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Background and purpose: Conventionally, the quality of radiotherapy treatment plans is assessed through visual
inspection of dose distributions and dose-volume histograms. This study developed a framework to evaluate plan
quality using dose, complexity, and robustness metrics. Additionally, a method for predicting plan robustness
metrics using dose and complexity metrics was introduced for cases where plan robustness evaluation is un-
available or impractical.

Materials and methods: The framework and prediction models were developed and validated using 103-bronchial
Volumetric Modulated Arc Therapy (VMAT)-plans. The application of the framework was demonstrated using
25-VMAT-plans. To identify significant metrics for plan evaluation, 122-metrics were analysed and narrowed
down using multivariate Spearman correlation. Metric limits were set with Statistical process control (SPC).
Robustness metrics were predicted using multivariable or single linear regression models based on dose-and
complexity-metrics.

Results: Twenty-five-metrics were selected based on the amount and strength of correlations. Rgs(dose coverage)
and Hlgs,s(homogeneity index) stood out among the dose-metrics, while the complexity-metrics showed similar
correlations. Average scenarios dose at 95 % Clinical Target Volume D95:¢,,(CTV) and Errorbar-based Volume-
Histograms (EVH) were notