated in distinct colours. TheMacro cell type contains bothmacrophage

and microglia cells. Malignant cell types highlighted in purple; non-malignant cell

types shown in black font. b, c Stacked bar plots, displaying the relative prevalence

of individual cell types across samples, for tumours (b) andPDXmodels (c).Colours

highlight distinct sample contributions.d, eDotplot displaying the expression level

and prevalence of marker genes (x-axis) across the cell populations identified (y-

axis) as shown in (a, b). Dot size denotes the fraction of cells expressing the

respective marker gene; dot colour depicts the relative expression level. f Results

from the clone alignment of scDNA- and scRNA-seq profiles for LFS-MBP PDX. Top:

Heatmap displaying the copy number profiles derived from scDNA, with colour

corresponding to copy number (scale [0,8]; larger values clipped). Bottom: Heat-

map showing relative CNV profiles estimated using inferCNV42, with colour

corresponding tomodified expression (scale centred at 1; diploid state). Colour bar

on the right side indicates uncertainty measures for the assignment of copy num-

ber clones (see “Methods”). g UMAP embedding depicting 3629 cells from scRNA-

seq after QC for LFS-MBP PDX. Cells are coloured according to their assigned cell

type identity (top) or clone from scDNA (bottom). Phenotypically normal cells as

well as cells that did not meet the assignment confidence were excluded and are

marked as unassigned or normal cells. h Pie charts showing the fraction of drug-

gable targets affected by distinct genomic alterations as highlighted in Fig. 1 across

all aligned samples. i Boxplots showing the copy number status (top; normalised

read counts multiplied by cell ploidy) and expression (bottom; ln[CP10K+ 1]

values) of DLL3 and HDAC3, as examples of druggable targets, in clones from

scDNA- and scRNA-seq for LFS-MBP PDX. Clone1 and Clone2 have been merged

because their genomic profiles are too close to distinguish them accurately based

on scRNA-seq (see “Methods”). Each point corresponds to a single cell, with cor-

responding cell numbers in each clone in Supplementary Data 7. Tukey boxplots

are displayed, centred at the median, with hinges at 25th and 75th percentile, and

whiskers extending to 1.5 the IQR. All outliers are plotted as individual points.

Source data are provided as a Source Data file.
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clone versus all, “Methods”). This analysis revealed significant clone-

specific expression of MYC targets in each sample and MTOR signal-

ling inmost (Supplementary Fig. 16, FDR <0.05, Kolmogorov–Smirnov

statistic, Benjamini-Hochberg adjusted). Of note, these molecular

processes were in part consistent with but mostly distinct from the

changes identified when assessing differential expression between CT

and non-CT tumours using bulk RNA-seq (46 fresh frozen39 and 173

FFPE40,41, Supplementary Fig. 12; Supplementary Data 6).

We then set out to use this integrated resource to reassess known

putative targets for personalised treatment in paediatric oncology43.

Among the 131 known druggable targets that were expressed in our

data, between 7 and 93% of these genes were overlapping with sub-

clonal CT or subclonal CNVs (Fig. 4h), emphasising the importance of

genetic heterogeneity for target selection. Leveraging the aligned

transcriptomeprofiles at the level of clones, we observed the expected

effect of genomic heterogeneity at the transcriptome level for some

targets and identified exceptions where expression levels are not

determined by copy number (Fig. 4i, Supplementary Fig. 17).

Taken together, the results from our integration suggest that the

combined information from single-cell genomes and transcriptomes

can reliably identify copy-number related pathway alterations, which

are biologically relevant. Future studies focusing on larger cohorts of

CT tumours will be crucial to further underline these findings and

highlight the impact of copy number variation on the transcriptome,

including on the expression of druggable targets that might seem

clonal from bulk analyses only.

Loss of chromosome 3p and SETD2 deficiency as early events
potentially facilitating chromothripsis
In addition to characterising pathways activated in specific clones, we

leveraged the single-cell and bulk WGS data to identify putative early

alterations that might contribute to CT occurrence. Previous studies

indicated that inactivation of essential checkpoints likely facilitates CT

and/or the survival of a cell after CT events2,11,12. We searched for early

events potentially linked with CT. Loss of chromosome 17p (chr17p),

carrying the wild-type TP53 allele, was already known to be associated

withCT inmedulloblastomapatientswith germlineTP53mutations2. In

agreement with this, rare non-tumour cells with a balanced profile

(defined as non-tumour cells based on the absence of CNV), except a

focal loss of the TP53 locus, supported the loss of p53 as an early event

in CT tumours (Supplementary Fig. 18a). In addition, we identified

chromosome 3p (chr3p) loss as a clonal event linked with chr17p loss

and CT (Fig. 5a). This was further supported by phylogenies recon-

structed fromdeepbulk sequencing data and allele frequency analyses

(Fig. 5b). Investigating this association in a cohort of 227 medullo-

blastomas, we found that loss of chr3p was highly significant when

searching for genomic regions tightly linkedwithCT (Fig. 5c, two-sided

Fisher exact test, p < 10−5 and two-sided Chi-square test, p < 10−8,

respectively). Importantly, loss of chr3p was also significantly linked

with CT in breast and lung cancer (two-sided Chi-square test,

p < 1.32 × 10−4 for breast cancer and p < 3.44 × 10−10 for lung cancer),

suggesting apotential pan-cancer relevance, beyondmedulloblastoma

(Supplementary Fig. 18b). To validate this association experimentally,

we performed time-course analyses with primary cells from LFS

patients. In these primary cultures (derived from patient skin biopsies

and not subjected to induced immortalisation), we identified loss of

both chromosomes 17p and 3p as early events linked with CT using

WGS (Supplementary Fig. 18c).

To search for candidate genes on chr3ppotentially preventingCT,

we defined theminimally deleted region across bulkWGS data from 18

LFS medulloblastomas (Supplementary Fig. 19). We narrowed the list

of candidates based on gene expression in LFS medulloblastomas,

reported mutations and function. Among the evaluated genes, SETD2

was a promising candidate, due to the known tumour suppressive role

of the SETD2 methyltransferase, lost or mutated in various cancers,

and its importance for DNA replication, DNA repair and genome

instability44,45. Medulloblastomas with chr3p loss displayed a lower

SETD2 expression based on single-cell and bulk RNA-seq (Fig. 5d–f). In

addition, low SETD2 expression was linked with significantly shorter

overall survival in SHH medulloblastoma (Fig. 5g, two-sided log-rank

test, p <0.018, SHH alpha (SHH3) subgroup, which is the molecular

subgroup to which most CT medulloblastomas belong). SHH medul-

loblastomas with CT displayed a lower protein expression as com-

pared to SHH medulloblastomas without CT, as shown by

immunohistochemistry (Fig. 5h, i).

As combined single-cell and bulk sequencing analyses identified

SETD2 as a promising candidate potentially preventing CT, we ana-

lysed the functional consequences of SETD2 loss. To test for a poten-

tially causal role of SETD2 in CT, we used CRISPR/Cas9 to inactivate

SETD2 in p53wild-type andp53-deficient neural stemcells, respectively

(Supplementary Fig. 20a). CT has previously been linked with genome

doubling46, as well as with the formation of micronuclei13,17, which are

abnormal nuclear structures containing one or very few chromo-

somes. Our CRISPR/Cas9 experiments showed that, upon SETD2

inactivation in a p53-deficient background, the formation of micro-

nuclei significantly increased as compared to inactivation of TP53 only

(Fig. 6a, b, one-way Anova and Bonferroni multiple comparison tests,

p <0.05). In addition, as compared to wild-type cells, TP53/SETD2

knock-out cells showed a significantly larger nuclear area (Fig. 6c, one-

way Anova and Bonferroni multiple comparison tests, p <0.05), a

measure which is used as a surrogate marker for polyploidization47.

Immunofluorescence analysis of the widely used DNA double-strand

breakmarker γH2AX showed a significant increase in the levels of DNA

double-strand breaks in TP53/SETD2 knock-out cells as compared to

wild-type neural stem cells (Fig. 6d, e, one-way Anova and Bonferroni

multiple comparison tests, p < 0.05). Double stain for phosphorylated

histone H3 and acetylated tubulin identified aberrantmitoses in SETD2

and in TP53/SETD2 knock-out cells, such as failure to congress at pro-

metaphase, multipolar spindle formation and anaphase bridges

(Fig. 6f, g). This is in agreement with CT being one consequence of

bridge breakage16. Wemeasured a significantly increased proliferation

rate upon TP53/SETD2 knock-out (Fig. 6h), indicating a selective

advantage. Finally, strand-seq analysis showed significantly more

structural variants including complex rearrangements in the knock-out

cells (Fig. 6i, j, Supplementary Fig. 20b). Altogether, the functional

consequences of the inactivation of TP53 and SETD2 in neural stem

cells suggest a possible causative or permissive role for these two

genes in the occurrence of CT in medulloblastoma.

Discussion
Li-Fraumeni syndrome (LFS) medulloblastoma is a clinically challen-

ging type of childhood brain tumour, where patients suffer from a

dismal prognosis. These tumours are a canonical model of CT, an

extreme phenomenon of genome instability, which is present in close

to 100% of these medulloblastomas2,26. Hence, understanding the

genomicheterogeneity and its consequences on the transcriptome are

essential to identify targets for novel therapeutic strategies for this

subgroup of patients.

In this study, we combined single-cell analyses of the genome and

transcriptome together with bulk deep sequencing to provide a

roadmap of alterations in CT medulloblastoma with TP53 germline

mutations. By combining bulk and single-cell DNA sequencing of

matched tissue samples, we scored CT events at clonal resolution. This

approach enabled us to shed light into the genomic heterogeneity at

the level of CT chromosomes, cancer drivers as well as potentially

druggable targets. In addition, we observed and experimentally vali-

dated an association between the abundance of ecDNA structures and

CT, further increasing the bespoken heterogeneity, as ecDNAs canbe a

consequence of CT but also substrates of additional CT events. Com-

parisons between matched primary and relapse samples in patient
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tumours and PDX, on both genome and transcriptome, supported

substantial heterogeneity with major implications for treatment.

Importantly, our results also question the common view of CT as a

single early event in tumour development, which goes along with

limited intra-tumour heterogeneity.

We aimed at identifying putative early events in LFS tumour

evolution. It has been unclear whether the inactivation of essential

checkpoints such as p53 and others, may occur shortly before or after

CT.Here, our results highlighted chr3p loss and SETD2 inactivation as a

potential early event facilitating CT occurrence. We experimentally

underlined this observation utilising CRISPR/Cas9-mediated inactiva-

tion of SETD2 in p53 wild-type and p53-deficient neural stem cells. In

line with this, we detected rare non-tumour cells with TP53 loss

(potentially primed for CT), but no tumour clones with loss of chr17p

and/or chr3p without CT. However, as such tumour cells are expected

at a very low frequency, sequencing thousands of tumour cells would

be necessary to detect such rare populations. To recapitulate the

sequence of events, we used a time-course experiment, culturing pri-

mary fibroblasts from early passages with stable copy-number profiles

to late passages with spontaneous CT occurrence. Our findings vali-

dated chr17p loss and chr3p loss as early events correlated with CT. It

will be important to understand why only specific cell types ultimately

lead to CT tumours even though all cells in LFS patients harbour

mutant TP53.

So far, the transcriptional consequences of CT in tumours have

not been systematically investigated. Here, we leveraged single-cell

and single-nuclei RNA-seq to analyse 7 samples from LFS medullo-

blastoma and PDX samples. Remarkably, we found a variety of malig-

nant and non-malignant cell types, a subset of whichwere represented

in the PDX samples. Furthermore, we observed three transcriptional

programmes largely defined by (i) SHHgenes, (ii) proliferation and (iii)

genes implicated in neuronal development. These programmes were

surprisingly consistent with programmes previously observed in non-

CT SHHmedulloblastoma35. Our analysis of bulk RNA-seq fromCT and
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medulloblastomas) and non-LFS medulloblastomas (n = 227). Two-sided Fisher

exact tests were performed to compare the proportions of tumours with 3p or 17p

loss between LFSmedulloblastomas and non-LFSmedulloblastomas (p <0.00001).

b Evolutionary trajectories based on deep WGSeq identify 17p loss and 3p loss as

early events (longitudinal analysis of three matched tumour samples). c 17p loss

and 3p loss are significantly linked with CT in medulloblastoma (bulkWGS, n = 227

medulloblastomas). d Loss of 3p leads to decreased SETD2 expression (bulk RNA-

seq, n = 18, p =0.0348). Statistical significance was tested using one-tailed t-test.

e, f Loss of 3p leads to decreased SETD2 expression (scRNA-seq). g Low SETD2

expression is linked with poor survival in medulloblastoma (SHH alpha subtype,

n = 53, enriched for p53-SHH medulloblastomas, log-rank test, Kaplan-Meier plot

generated using the R2 database, see “Methods”). h, i Representative examples of

medulloblastomas with or without CT showing low or high SETD2 protein

expression, respectively. Immunohistochemistry analysis was performed in eight

patient samples showing similar results (n = 4 medulloblastomas with CT; n = 4

medulloblastomas without CT). Scale bar, 50 µm. Source data are provided as a

Source Data file.
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non-CT medulloblastomas emphasised differences in gene expression

and activated pathways, in particular regarding MYC driven tran-

scription, SHH signalling, and proliferation. However, future studies

focusing on the origin of the aggressiveness of CT tumours will be

needed inorder to dissect the precisemechanismsexplaining the poor

outcome of patients with CT tumours.

Lastly, to link the genome and the transcriptome data, we

demonstrated how copy number estimates allow for assigning single-

cell transcriptomes to individual CNV clones. Even though this com-

putational integration of CNV clones and scRNA-seq may not directly

transfer to settings with less pronounced genomic aberrations, by

linking distinct transcriptional profiles to the identified tumour clones,

we were able to highlight differentially activated pathways between

clones, including but not limited to MYC and MTOR signalling. Dif-

ferential activity of oncogenic signalling pathways has important

implications in the context of drug response and treatment resistance.

This study does not comewithout limitations. A larger sample size

would presumably be needed in order to identify commonalities

betweenCTand the establishmentof ecDNAs. In addition, althoughwe

investigated potential druggable targets in both scDNA and scRNA

data, a larger number of matched primary tumours and relapse sam-

ples would be required to understand the influence of treatment on
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the intra-tumour heterogeneity in LFS medulloblastoma. Following

this further, we would envision a larger cohort of CT and non-CT

medulloblastomas being essential to get insights into the origin of the

poor prognosis and aggressiveness of these tumours.

Tumours in LFS patients constitute a paradigm for the under-

standing of CT. Our work focusing on this group of patients can

provide a roadmap from where the findings may be extended to

different contexts, as the link between CT and TP53 mutations also

holds true outside the context of constitutive defects (e.g. in prostate

cancer48 or breast cancer49). In the future, a more refined single-cell

landscape of CT tumours will be needed to further confirm

and increase the understanding of the genomic heterogeneity,

diversity of cell types and active transcriptional programmes. Unra-

velling the extent of genomic heterogeneity will be necessary to

detect actionable targets, determine the evolutionary history and

defeat the evolutionary capacity of tumour cells with high genome

instability.

Methods
Experimental methods
Sample cohort, DNA extraction and whole genome sequencing.

Human clinical samples and data were collected after receiving

written informed consent in accordance with the Declaration of

Helsinki and approval by the ethics committee of the Medical Faculty

of Heidelberg University. Although sex was not used as an inclusion

criteria for this study, all samples analysed were male. All tumours

used for bulk sequencing had a tumour cell content confirmed by

neuropathological evaluation of the hematoxylin and eosin stainings.

DNA was extracted from frozen tissue using Qiagen kits. Purified

DNA was quantified using the Qubit Broad Range double-stranded

DNA assay (Life Technologies, Carlsbad, CA, USA). Genomic DNA was

sheared using an S2 Ultrasonicator (Covaris, Woburn, MA, USA).

Whole-genome sequencing and library preparations for tumours and

matched germline controls were performed according to the man-

ufacturer’s instructions (Illumina, San Diego, CA, USA or NEBNext,

NEB). The quality of the libraries was assessed using a Bioanalyzer

(Agilent, Stockport, UK). Sequencing was performed using the Illu-

mina X Ten platform.

Sample collection and establishment of patient derived
xenografts
All animal experiments were performed in accordance with the

ethical and legal regulations for animal welfare and approved by the

governmental council (Regierungspräsidium Karlsruhe, Germany).

Orthotopic patient-derived xenografts were established in 6-10-

week-old female immune-compromised mice (NSG, NOD.Cg-

PrkdcscidIl2rgtm1Wjl), obtained from the DKFZ animal breeding facility.

Patient-derived tumour cells were injected into the cerebellum, as

described previously50 and outlined here. Before starting the ortho-

topic brain injection procedure, the animal was anaesthetised using

inhaled isoflurane (2.5 Vol %) and placed in the mouse stereotaxic

frame. Bepanthen (Bayer Vital GmbH, #1578675) was applied to both

eyes as a lubricant. An incision of approx. 1 cm was made on top of

the head, in the area between the ears, using a disposable scalpel

(#NC9999403). Sterilised forceps (Fine Science Tools, #91100-12)

were used to keep the skin on the side, exposing the skull. To clean

the area of the exposed skull from any blood or connective tissue,

clean cotton-tipped swabs were applied. An 18 G needle (CHIRANA T.

Injecta, # CH18112) was used to make a burr hole in the cerebellum.

The location of the burr hole, through which the tumour cells will be

injected, was determined from the lambda (approx. 2mm towards

the back of the brain and 1mm to the left). Once the hole was made,

4 μL of the cell suspension was taken in NanoFil 10 μL syringe (World

Precision Instruments) with 26G beveled NanoFil needle (World

Precision Instruments #NF26BV-2). The syringe was placed in the

syringe holder of the stereotaxic frame and positioned on top of the

burr hole. Once the tip of the injection needle was in the burr hole,

the needle was inserted 2mm down in the cerebellum. The cell sus-

pension was then deposited in the cerebellum by pressing the

injection run key on the control instrument. Once the injection was

completed, the syringe with needle was slowly moved up and

removed from the stereotaxic frame. The incision was closed by

joining the skin together with the forceps and bonding it with sur-

gical glue (Braun, #9381104). On the completion of incision closure,

the animal was placed in a clean recovery cage until it fully woke up

from anaesthesia. The criteria for terminating animal experiments

were strictly adhered to, involving regular monitoring for the fol-

lowing symptoms: skull bulging, ataxia (impaired balance and

movement indicative of brain damage), hyperactivity, central or

peripheral paralysis, reduced movement, lack of food or water

intake, behavioural signs of pain and weight loss exceeding 20%.

Housing conditions for the mice included a 12-hour light/12-hour

dark cycle, an ambient temperature of 20–24 °C and relative

humidity of 45–65%.

Nuclei isolation from tumour tissue
Frozen tumour tissue was used for nuclei isolation. Tissue was cut

using a scalpel with 1mL of lysis buffer. After adding 4mL of lysis

buffer, the suspension was transferred to a glass douncer. A total of

20 strokes were used to dounce the suspension on ice with two dif-

ferent types of pestles. The entire suspension was then filtered with a

100 µm filter and then with a 40 µm filter into precooled falcon tubes.

After centrifugation for 5min at 555 g at 4 °C, the supernatant was

removed and the pelletwas resuspended in 5mLof lysis bufferwithout

Triton-X and DTT. This centrifugation step and the resuspension were

carried out 3 times in total. The final pellet was then resuspended in

Fig. 6 | Inactivation of SETD2 and TP53 in neural stem cells leads to genome

instability. a Inactivation of SETD2 in a p53 deficient background leads to the

formation of micronuclei, aberrant nuclear structures linked with genome

instability. Representative images based on three independent experiments are

shown. Scale bar, 5 µm. b Quantification of micronuclei (n = three biological repli-

cates; mean ± SD; p <0.0001). c Inactivation of SETD2 leads to a larger nuclear area

(n = three biological replicates; p <0.0001). The bounds of the box represent the

interquartile range (25th–75th percentile), the central line marks the median, and

the whiskers extend to the minimum and maximum values. d, e Inactivation of

SETD2 in a p53 deficient background leads to high levels of DNA double-strand

breaks. Immunofluorescence analysis of γH2AX foci and quantification of γH2AX

positive cells (Wild-type, n = five biological replicates; Non-target, n = three biolo-

gical replicates; SETD2KO (#3, #8), n = four biological replicates; TP53KO, n = five

biological replicates; TP53KO + SETD2KO (#3, #8), n = five biological replicates;

mean ± SD; p <0.0001). Scale bar, 5 µm. f, g Inactivation of SETD2 in a p53 deficient

background leads to mitotic defects, as shown by immunofluorescence analysis of

Phospho Histone H3 and Acetyl-α-Tubulin. Scale bar, 5 µm. h Inactivation of SETD2

in a p53 deficient background leads to increased proliferation rate. Metabolic

activity results, indicating proliferation rate, are shown as absorbance values

measured by MTT assay (Wild-type, n = four biological replicates; SETD2KO (#3,

#8), n = five biological replicates; TP53KO, n = five biological replicates; TP53KO +

SETD2KO (#3), n = three biological replicates; TP53KO + SETD2KO (#8), n = five

biological replicates; mean ± SD; p =0.0392). i, j Strand-seq analysis of wild-type

and knock-out cells. Quantification of structural variants was performed with

MosaiCatcher. Beta regression and Bonferroni–Holm method for multiple com-

parisons were used to test for statistical significance in b, e. One-way ANOVA and

Bonferronimultiple comparison tests wereused to test for statistical significance in

c, h. Wald test on the inactivation status explaining counts of observed events in a

negative binomial GLM (inactivation status and intercept) fit for each event type

independently was used to assess significance in (j). Two sided p values are

reported in (b, e, j). Source data are available as a Source Data file.
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1mL of nuclei storage buffer in 1.5mL LoBind Eppendorf tubes for

further analysis.

FACS
Viably frozen patient-derived xenograft (PDX) cells were thawed in a

37 °C water bath and suspended in high-purity PBS supplemented

with 10% foetal calf serum. The cells were then washed twice and

centrifuged at 1000 rpm for 5min at 4 °C. Single-cell sorting of

the PDX suspensions was performed using a BD FACSAria II flow

cytometer. Propidium iodide (PI), at a final concentration of 1 µg/

mL, was added to distinguish and exclude dead cells from the

sorting process. Contaminating mouse cells were gated out based

on distinct forward scatter (FSC) and side scatter (SSC) profiles,

which reflect the cell size and internal complexity/granularity of

the cells.

10X single-cell RNA-sequencing library preparation
The single cell suspensions of PDX cells or nuclei from frozen tissue

specimenswere loadedon a 10xChromiumSingleCell instrument (10x

Genomics, California) to generate single-cell Gel Bead-In-Emulsions

(GEMs). Single-cell RNA-seq libraries were prepared using Chromium

Single-Cell 5′ Library and Gel Bead Kit (PN1000014, 10x Genomics).

Barcoding and cDNA synthesis were performed according to the

manufacturer’s instructions. In short, GEMs were created where all

cDNA from one cell shared a common 10x barcode. GEMs were then

incubated at RT and cleaned up using Dynabeads. After post GEM-RT

clean-up, full length cDNA was generated by PCR with a total of 14

cycles for library construction. The cDNA libraries were constructed

using the 10x ChromiumTM Single Cell 5’ Library Kit according to the

manufacturer’s protocol. In brief, the major steps for the library pre-

paration included (i) Target enrichment from cDNA, (ii) Enriched

library construction, (iii) 5’ Gene expression library construction and

QC. For final library QC, 1 μL of the sample was diluted 1:10 and ran on

the Agilent Bioanalyzer High Sensitivity chip.

10X single-cell DNA-sequencing library preparation
The single-cell suspensions from tumour nuclei or PDX cell samples

were processed using the Chromium Single-Cell CNV Kit (10× Geno-

mics) according to the manufacturer’s protocol. In brief, using cell

bead polymer, single cells or nuclei were partitioned in a hydrogel

matrix on Chromium Chip C. Once the cell beads were encapsulated

and incubated, they were subjected to enzymatic and chemical treat-

ment. This lysed the encapsulated cells and denatured the gDNA in the

cell bead, tomake it accessible for further amplification andbarcoding.

A second encapsulation was performed to achieve single cell resolu-

tion by co-encapsulating a single cell bead and a single barcoded gel

bead to generate GEMs. Immediately after GEM generation the gel

bead and cell bead were dissolved. Oligonucleotides containing stan-

dard Illumina adaptors and 10x barcoded fragments were then

amplified with 14 PCR cycles during two-step isothermal incubation.

After incubation the GEMs were broken and pooled 10x barcoded

fragments were recovered. For final sequencing library QC, 1ul of the

sample was diluted 1:10 and ran on the Agilent Bioanalyzer High Sen-

sitivity chip. Although the experiment was performed, the library for

the BT084-PDX sample did not pass the quality control steps and

hence was not included in this study.

Sequencing of single-cell DNA and RNA libraries
Single-cell libraries were sequenced on the Illumina NextSeq and

NovaSeq (paired-end sequencing).

Fluorescence in situ hybridisation (FISH)
Nick translation was carried out for BAC clones obtained from Source

Bioscience (GLI2, clone RP11 297J22). The probes were indirectly

labelled via Nick translation. Detection was done with a rhodamine-

labelled probe and a FITC-labelled probe. Pre-treatment of slides,

hybridisation, post-hybridisation processing and signal detectionwere

performed using standard protocol. Samples showing sufficient FISH

efficiency (>90% nuclei with signals) were evaluated. Signals were

scored in, at least, 100 non-overlapping metaphases. After the GLI2

FISH to detect double-minute chromosomes, the coverslip was

removed, and metaphase spreads were washed. Denaturation was

performed to remove the signal from theGLI2 probe and hybridisation

was done using the multicolour XCyte 2 probe from Metasystems

according to the manufacturer’s instructions.

Cell culture
Neural stem cells (human iPSC derived NSCs, kindly provided by

Dr. Daniel Haag) were cultured in matrigel (Corning, 356230)

coated 6-well plates, in NeuroCult NS-A proliferation media kit

(Stemcell Technologies, #05751) supplemented with 40 ng/mL

EGF (Sigma, #E4127), 40 ng/mL FGF (Preprotech, #GMP100-18 B),

10 ng/mL hLIF (Millipore, #LIF1010) and 10 µM Rock inhibitor

Y-27632 (Enzo, #ALX-270-333-M001). Prior to the experiment, the

cells were tested negative for mycoplasma contamination. Cell line

identity was not authenticated as the lines are not commercially

available.

CRISPR-Cas targeted gene disruption
Guide RNAs for TP53 and SETD2 were constructed and cloned into

lentiCRISPRv2 (Addgene, 52961) according to the original online pro-

tocol of the Zhang lab (http://www.genome-engineering.org/crispr/

wp-content/uploads/2014/05/CRISPR-Reagent-Description-

Rev20140509.pdf). Following genes were targeted:

TP53 (gRNA2:CGACCAGCAGCTCCTACACCGG) SETD2 (gRNA3:A

ATGAACTGGGATTCCGACG, and gRNA8:GGACTGTGAACGGACAAC

TG).

Lentiviral production was conducted using the recommendation

of The RNAi Consortium. First, for each lentiCRISPRv2 plasmid to be

transfected, 4 × 106 million HEK293T cells (below passage 10) were

seeded into two 10 cm culture dishes in 6mL medium (DMEM with

10% FCS). After 24 h, packaging plasmids psPAX2 and pMD2.G and

the lentiCRISPRv2 plasmid containing the construct of interest were

co-transfected into the HEK293T cells. The steps of co-transfection

were the following: (1) Medium in each dish was replaced with 6mL

of fresh medium (DMEM with 10% FCS); (2) 600 μL Opti-MEM med-

ium (Thermo Scientific, #31985062) was pipetted in a sterile 1.5mL

Eppendorf; (3) 30μL TransIT®-LT1 transfection reagent (VWR, #731-

0027) was added to 600 μL Opti-MEM (without mixing) and incu-

bated for 5min at room temperature; (4) 4 μg of each packing plas-

mid and 8 μg of the lentiCRISPRv2 plasmid were added to the Opti-

MEM containing TransIT®-LT1; (5) the Eppendorf was closed and

gently inverted four times to mix the reagents; (6) the solution was

incubated for 20min at room temperature; (7) 300μL of the solution

was added dropwise in each dish with HEK293T cells; (8) the cells

were incubated for 72 h under standard cell culture conditions

(37 °C, 5% CO2). Thewhole procedure of the lentiviral productionwas

conducted in the S2 laboratory. After 72 h of incubation, the super-

natant from each dish was removed and filtered through a 0.45μm

filter to avoid contamination with cell debris. To concentrate the

virus, the resulting virus containing solution was ultracentrifuged

using a SW41 swing-out rotor in a L8-M ultracentrifuge at 25,000 rpm

for 90min at 4 °C. The supernatant was decanted and the virus pellet

was resuspended in 100 μL sterile PBS. The concentrated virus was

divided in 10μL aliquots and stored at −80 °C until further use.

Neural stem cells were cultured in matrigel coated 6-well plates as

described above. Transduction of wild-type and TP53KO neural stem

cells was done by adding 20μL of concentrated virus particles to the

cells for 24 h, after which the cells were maintained under selection

with 2 μg/mL puromycin for 2–4 weeks. For CRISPR-mediated
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disruption of TP53, an additional selection for functional knockout

was done using 20 µM nutlin treatment. After selection for the stable

lines, cell lysates were made for western blotting and cells were

grown for further experiments.

Western blotting
For western blot experiments, NSCs were detached with accutase

(Sigma, #A6964), collected inmedia andwashed three timeswith ice-

cold PBS. The pellet was resuspended and incubated for 10min on

ice in RIPA buffer containing Complete™, EDTA-free Protease Inhi-

bitor Cocktail (Sigma, #4693159001) and benzonase (Millipore,

#71205-3). Protein concentration was estimated using BCA assay. To

prepare samples for denaturing gel electrophoresis, samples were

mixedwith NuPAGE™ LDS Sample Buffer (4x) (Invitrogen, #NP0007),

NuPAGE™ Sample Reducing Agent (10x) (Invitrogen, #NP0009) and

deionized water. A total amount of 30 µg protein was loaded per lane

of NuPAGE Tris-Acetate Protein Gel 3-8% (Life Technologies,

#EA0375BOX) and separated in NuPAGE Tris-Acetate SDS Running

Buffer (Invitrogen, #LA0041) for 1 h at 150 V constant. Immunoblot-

ting was done on PVDF membranes in a tank blot system, using a

borate-based buffer system (25mM sodium borate, 1mM EDTA, pH

8.8). Membranes were blocked with 5% milk powder in TBST for 1 h

and probed with SETD2 (E4W8Q) rabbit mAb (Cell Signalling,

#80290, Lot#1) 1:1000 overnight at 4 °C with agitation, TP53 (DO-1)

mouse mAb (Santa Cruz, #sc-126) 1:500 for 1 h at RT, GAPDH (6C5)

mouse mAb (Sigma-Aldrich, #CB1001) 1:2000 for 3 h at RT and

H3K36me3 rabbit pAb (Abcam, #ab9050) 1:400 for 1 h at RT. Mem-

branes were washed with TBST and incubated for 30min with HRP

coupled secondary anti-mouse or anti-rabbit antibodies (Dianova,

#115-035- 003 and #211-032-171) 1:3000 (for H3K36me3) and 1:5000

for others. After washing, detection was done using enhanced che-

miluminescence and images were recorded with the Bio-rad Imaging

System (LI-COR Biotechnology).

H&E stain and immunohistochemistry
Hematoxylin and eosin (H&E) staining and immunohistochemistry

were performed on 4 µm formalin-fixed paraffin-embedded sections.

Sections were deparaffinized, antigen retrieval was performed in

10mMcitrate buffer pH6.0 for 40min and sectionswere cooled down

to room temperature. H&E stain was evaluated by a neuropathologist.

For immunohistochemistry, rabbit polyclonal SETD2 antibody (Atlas

Antibodies, #HPA042451) was used at 1:500 with the DCS SuperVision

2 HRP Kit.

Immunofluorescence analysis of γH2AX in neural stem cells
Cells grown on coverslips were washed with PBS and incubated 15min

in 4% formaldehyde (formalin solution buffered at pH 6.8, Merck).

Cells were washed once with 50mM ammonium chloride (Carl Roth)

and twice with PBS before permeabilization with 0.1% triton (Triton X-

100, Gerbu Biotechnik). Blocking was done with 10% donkey serum

(Merck). Primary antibody anti-gamma H2A.X (phospho S139) rabbit

pAb (Abcam, #ab11174) diluted 1:200 in 10% serum was added and

incubated overnight at 4 °C. After washing, coverslips were incubated

with secondary antibody, washed in PBS, then in water and ethanol.

Coverslips were mounted with DAPI Fluoromount (Southern Biotech,

#0100–020).

Quantification of γH2AX foci, micronuclei and nuclear area
Quantification was performed by visual examination under Axio Zeiss

Imager.M2 microscope. The number of γH2AX positive NSCs was

analysed by scoring at least 100 cells per line in five independent

biological replicates. The number of cells containing micronuclei was

analysed in at least 600 cells per line in three independent replicates.

Nuclear area was calculated using a macro and scored in at least 100

cells per line in three independent replicates.

Confocal imaging of mitotic errors
For acetyl-α-tubulin and phospho-histone 3 immunostaining, cells

were seeded onto coverslips in a 6 well plate. The coverslips were then

fixed for 20min with 4% PFA. Next, a blocking buffer (1x PBS, 5%

normal goat serum, 0.3% Triton X-100) was prepared and added to the

coverslips for 1 h at room temperature. The blocking buffer was then

removed and Acetyl-α-Tubulin (Lys40) (D20G3) XP rabbit mAb (Cell

Signalling, #5335, Lot#5) and Phospho-Histone H3 (Ser10) (6G3)

mouse mAb (Cell Signalling, #9706, Lot#10) primary antibodies were

diluted to 1:400 and 1:200 respectively in an antibody dilution buffer

(1x PBS, 1% BSA, 0.3% Triton X-100) and both were added simulta-

neously to each coverslip. Coverslips were incubated with the primary

antibody overnight at 4 °C. Then cover slips were washed thrice for

5min in 1X PBS. Subsequently goat anti-mouse and anti-rabbit sec-

ondary antibodies were diluted to 1:500 in the antibody dilution buffer

and both were added simultaneously to each coverslip. Coverslips

were incubated for 2 h in the dark at room temperature with the sec-

ondary antibody andwere thenwashed thrice for 5min in 1X PBS. Then

theywere rinsed in double distilledH2O followed by 100% ethanol and

left to air dry. Coverslips were then mounted onto microscope slides

using DAPI fluoromount and left for 1 h in the dark before imaging.

Imaging was performed on an Axio Zeiss Imager.M2 microscope and

on a Leica SP8 confocal microscope.

MTT assay
Metabolic activity was analysed 48 h after cell seeding (Thiazolyl Blue

Tetrazolium Bromide, Sigma-Aldrich, #M5655). Absorbance was mea-

sured at 560 nm using a microplate reader (Mithras LB 940, Berthold

technologies). Values from the blank measurements were subtracted

from the average based on six technical replicates. Five biological

replicates were obtained.

Strand-seq
Strand-seq libraries were generated as described previously51 and

outlined below. In brief, TP53KO + SETD2KO and wild-type neural stem

cells were labelled with 40 µM BrdU for one single round of cell divi-

sion. Cells were frozen and kept at −80 °C until further use. Cells were

thawed in DMEM/F12 medium, centrifuged and resuspended in Nuclei

Staining Buffer A (1.0mL of 1M Tris–HCl, pH 7.5, 308 µL of 5M NaCl,

10 µL of 1M CaCl2, 5 µL of 1M MgCl2, 266.5 µL of 7.5% BSA solution,

100 µL of 10% (vol/vol) NP40 and 10 µL of 10mg/mL Hoechst 33,258 to

8.3mL of water) to a concentration of 1 × 106 cells/mL. Cells were fil-

tered through a cell strainer and were kept on ice for ~30min. Cells

were then sorted in a 96-well plate with 5 µL ProFreeze-CDM freeze

medium per well and stored at −80 °C. Following thawing, DNA was

fragmented with 0.5 U Micrococcal Nuclease in MNase buffer sup-

plemented with 1.5mM DTT and 5% PEG 6000 for 8min at room

temperature in a final volume of 15 µL. The reaction was subsequently

stopped with a final EDTA concentration of 10mM. DNA was purified

using AMPureXP beads at a 1.0x ratio and eluted in 10 µL EB Buffer on a

BravoNGS system. Following elution, end-repair was performed for

30min at roomtemperature usingT4DNApolymerase, KlenowandT4

PNK (all NEB) in T4 ligase buffer supplemented with dNTPs and the

DNA was subsequently purified with AMPureXP Beads at a 1.8× ratio,

using the BravoNGS system. After End-repair, DNA was A-Tailed for

30min at 37 °C with Klenow exo- (NEB), followed by another round of

bead purification with AMPureXp Beads at a 1.8× ratio. Forked Illumina

adaptors at 33.5 nM final concentration per cell were ligated using

quick ligase (NEB), followed by a AMPUre XP bead clean-up with 9.5 µL

elution volume. DNA was incubated with 10 µg/mL Hoechst for 15min

and the plate was then irradiated with UV light at a total dose of

2.7 × 103 J/m2 (using a crosslinker equipped with 5 × 365-nm longwave

UV bulbs for 15min). Oligonucleotides with a 6 bp multiplexing bar-

code (Sigma), specific to each well of a 96-well plate, were used with

Primer PE 1.0 (Illumina) to amplify the nickedDNAwith the PhusionHF
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Master Mix (NEB) and the following programme: 98 °C for 30 s fol-

lowed by 18 cycles of 98 °C for 10 s, 65 °C for 30 s and 72 °C for 30 s.

Following amplification, all wells were pooled and purified as one pool

with AMPureXP Beads at a 0.8× ratio to exclude free primers and

adaptor dimers.

Computational methods
Whole genome sequencing and variant calling. Whole-genome

sequencingdata andwhole-exome sequencingdatawereprocessedby

the DKFZ OTP pipeline52. Briefly, this workflow is based on BWA-MEM

(v0.7.15) for alignment, biobambam (https://github.com/gt1/

biobambam) for sorting and sambamba for duplication marking.

Copy number variants were called using ACESeq53 and structural var-

iants were called by Delly(v1.1.6)54 based on the aligned genomes.

ACESeq output was used only for ShatterSeek3 and for all other ana-

lyses copy number variants were called using CNMops(1.32.0)55 with a

20 kb bin size, in combination with GC content correction and repli-

cation timing correction provided by ACESeq. DNAcopy algorithmwas

used for copy number segmentation.

Inference of chromothripsis in bulk WGS data
Chromothripsis scoring of whole genome sequenced tumours were

performed by ShatterSeek. Copy number variants from ACESeq53 and

structural variants from Delly54 were provided as input to ShatterSeek.

We applied the multivariable decision criteria from previous studies to

definechromothripsispositive chromosomes56 fromShatterSeekoutput.

Inferring ecDNA fragments by AmpliconArchitect
To infer ecDNAsbyAmpliconArchitect,weprovidedAmpliconArchitect57

genome segments with copy number >=3 and the tumour alignment as

input. AmpliconArchitect was allowed to explore other genomic regions

connecting to the candidate genomic segment in an attempt to con-

struct a circular amplicon. The output from AmpliconArchitect was fil-

tered by removing circular segmentswith average copynumber less than

3 and non-circular segments.

Bulk RNA-seq gene expression analysis
Bulk whole transcriptome sequencing data were processed and nor-

malised by kallisto58. GENCODE basic version 3059 along with Human

genome reference GRCh38 were provided to kallisto as reference.

Kallisto reported expression levels per transcript. The expression

across transcripts were summed to produce a gene-level expression

measurement in transcripts per million (TPM) and in raw count. We

used DESeq2 for differential gene expression analysis60. Genes were

filtered if they did not exceed 10 counts in 3 ormore samples to ensure

good quality data. We investigated two distinct sample sets, one gen-

erated from 46 fresh frozen39 tumour samples and the other from 173

FFPE40,41 tumour samples. For the former, we compared chromo-

thripsis positive medulloblastomas to non-chromothriptic medullo-

blastomas (with CT status determined from61), while in the latter, TP53

mutation status was taken to mean CT+ (based upon a close to 100%

CT rate in SHH TP53mut medulloblastoma). In both cohorts, the tight

link between TP53 mutation and CT made it impossible to control for

TP53 status when comparing CT+ to CT− tumours. To account for

influences from normal cell types in the tumour cell population, we

used the data from Riemondy et al. to create normal cell type specific

gene signatures, using the top 100 significantly differentially expres-

sed genes per cell type. These genes were removed from the expres-

sion matrices, subsequently performing a multivariate analysis

adjusting for tumour cell content as well as SHH subgroup (Supple-

mentary Data 6). Although the removed genes may well have an

important role in medulloblastoma biology, we take this conservative

approach to ensure that the derived signal is tumour-specific. Fol-

lowing this, the top 2000 up- and down-regulated genes were subse-

quently used for GSEA enrichment analyses, equivalent to the single-

cell data analysis described in ‘Differential gene expression analysis and

Gene Set Enrichment Analysis for individual copy number clones’

(see below).

Copy number assessment of exome sequencing data
Control-FREEC version 11.461 was used for copy number assessment of

the high coverage exome sequencing data. Known SNPs from dbsnp

v142 were used as reference. The analysis was restricted to the exome

capture region without the untranslated regions (UTRs).

Phylogenetic inference from bulk sequencing data
Phylogenetic inference was based on SNVs and CNVs using

Expectation-Maximisation on a multinomial model as previously

published in Körber et al., 201962. A few adjustments weremade to the

inference algorithm, in order to account for multiple samples. These

adjustments are outlined in the following and an updated version of

the code is available on github (https://github.com/hoefer-lab/phy_

clo_dy/tree/master/multi_sample).

Input data. We used the read counts at all SNVs passing the quality

filters for tree learning. If a mutationwas absent in at least one sample,

wemanually checkedwhether themutationwaspresent in that sample

but did not pass the filtering criteria and adjusted the input data

accordingly. Coverage ratios were looked up at eachmutated position

using the output of Control-FREEC. In order to map copy number

changes that did not carry an SNV to the tree, we additionally added all

loci at which the coverage ratio changed in at least one sample to the

input. If these positions did not harbour a mutation, we set the refer-

ence read counts to the average coverage across all mutated sites and

the mutated read counts to zero. Moreover, we added the location of

TERT and PTEN, as well as locations on chromosome 2p, 3p, 3q, 5p, 7p,

7q, 10p, 10q, 11p, 16q and 17p to map gains and losses on these chro-

mosomal arms to the phylogenetic tree. The positions were taken as

the midpoint of the gained or lost segment according to the output of

Control-FREEC.

Candidate trees. The number of binary trees grows fast with the

number of clades and thus finding the best solution in a multi-sample

problem requires an efficient searching strategy. We here addressed

this problem by initiating the algorithm with a set of candidate trees,

which were based on prior information and sequentially expanded

during the fitting procedure.

A first set of candidate trees was based on the mutational spectrum

across the three samples. Mutations were either shared by all sam-

ples, or by the primary tumour and the metastasis only, or were

private to a single sample. Thus, the mutation spectrum is con-

sistent with a phylogenetic tree setting the relapsed tumour apart

from the primary tumour and the metastasis. This is the simplest

tree that is in agreementwith the data froma combinatorial point of

view. In order to account for more complex solutions, we extended

this basal tree to more complex candidate trees by splitting indivi-

dual clades.

Second, we took all unique trees consisting of up to five clades and

split each clade into three subclones, corresponding to the three

samples. These trees were extended by adding clades above each

node during the optimisation algorithm and accepted if they yiel-

ded an improved solution based on a Bayesian Information Criter-

ion. Extensions were abrogated if each sample consisted of three

subclones or if the solution did not improve.

Additional adjustments. As compared to the algorithm described in

Körber et al., 201962, we added a few additional adjustments:

Model selection was based on a modified Bayesian information

criterion as outlined in Körber et al., 2019, but without prior tree

selection based on clonal mutation estimates.
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We accounted for the possibility that a mutation call was false

negative in the candidate tree (i.e., truly present, but not detected in

a sample).

We restricted the range of normal copy numbers from [0.9, 1.1] to

[0.95, 1.05].

We added prior information on whether a copy number change

observed in multiple samples was likely due to a single event based

on manual inspection of the copy number profiles. Specifically, we

required that the losses on 2p, 3p, 11p, 16q and 17p, as well as the

gains on 3q were due to single events.

DNA methylation
The majority of the DNA methylation profiles were published in a

previous study63. Genomic DNA was extracted from fresh-frozen or

formalin-fixed and paraffin-embedded (FFPE) tissue samples. DNA

methylation profiling of all samples was performed using the Infinium

MethylationEPIC (850k) BeadChip (Illumina, San Diego, CA, USA) or

Infinium HumanMethylation450 (450k) BeadChip array (Illumina). All

computational analyses were performed in R version 3.5.3 (R Devel-

opment Core Team, 2021; https://www.R-project.org). Raw signal

intensities were obtained from IDAT-files using theminfiBioconductor

package version 1.21.464. Illumina EPIC samples and 450k samples were

merged to a combined data set by selecting the intersection of probes

present on both arrays (combineArrays function, minfi). Raw methy-

lation signals were normalised by the function preprocessIllumina.

Possible Batch-effects caused by the type of material tissue (FFPE/

frozen) and array type (450k/EPIC)were adjustedbyfittingunivariable,

linear models to the log2-transformed intensity values (remove-

BatchEffect function, limma package version 3.30.11). The methylated

and unmethylated signals were corrected individually. Beta-values

were calculated from the back-transformed intensities using an offset

of 100 (as recommended by Illumina). Filtering of CpG probes was

performedasdescribed inCapper et al. 201863. In total, 428,230probes

were kept for downstream analysis. To perform unsupervised non-

linear dimension reduction, PCA was applied to the 50,000 probes

with highest standard deviation and the resulting first 100 PCs were

used for UMAP analysis (R package uwot 0.1.8). The following non-

default parameters were applied: n_neighbors = 10; min_dist = 0.5.

scDNA-seq data pre-processing and quality control
The raw base call files from the 10X Chromium sequencer were pro-

cessed utilising the Cell Ranger DNA (version 1.1.0) pipeline for align-

ment and cell calling. First, the “cellranger mkfastq” command was

used to demultiplex the sequencing samples and to convert barcode

and read data to FASTQ files. Then, the “cellranger-dna cnv” command

was used to perform reference alignment and cell calling. As a refer-

ence genome we used pre-build Human reference GRCh37 (hg19),

which was downloaded from 10X genomics website (version 1.0.0

from June 29 2018, https://support.10xgenomics.com/single-cell-dna/

software/downloads/latest).

Default cell calling parameters as implemented by Cell Ranger

DNA were used.

Copy number inference in single nuclei/cells
We inferred single cell Total CopyNumber andmedian cell ploidy using

the scAbsolute pipeline27 based on the bam files created by the cell-

ranger DNA pipeline (above) for subsequent identification of genetic

clones within each sample (see below). Initially, we utilised cellranger-

dna bamslice to create bam files for every individual cell in each sample.

Only non-duplicated primary and well aligned reads were kept

according to the following flags: read unmapped (0 × 4), not primary

alignment (0 × 100), read fails platform/vendor quality checks

(0 × 200), read is PCR or optical duplicate (0 × 400), as well as supple-

mentary alignment (0 × 800) and a mapping quality ≤ 30. The filtered

BAM files were used as input for the scAbsolute workflow, as described

by Schneider et al.27, at a bin size of 500 kb for all samples except LFS-

MBPNuclei, where a bin size of 1Mbwas observed to provide better GC

and mappability correction. The pipeline output includes ploidy esti-

mates per cell, segmentation of the read counts per genome for each

cell, and resulting copy number estimates per segment in each cell.

Following the recommendation of the scAbsolute authors27, the

resulting segmentation and copy number estimates were manually

reviewed for each cell to validate the correct fit of the scAbsolute

model. Manual review identified several cells within the LFS-MBP

Nuclei sample for which regions in the genome had read-counts falling

in-between integer copy number states, suggestive of incorrect ploidy

estimates (Supplementary Fig. 1a). These cells had an initial median

ploidy estimate of 2, and an average copy number of less than 2.

Alternative fitting without allowing the ploidy 2 solution resulted in an

assignment to a ploidy of 4. Manual review found these regions to be

segmented and modelled with qualitatively better fit to integer copy

numbers at the higher ploidy (Supplementary Fig. 1a). As that the

majority of cells from the LFS-MBP Nuclei sample were estimated to

have aploidy of 4,we accepted this as themoreparsimonious solution.

Finally, we removed any cellswhichwereoutliers (greater than2xMAD

from themedian value) based on overdispersion of read counts across

bins (evaluated as the ratio of observed variance across bins compared

to the expected variance under a poisson count model) or normalised

gini coefficient (Supplementary Fig. 1b–d).

Clonal inference from single-cell DNA-seq data
To identify copy-number clones within the single-cell data, we first

mapped the copy number states of each cell/nucleus from the sample

onto a set of common segments. The common segments were defined

by taking all unique breakpoints estimated by the scAbsolute pipeline

across the cells within each sample, defining chains of breakpoints

within 2 bins of another breakpoint, and collapsing such chains to a

single breakpoint at the median location within the chain. The copy

number state for each cell and segment was then taken to be the

median copy number state across the segment, resolving ties by taking

the value closer to the cell ploidy (as estimated by scAbsolute).

We then split each sample into groups of cells with the sameploidy

and performed Ward D2-linkage hierarchical clustering within these

ploidy groups, with Manhattan distance on the common segments. We

cut the resulting trees into k clusters, evaluating k from 1 to 12, and only

keeping clusters with 5 or more cells. Cells which belonged to a ploidy

group with less than 5 members were excluded from the subsequent

analysis. For each cluster, we estimated pseudobulk copy number

profiles as described below. Following this, we bootstrapped the cells

assigned to the cluster, inferring 101 bootstrapped CNV profiles per

cluster. We then chose the number of clusters k by examining two

metrics: First, for the observed cell assignment we calculated a good-

ness of fit for the resulting pseudobulk Total Copy Number profile,

reasoning that clusters with heterogeneous populations will be poorly

modelledby integral copynumber states, and computed theBIC, taking

into account the number of estimated copy number states across each

cluster for each value of k. We also performed an F-Test on the dis-

tributions of bootstrapped CNV profiles, testing whether the within-

cluster distances (calculated with Euclidean distance) were different

from the between cluster differences, and examined the resulting

p-values for deviation from the null. These two complementary statis-

tics provide measures of uniformity within clusters and heterogeneity

across clusters respectively. The local-minima of these two statistics

provided candidate values for k, which we evaluated by manual review

of both the resulting copy number fits to the pseudobulk read counts

for each cluster, as well as through examining the assignment of cells to

clusters in dimensionality reduced embeddings generated using tSNE65

and multidimensional scaling66. When multiple numbers of clusters

looked similarly plausible, the smaller and more conservative k was

chosen to prevent overclustering. The selected k values for all samples
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across all ploidies are shown in Supplementary Data 1, and the resulting

number of cells per cluster is shown in Supplementary Data 3.

Copy number inference for pseudobulk of clusters
Independently from the procedure described for inference of cell-

specific copy number using scAbsolute, for each cell in each sample,

we followed the instructions of HMMCopy-utils to count the number

of deduplicated reads aligning to each 20 kb bin across the genome.

For each cluster and assignment of cells to the cluster (including

bootstrapped samples as described above), we estimated a pseudo-

bulk profile by summing the read counts falling within each bin across

all cells assigned to the cluster, and corrected the readcounts to obtain

logR ratios using a loess model for GC and mapability bias as imple-

mented by HMMCopy67. Each pseudobulk profile was segmented and

copy number was estimated using the model implemented in

HMMCopy. The ploidy estimate for the cluster from scAbsolute, as

well as the observed copy number states from the coarse-grained

scAbsolute segmentation, were used to set the number of available

copy number states, as well as the prior on the µ parameter for each

state. To encourage longer segments and to prevent over-segmenta-

tion, whichmay lead to false chromothripsis calls, we used prior values

of e = 0.999999999999999, and strength = 1e + 50.

Chromothripsis (CT) detection at the single clone level
We adjusted established criteria for inferring chromothripsis in cancer

genomes from bulk whole-genome sequencing3,4. Our pseudobulk

CNV data consists of copy state per bin (20 kb) across the genome,

divided into chromosomes. We first removed any copy number state

that was present for only a single consecutive bin. To detect CT in a

clone, we then looked for 50Mbwindowswith 8 ormore copy number

switches. We assessed every 50Mbwindow across the 20 kb bins with

a sliding window approach. As a chromosome-level CT score, we cal-

culated the fraction of evaluatedwindows in a given chromosome that

are determined as CT positive. The sliding window calculation was

sped up using Fourier Transform implementations of convolution

operators, as implemented by the R programming language68.

In addition to a chromosome level CT score, we computed a bin

level score to estimate the boundaries of CT regions. We calculate the

bin CT score as the fraction of windows containing that bin which are

called CT positive as described above. This score is assigned to every

bin but represents the level of CT in a 50Mb neighbourhood, centred

in the binof interest.Wenote that there is a border effectdue tobins in

the limits of the chromosomebeing evaluated less times andhence the

numerical CT score may be less precise in these regions. The bins

which had a positive bin-level CT score were considered to define the

regions of CT in the samples.

In addition to CT scoring the HMMcopy inferred pseudobulk CNV

profiles for each clone, we also scored the 101 bootstrapped CNV

profiles inferred for each clone as described above. For downstream

analysis, we consideredCTevents as high-confidenceonly if oneof two

criteria was true:

1. A CT event was detected on this chromosome for every clone in

the sample (and therefore was a clonal CT event); regardless of

how often the CT events in any of the clones were reproduced in

the bootstrap samples;

2. If the event was not observed in all clones, at 51 of the 101 boot-

strap samples (>50%) from the respective clone had a non-

negative CT score for this chromosome.

Criteria 1 was specifically chosen to favour calling events as

clonally CT even if subclones consisting of few cells had low con-

fidence in detection of these events, to avoid over-detection of

instances of subclonal CT.

The bootstrap filter was applied only on the level of calling par-

ticular chromosomes as CT; for all analyses where regions of CT were

compared with CNV segments, gene locations, or other genomic

regions, the observed sample (and not the bootstrapped samples) was

used to score each individual bin as CT positive as described above.

Subsampling to estimate the sensitivity of the chromothripsis
scoring
To evaluate the sensitivity of our CT scoring strategy, we subsampled

the number of cells assigned to each clone across the MB243, LFS-

MBP Nuclei, LFS-MBP PDX and LFS-MB1R PDX samples (those samples

with subclonal CT detected), taking 101 random samples subsamples

at 3, 4, 5, 6, 10, 15 and 20 cells per clone, and calling CT using the

strategy described above.

We took every clone-chromosome combination with a high-

confidence chromothripsis event prior to downsampling as the refer-

ence positive set. For each positive event in the reference set, we cal-

culated the sensitivity as the number of bootstrap samples where the

same chromosome-clone combination was scored positive. We then

computed themedianand interquartile range across thepositive event

set at eachnumber of subsampled cells as an estimate of the sensitivity

across the different events observed in our data.

Assessment of chromothripsis scoring specificity
To assess the specificity of our CT scoring approach, we used the 10x-

Chromium single cell CNVKit sequencing dataset of RPE-1 cells with

CRISPR-induced genomic instability from16, where targeted genomic

stability was induced through telomeric loss specifically on chromo-

some 4. Downloading the aligned BAM file as processed by the original

study authors from the SRA Run SRR10947879, we estimated clonal

substructure and estimated clone-specific CNVprofiles and conducted

CT scores following the same steps as described above (scAbsolute to

infer cell-level CNVs; clustering and bootstrapping to infer subclones;

and ploidy-informed HMMcopy to infer clonal copy-number profiles).

While the experimental setup does not guarantee the induction of

chromothripsis in all cells within this sample, or completely exclude

the possibility of genomic instability on other chromosomes,

the approach employed provides a close real-world approximation

of a dataset with known ground truth (due to the targeted

locus and available matched WGS) for evaluating the specificity of the

10x Chromium scDNA-seq assay combined with our CT scoring

approach.

scRNA-seq data pre-processing and quality control
The raw base call files from the 10X Chromium sequencer were pro-

cessed using the Cell Ranger Single-Cell Software Suite

(release v3.0, https://support.10xgenomics.com/single-cell-

gene-expression). First, the “cellranger mkfastq” command was

used to demultiplex the sequencing samples and to convert barcode

and read data to fastq files. Based on the fastq files, “cellranger

count” was executed to perform alignment, filtering, as well as bar-

code and uniquemolecular identifier (UMI) counting. The reads from

single-nuclei RNA-sequencing were aligned to the pre-mRNA hg19

reference genome, while the reads from single-cell RNA-sequencing

were aligned to the hg19 reference genome, implementing a pre-built

annotation package downloaded from the 10X Genomics website.

For all single-cell RNA-sequencing data resulting from PDX samples,

we also mapped the reads to the mouse genome (mm10) in order

to check whether cells map better to human or mouse. If

less than 1% of the reads were aligned to hg19, we defined the

respective cells as mouse cells. The filtered genes x cells matrix was

further used as input for the data processing workflow described in

the following.

Analysis of single sample scRNA-seq data using scanpy
Theoutput from theCell Rangerwas analysedwith the scanpy software

toolkit in python69. First, genes that were expressed (>=1 count) in <=5
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cells across the whole dataset were removed (sc.pp.filter_genes with

min_cells = 5). Next, we filtered single-cells and single-nuclei data indi-

vidually. For single-nuclei, we filtered them for (i) counts (500

<total_counts <25,000), (ii) genes (300 <n_genes <6000), (iii) mito-

chondrial genes (pct_counts_mt <5%) and ribosomal genes

(pct_counts_ribo <10%). Single-cells were filtered for (i) counts (500

<total_counts <25,000), (ii) genes (200 <n_genes), (iii) mitochondrial

genes (pct_counts_mt <10%) and ribosomal genes (pct_counts_ribo

<40%). In addition, we used scrublet70 to remove potential doublets in

our dataset, see Supplementary Data 4 for details). To account for

variable sequencing depth across cells, we normalised unique mole-

cular identifier (UMI) counts by the total number of counts per cell,

scaled to counts per 10,000 (CP10K; sc.pp.normalise_per_cell), and log-

transformed the CP10K expression matrix (ln[CP10K + 1]; sc.pp.log1p).

Next and to generate cell type clusters, we selected the 2000 most

variable genes across samplesby (1) calculating themost variable genes

per sample and (2) selecting the 2000 genes that occurred most often

across samples (sc.pp.highly_variable_genes). Aftermean centreing and

scaling the ln[CP10K + 1] expression matrix to unit variance, principal

component analysis (PCA; sc.tl.pca) was performed using the 2000

most variable genes. To select the number of PCs for subsequent

analyses, we used a scree plot and estimated the “knee/elbow” derived

from the variance explained by each PC. Visualising the data in a UMAP

embedding showed good alignment across normal cell types, while

tumour cell populations clustered separately. Hence, we did not per-

form correction for sample specific batch effects, following the

recommendations of Luecken et al.71. Following this, we calculated

clusters using the Leiden graph-based clustering algorithm v0.7.072,

which were subsequently used for differential gene expression as

described in the following. Clustering stability was post-hoc validated

using bootstrap resampling and SCCAF70.

Differential gene expression analysis and cell cluster annotation
To evaluate the cellular identity of distinct clusters, we annotated

them based on the expression of known cell marker genes collected

from the literature35–38. For this purpose, we performed a two-sided

Wilcoxon rank-sum (Mann-Whitney-U, Benjamini-Hochberg adjus-

ted) test to compare each individual cluster to all other cells. Next,

we then used the mentioned list of genes to assign cell identities to

specific clusters. This list of known marker genes included CD74,

SAT1, MERTK (macrophages/microglia), VWF, EGFL7, INSR (endothe-

lial cells), COL4A1, FN1, CDH11 (meninge cells), FABP7, CLU, GFAP,

SLC1A3, PTN (astrocytes), CD74, HLA-DRB1, RGS1, LYZ, CD81 (micro-

glia), GLI2, PTCH2, HHIP, POU6F2 (malignant SHH), MKI67, TOP2A,

DIAPH3, POLQ (malignant cycling), PTPRD, MARCH1, NCAM2, PLCL1,

NEUROD1 (malignant neuronal development I) and RASGEF1B,

SLC26A3, LINGO1 (malignant neuronal development II). In cases

where the identity could not be resolved, the highest variable genes

were used as input for a CellMarker database search (http://biocc.

hrbmu.edu.cn/CellMarker/73). Alternatively, the ToppGene suite

(https://toppgene.cchmc.org/) was used to evaluate the cellular

identity of a cluster74.

Cell of origin analysis in single-cell RNA-sequencing data
To investigate the likely cell of origin for our tumour samples, we

compared the expression of tumour cells to an atlas of normal cell

types and states. For this purpose, we accessed the publicly available

dataset from Aldinger et al., comprising 21 distinct normal cell types

and states, and performed a pairwise correlation analysis of the

transcriptome of each annotated cell state with the cell types from

Aldinger et al.38 (Supplementary Fig. 3.2). For each malignant cell

state, the Pearson correlation of the intersection between the genes

expressed in the malignant cells and significantly differentially

expressed genes (p-value ≤ 1e−5) for the respective Aldinger cell type

was calculated.

Projection of scRNA-seq data onto non-LFS medulloblastoma
samples
To assess the extent of transcriptional resemblance between LFS and

non-LFS SHH MBs, we leveraged publicly available data from Vladoiu

et al.36 and projected our samples into a shared UMAP embedding

using ingest following the scanpy vignette (https://scanpy-tutorials.

readthedocs.io/en/latest/integrating-data-using-ingest.html).

Single-cell RNA-seq copy number detection by inferCNV
We inferred copy number variation in single-cell RNA-seq data using

inferCNV42. The quality-controlled countmatrices (see Analysis of single

sample scRNA-seq data using scanpy above), separately for each single

sample, were used as input. For the patient-derived single-nuclei sam-

ples, we used endothelial cells from the same donor as a reference cell

population, as we had these data for each donor. We used these to

define the diploid reference level. For the PDX samples, we used the

closest available reference to a diploid state. To avoid outsized impact

of any particular gene on the copy number estimate, the gene expres-

sion values were limited to [−3,3]. We then estimated the underlying

probability of eachCNV using theHMMandBayesianNetworkmethods

implemented by inferCNV. In addition to the dynamic de-noising

implemented in inferCNV, an additional median filter was used when

visualising the modified expression values output by the method.

Integrating scDNA- and scRNA-seq data based on copy number
profiles
To project our scRNA-seq data on the clones defined using the scDNA-

data, we first discretized the modified gene expression values as cal-

culated by inferCNV into 3 states: 1 copy, for genes where mod-

ified_expression <1.0 − sd(modified_expression); diploid, for genes

with 1.0 − sd(modified_expression) ≤modified_expression ≤ 1.0 +

sd(modified_expression); and 3 copies for genes where mod-

ified_expression >1.0 + sd(modified_expression). We then mapped

each clonal scDNA CNV profile to gene-level copy number. For clones

with a median ploidy not equal to 2, we divided the CNV profile to

achieve a median 2 copy state, as whole genome doubled populations

were not effectively detected in our scRNAseq data.

As many chromosomes did not harbour subclonal alterations in

our samples, we filtered the scRNA and scDNA derived CNV data to

variable chromosomes. To do so, we counted the number of distinct

copy number values per chromosome arm and clone, resulting in a

table of clones x copy number values. Using this table, we calculated

the frequency of CNVs per clone per chromosome, which was subse-

quently utilised to assess the standard deviation in the CNV distribu-

tion across clones. If a chromosome of interest showed a variability

greater than 15%, we included it in our correlation approach, while all

other chromosomes were discarded.

We further visually examined the variation across each chromo-

some in scRNA-seq. If a chromosome showed no variation in the

scRNAseq, i.e. did not contain CNVs or did not display heterogeneous

CNVs, the respective chromosomewas excluded fromthedownstream

correlation.

Using the subset genes mapped to these chromosomes, we calcu-

lated the Pearson correlation between each copy number profile from

the scDNA-seq clones and each cell in the scRNA-seq data (Ro
2). We

assessed statistical significance using a permutation testing approach,

creating randomised CNV profiles by permuting across clones the copy

state for each gene independently in the scDNA data (10,000 permu-

tations). Each cell was then assigned to a scDNA clone according to the

maximum correlation if the Bonferroni corrected p-value (corrected for

number of clones in sample) was smaller than 0.05.

We used the difference in correlation between the best and 2nd

bestmatching clone correlation as ameasure of uncertainty for each of

the cell-to-clone assignments. If the difference was ≥0.025, we deter-

mined a cell as being confidently assigned to a clone; values belowwere
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considered insecure assignments. If 50% of cells assigned to a clone

could not be confidently assigned and more than 50% of the insecure

cells can be confidentially assigned to another clone, cells from both

clones in scRNA-seq were merged into one group for downstream

transcriptional analysis. This merging was overturned for clones where

clear copy number differences could be detected in visual inspection of

the inferCNV modified expression values (e.g. chr22 loss in Clone5 for

LFS-MBP PDX). The distance between best and 2nd best matching

clone is visualised as uncertainty in Supplementary Figs. 13 and 14.

Differential gene expression analysis and gene set enrichment
analysis for individual copy number clones
Using the copy number clone information generated as described

above, we performed differential gene expression analysis between

each merged copy number clone and all other cells. The two-sided

Wilcoxon rank-sum (Mann-Whitney-U, Benjamini-Hochberg adjusted)

test from scanpywas used in order to identify significantly up-regulated

genes. For individual copy number clones with at least one significantly

differentially expressedgene, the complete gene listwas combinedwith

the logFC values and used as input for gene set enrichment analysis

(GSEA) as implemented in the R package HTSanalyzeR2 (https://github.

com/CityUHK-CompBio/HTSanalyzeR2,75). Thereby, GSEA was per-

formed using theMSigDB hallmark gene sets provided by Liberzon and

colleagues76. The results from GSEA were filtered according to the

underlying p-value (FDR<0.05, Kolmogorov–Smirnov statistic, Benja-

mini Hochberg adjusted). Hence, if a pathway was significantly altered

(p-value < 0.05), it was kept in the analysis, while non-significant path-

ways were discarded (p-value >0.05). Subsequently, the clones and

altered pathways were visualised using a custom R script.

Evaluating druggable targets from scDNA- and scRNA-
sequencing data
We assessed differences in clonal expression of druggable targets

using the projection of scRNAseq data onto clones described above.

To increase sensitivity for between-clone differences, we further fil-

tered any cells where the correlation difference between the best and

second best matching clone was less than 0.025. In cases where the

second best matching and best matching clone were merged, the

distance to the third best clone were used.

CNVs within bins corresponding to genes reported as potential

druggable targets by Worst et al. 2016 et al.43 were evaluated across

clones to evaluate the presence or absence of focal gains. For per-cell

visualisation in Fig. 3i,weused the log ratioof theobserved readcounts/

median read counts in the autosomes, averaged across all bins falling

overlapping each gene. For Supplementary Figs. 13 and 14, we used the

clonal CNV state as inferred by the procedure described above, taking

the average copy number across the two clones when two clones were

merged according to the criteria in the previous section.

We investigated the expression of druggable targets from scDNA-

seq (see above) in the scRNA-seq data to evaluate whether we can

observe transcriptional consequences. Hence, we used the normalised

expressionmatrix from scRNA-seq for each sample and subset it to the

druggable target genes. Then, we used the integrated clone as well as

the cell type information for normal cells to compare the expression of

each of these groups of cells. Importantly, we removed cells with no

expression in a respective gene as well as genes which were not

expressed in at least 50 cells.

R2 genomics analysis visualisation platform
R2 Genomics Analysis Visualisation Platform (Website: https://

r2platform.com) was used to compare survival data and generate

Kaplan-Meier Plot using the data set Tumour Medulloblastoma –

Cavalli – 763 – rma_sketch – hugene11t, aminimal group size of 10, and

separating by a single gene (SETD2). More specifically, shh_alpha was

selected for the subtype.

Statistics and reproducibility
Specific statistical tests used in this study are described in detail in the

methods and indicated in the respective figure legends or in the main

text, where appropriate. P values of less than 0.05 were considered as

significant. Multiple testing corrections were applied whenever men-

tioned. No statistical method was used to predetermine sample sizes.

Statistical comparison of the effect of SETD2 and TP53 knockouts in

neural stem cells (Fig. 6b, c, e, h) was based on a minimum of three

biological replicates. For experiments with varying numbers of biolo-

gical replicates/group (Fig. 6e, h), no data were excluded from the

analyses. Variable sample size was due to different growth rates of

cells, limiting their availability at the time of the experiments.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing data from single cell WGS, single cell RNAseq, and

Strand-Seq experiments generated in this study are deposited with the

European Genome-phenome Archive (EGA), which is hosted by the EBI

and the CRG, under accession number EGAS00001005410. The data are

available under restricted access due to the European General Data

Protection Regulation (GDPR) and the German General Data Protection

Regulation (GDPR) and to respect the patient consent forms.Data access

can be requested through the EGA subject to Data Access Committee

review. It can be granted in principle for research use after a Data

Transfer Agreement is legally settled between the requesting institute

and the providing institute. Once the data access has been granted, the

access is usually available for 5 years, unless otherwise restricted by

individual patient consent forms. Data access requests will be reviewed

and Data Transfer Agreements will be settled as quickly as possible.

Processed sequencing data for WGS/WES, scDNA, scRNA and

StrandSeq assays are available on Zenodounder the https://doi.org/10.

5281/zenodo.13348419. The samples profiled in this study are

embedded in the larger ICGC PedBrain project, and raw sequencing

data for all analyses of bulk short read WGS and RNA sequencing for

the PedBrain samples are available after through the EGA under

accession number EGAS0000100195339. Raw RNAseq data used for

differential expression analysis in this study from Waszal et al. is

available through the EGA under accession number

EGAS0000100412640 and from Kool et al. from the EGA under acces-

sion number EGAS0000100060741. scRNAseq data from Reimondy

et al. use in this manuscript are available from GEO under SuperSeries

accession number GSE15605323. Raw data for scRNAseq from Vladoiu

et al. used in this manuscript are available from the EGA under acces-

sion code EGAS0000100317036. Raw snRNAseq data from Aldinger

et al. used in thismanuscript are available fromdbGaPunder accession

code phs001908.v2.p138. Raw single cell WGS data from Umbreit et al.

used in this manuscript are available from the Sequence Read Archive

under project code SRP24383216.

The methylation array data from Capper et al. used in this

manuscript are available through GEO under accession number

GSE10938163.

Source data for all figures are accessible through Zenodo under

the https://doi.org/10.5281/zenodo.13918598. The remaining data are

available within the Article, Supplementary Information or in the

Source Data files.

Code availability
The aforementioned computational methods provide a summary of

the procedures implemented in various custom-made R, python and

bash scripts. These scripts contain the commands run for the analyses

highlighted in this publication. In order to sustain reproducibility, they

are publicly available on Github (https://github.com/PMBio/MB_scSeq).

Article https://doi.org/10.1038/s41467-024-54547-w

Nature Communications |        (2024) 15:10183 17



References
1. Stephens, P. J.Massive genomic rearrangement acquired in a single

catastrophic event during cancer development. Cell 144, 27–40

(2011).

2. Rausch, T. Genome sequencing of pediatric medulloblastoma links

catastrophic DNA rearrangements with TP53 mutations. Cell 148,

59–71 (2012).

3. Cortés-Ciriano, I. Comprehensive analysis of chromothripsis in

2658 human cancers usingwhole-genome sequencing.Nat. Genet.

52, 331–341 (2020).

4. Voronina, N. The landscape of chromothripsis across adult cancer

types. Nat. Commun. 11, 2320 (2020).

5. Kloosterman, W. P., Koster, J. & Molenaar, J. J. Prevalence and

clinical implications of chromothripsis in cancer genomes. Curr.

Opin. Oncol. 26, 64–72 (2014).

6. Fontana, M. C. Chromothripsis in acute myeloid leukemia: biologi-

cal features and impact on survival. Leukemia32, 1609–1620 (2018).

7. Molenaar, J. J. Sequencing of neuroblastoma identifies chromo-

thripsis and defects in neuritogenesis genes. Nature 483,

589–593 (2012).

8. Ernst, A. Telomere dysfunction and chromothripsis. Int. J. Cancer

138, 2905–2914 (2016).

9. Bassaganyas, L. Sporadic and reversible chromothripsis in chronic

lymphocytic leukemia revealed by longitudinal genomic analysis.

Leukemia 29, 758 (2015).

10. Shoshani, O. Chromothripsis drives the evolution of gene amplifi-

cation in cancer. Nature 591, 137–141 (2021).

11. Ratnaparkhe, M. Defective DNA damage repair leads to frequent

catastrophic genomic events in murine and human tumors. Nat.

Commun. 9, 4760 (2018).

12. Ratnaparkhe, M. Genomic profiling of Acute lymphoblastic leuke-

mia in ataxia telangiectasia patients reveals tight link between

ATM mutations and chromothripsis. Leukemia 31,

2048–2056 (2017).

13. Crasta, K. DNAbreaks and chromosomepulverization fromerrors in

mitosis. Nature 482, 53–58 (2012).

14. Ly, P. Selective Y centromere inactivation triggers chromosome

shattering in micronuclei and repair by non-homologous end join-

ing. Obstet. Gynecol. Surv. 72, 282–283 (2017).

15. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & Lange, T. Chro-

mothripsis and kataegis induced by telomere crisis. Cell 163,

1641–1654 (2015).

16. Umbreit, N. T. Mechanisms generating cancer genome complexity

from a single cell division error. Science 368, eaba0712 (2020).

17. Zhang, C.-Z. Chromothripsis from DNA damage in micronuclei.

Nature 522, 179–184 (2015).

18. Sanders, A. D. Single-cell analysis of structural variations and

complex rearrangements with tri-channel processing. Nat. Bio-

technol. 38, 343–354 (2020).

19. Jeong, H. et al. Functional analysis of structural variants in single

cells using Strand-seq. Nat. Biotechnol. 41, 832–844 (2023).

20. Valle-Inclan, J. E. et al. Mechanisms underpinning osteosarcoma

genome complexity and evolution. 2023.12.29.573403 Preprint at

https://doi.org/10.1101/2023.12.29.573403 (2023).

21. Danilenko, M. et al. Single-cell DNA sequencing identifies risk-

associated clonal complexity and evolutionary trajectories in

childhood medulloblastoma development. Acta Neuropathol. 144,

565–578 (2022).

22. Bočkaj, I. et al. Chromosomal instability characterizes pediatric

medulloblastoma but is not tolerated in the developing cere-

bellum. Int. J. Mol. Sci. 23, 9852 (2022).

23. Riemondy, K. A. et al. Neoplastic and immune single-cell tran-

scriptomics define subgroup-specific intra-tumoral heterogeneity

of childhood medulloblastoma. Neuro-Oncol. 24, 273–286

(2022).

24. Okonechnikov, K. et al. Mapping pediatric brain tumors to their

origins in the developing cerebellum. Neuro-Oncol. 25, 1895–1909

(2023).

25. Fan, K., Wei, Y., Ou, Y. & Gong, J. Integrated analysis of multiple

methods reveals characteristics of the immune microenvironment

in medulloblastoma. Brain Tumor Pathol. 40, 191–203 (2023).

26. Waszak, S. M. Spectrum and prevalence of genetic predisposition

in medulloblastoma: a retrospective genetic study and pro-

spective validation in a clinical trial cohort. Lancet Oncol.

19, 785–798 (2018).

27. Schneider, M. P. et al. scAbsolute: measuring single-cell ploidy and

replication status. Genome Biol. 25, 62 (2024).

28. Notta, F. et al. A renewed model of pancreatic cancer evolution

based on genomic rearrangement patterns. Nature 538,

378–382 (2016).

29. Lange, J. T. et al. The evolutionary dynamics of extrachromosomal

DNA in human cancers. Nat. Genet. 54, 1527–1533 (2022).

30. Yi, E. et al. Live-cell imaging shows uneven segregation of extra-

chromosomal DNA elements and transcriptionally active extra-

chromosomal DNA hubs in cancer. Cancer Discov. 12,

468–483 (2022).

31. Chamorro González, R. et al. Parallel sequencing of extra-

chromosomal circular DNAs and transcriptomes in single cancer

cells. Nat. Genet. 55, 880–890 (2023).

32. Kim, H. et al. Extrachromosomal DNA is associated with oncogene

amplification and poor outcome across multiple cancers. Nat.

Genet. 52, 891–897 (2020).

33. Hung, K. L. et al. ecDNA hubs drive cooperative intermolecular

oncogene expression. Nature 600, 731–736 (2021).

34. Amin, A. D., Rajan, S. S., Groysman, M. J., Pongtornpipat, P. &

Schatz, J. H. Oncogene overdose: too much of a bad thing for

oncogene-addicted cancer cells. Biomark. Cancer 7, 25–32 (2015).

35. Hovestadt, V. Resolving medulloblastoma cellular architecture by

single-cell genomics. Nature 572, 74–79 (2019).

36. Vladoiu,M. C. Childhood cerebellar tumoursmirror conserved fetal

transcriptional programs. Nature 572, 67–73 (2019).

37. Eze, U. C., Bhaduri, A., Haeussler, M., Nowakowski, T. J. & Kriegstein,

A. R. Single-cell atlas of early human brain development highlights

heterogeneity of human neuroepithelial cells and early radial glia.

Nat. Neurosci. 24, 584–594 (2021).

38. Aldinger, K. A. et al. Spatial and cell type transcriptional landscape

of human cerebellar development. Nat. Neurosci. 24, 1163–1175

(2021).

39. Northcott, P. A. The whole-genome landscape of medulloblastoma

subtypes. Nature 547, 311–317 (2017).

40. Waszak, S. M. et al. Germline Elongator mutations in Sonic Hedge-

hog medulloblastoma. Nature 580, 396–401 (2020).

41. Kool, M. et al. Genome sequencing of SHH medulloblastoma pre-

dicts genotype-related response to smoothened inhibition. Cancer

Cell 25, 393–405 (2014).

42. inferCNV of the Trinity CTAT Project: https://github.com/

broadinstitute/inferCNV

43. Worst, B. C. Next-generation personalised medicine for high-risk

paediatric cancer patients—the INFORM pilot study. Eur. J. Cancer

65, 91–101 (2016).

44. Kanu, N. SETD2 loss-of-function promotes renal cancer branched

evolution through replication stress and impaired DNA repair.

Oncogene 34, 5699–5708 (2015).

45. Park, I. Y. Dual chromatin and cytoskeletal remodeling by SETD2.

Cell 166, 950–962 (2016).

46. Mardin, B. R. A cell-based model system links chromothripsis with

hyperploidy. Mol. Syst. Biol. 11, 828 (2015).

47. Gillooly, J. F., Hein, A. &Damiani, R.NuclearDNAcontent varieswith

cell size across human cell types. Cold Spring Harb. Perspect. Biol.

7, a019091 (2015).

Article https://doi.org/10.1038/s41467-024-54547-w

Nature Communications |        (2024) 15:10183 18



48. Quigley, D. A. Genomic hallmarks and structural variation in meta-

static prostate cancer. Cell 175, 889 (2018).

49. Bolkestein, M. Chromothripsis in human breast cancer.Cancer Res.

80, 4918–4931 (2020).

50. Brabetz, S. A biobank of patient-derived pediatric brain tumor

models. Nat. Med. 24, 1752–1761 (2018).

51. Sanders, A. D., Falconer, E., Hills, M., Spierings, D. C. J. & Lansdorp,

P.M. Single-cell template strand sequencingbyStrand-seqenables

the characterization of individual homologs. Nat. Protoc. 12,

1151–1176 (2017).

52. Reisinger, E. OTP: an automatized system for managing and pro-

cessing NGS data. J. Biotechnol. 261, 53–62 (2017).

53. Kleinheinz, K. ACEseq – allele specific copy number estimation

from whole genome sequencing. https://doi.org/10.1101/210807.

54. Rausch, T. et al. DELLY: structural variant discovery by integrated

paired-end and split-read analysis. Bioinforma. Oxf. Engl. 28,

i333–i339 (2012).

55. Klambauer, G. cn.MOPS: mixture of Poissons for discovering copy

number variations in next-generation sequencing data with a low

false discovery rate. Nucleic Acids Res. 40, 69 (2012).

56. Korbel, J. O. & Campbell, P. J. Criteria for inference of chromo-

thripsis in cancer genomes. Cell 152, 1226–1236 (2013).

57. Deshpande, V. Exploring the landscape of focal amplifications in

cancer using AmpliconArchitect. Nat. Commun. 10, 392 (2019).

58. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Erratum: near-

optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34,

888 (2016).

59. Frankish, A. GENCODE reference annotation for the human and

mouse genomes. Nucleic Acids Res. 47, 766–773 (2019).

60. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold

changeanddispersion for RNA-seqdatawithDESeq2.GenomeBiol.

15, 550 (2014).

61. Boeva, V. Control-FREEC: a tool for assessing copy number and

allelic content using next-generation sequencing data. Bioinfor-

matics 28, 423–425 (2012).

62. Körber, V. Evolutionary trajectories of IDHWTglioblastomas reveal a

common path of early tumorigenesis instigated years ahead of

initial diagnosis. Cancer Cell 35, 692–704.12 (2019).

63. Capper, D. DNAmethylation-based classification of central nervous

system tumours. Nature 555, 469–474 (2018).

64. Aryee, M. J. Minfi: a flexible and comprehensive Bioconductor

package for the analysis of Infinium DNA methylation microarrays.

Bioinformatics 30, 1363–1369 (2014).

65. van derMaaten, L. & Hinton, G. Viualizing data using t-SNE. J. Mach.

Learn. Res. 9, 2579–2605 (2008).

66. Kruskal, J. B.Multidimensional scaling by optimizing goodness of fit

to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964).

67. Shah, S. P. et al. Integrating copynumber polymorphisms into array

CGH analysis using a robust HMM. Bioinforma. Oxf. Engl. 22,

e431–439 (2006).

68. R Core Team. R: A Language and Environment for Statistical Com-

puting (Version 4.2.0) [Computer software] (2022).

69. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell

gene expression data analysis. Genome Biol. 19, 15 (2018).

70. Wolock, S. L., Lopez, R. & Klein, A. M. S. Computational identifica-

tion of cell doublets in single-cell transcriptomic data. Cell Syst. 8,

281–291 9 (2019).

71. Luecken, M. D. & Theis, F. J. Current best practices in single‐cell

RNA‐seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

72. Traag, V. A., Waltman, L. & Eck, N. J. From Louvain to Leiden:

guaranteeing well-connected communities. Sci. Rep. 9,

5233 (2019).

73. Zhang, X. CellMarker: a manually curated resource of cell markers

in human and mouse. Nucleic Acids Res. 47, 721–728 (2019).

74. Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite

for gene list enrichment analysis and candidate gene prioritization.

Nucleic Acids Res. 37, 305–11 (2009).

75. Subramanian, A. Gene set enrichment analysis: a knowledge-based

approach for interpreting genome-wide expression profiles. Proc.

Natl Acad. Sci. USA 102, 15545–15550 (2005).

76. Liberzon, A. The molecular signatures database Hallmark gene set

collection. Cell Syst. 1, 417–425 (2015).

77. Turner, K. M. et al. Extrachromosomal oncogene amplification

drives tumour evolution and genetic heterogeneity. Nature 543,

122–125 (2017).

Acknowledgements
We thank Peter Lichter and Aurelio Teleman for discussions, Frauke

Devens, Michaela Hergt, Brigitte Schoell and Katharina Bauer for

technical support, the Sequencing and the Microarray units of the

Genomics and Proteomics Core Facility (DKFZ), the EMBL Sequencing

Facility, the DKFZ FACS Core Facility and the DKFZ Imaging Facility.

David Pellman and his team are acknowledged for kindly sharing their

published single-cell DNA sequencing data as a reference dataset.

Florian Markowetz and his team are acknowledged for sharing scAb-

solute and for support in using it. Thomas Weber and Jan Korbel are

acknowledged for their advice regarding strand-seq data analysis. Axel

Benner is acknowledged for support with statistical analyses. Daniel

Haag is acknowledged for kindly sharing neural stem cells. P.S. was

supported by the Heidelberg-Mannheim Life Science Alliance. D.R.G.

was supported with personal grants by the German Academic Scho-

larship Foundation (Studienstiftung des Deutschen Volkes) and the

Mildred Scheel Doctoral Fellowship programme of the GermanCancer

Aid (Deutsche Krebshilfe). K.W.P. acknowledges funding by the Ger-

man Childhood Cancer Foundation (DKS2021.02) and the Federal

Ministry of Education and Research (01GM2205A). R.G.P. holds a fel-

lowship from Grant IHMC22/00007 funded by the Instituto de Salud

Carlos III (ISCIII). The vast majority of the experimental work in this

study was supported by grants to A.E. from the DFG, the Wilhelm

Sander Foundation and the Fritz Thyssen Foundation. H.S. was sup-

ported by the German Federal Ministry of Education and Research

(031L069A).

Author contributions
P.S., M.J.P., R.G.P. and H.S. performed the vast majority of the compu-

tational work, M.S.-L. performed the vast majority of the experiments,

M.R. performed the initial single-cell experiments, J.K.L.W. contributed

to thebulk sequencingdata analysis, V.K. derivedphylogenies frombulk

sequencing data, P.M. contributed to the single-cell experiments, G.P.

contributed to the strand-seq experiments, M.S. contributed to the DNA

methylation analysis, T.K. supported the CRISPR/Cas9 experiments, R.K.

did the confocal imaging, N.C. contributed to the computational work,

K.O. contributed to the bulk RNA sequencing data analysis. D.R.G.,

K.K.M. and K.W.P. supported the nuclei extraction, A.J. did the image

analysis of multicolour FISH, A.K. did the neuropathology evaluation of

tissue, T.H. supervised the computational analyses of bulk phylogenies,

M.Z. supervised part of the bulk sequencing data analysis, S.M.P. con-

tributed by providing feed-back on the work and critical revision of the

article, W.H. supervised the computational work and provided critical

revision of the manuscript, O.S. had oversight, leadership responsibility

and conceptualisation of the bioinformatic analyses, A.E. conceived the

study and had leadership responsibility for the experimental work.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Article https://doi.org/10.1038/s41467-024-54547-w

Nature Communications |        (2024) 15:10183 19



Additional information
Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-024-54547-w.

Correspondence and requests for materials should be addressed to

Oliver Stegle or Aurélie Ernst.

Peer review informationNature Communications thanks ZhengHu, and

the other, anonymous, reviewer(s) for their contribution to the peer

review of this work. A peer review file is available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-

isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2024, corrected publication 2025

1Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany. 2European

Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany. 3Division of Computational Genomics and Systems Genetics, German Cancer

Research Center (DKFZ), Heidelberg, Germany. 4Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK. 5Life Sciences Department,

Barcelona Supercomputing Center, Barcelona, Spain. 6Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
7Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany. 8Single-cell Open Lab, German Cancer Research

Center (DKFZ) and Bioquant, Heidelberg, Germany. 9Faculty of Biosciences, Heidelberg University, Heidelberg, Germany. 10Hopp Children’s Cancer Center

Heidelberg (KiTZ), Heidelberg, Germany. 11Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center

(DKFZ), Heidelberg, Germany. 12Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.
13Institute of Human Genetics, Heidelberg University, Heidelberg, Germany. 14Clinical Cooperation Unit Neuropathology, DKFZ, Department of Neuro-

pathology, Heidelberg University Hospital, Heidelberg, Germany. 15These authors contributed equally: Petr Smirnov, Moritz J. Przybilla, Milena Simovic-

Lorenz, R. Gonzalo Parra, Hana Susak. 16These authors jointly supervised this work: Oliver Stegle, Aurélie Ernst. e-mail: o.stegle@dkfz-heidelberg.de;

a.ernst@dkfz-heidelberg.de

Article https://doi.org/10.1038/s41467-024-54547-w

Nature Communications |        (2024) 15:10183 20


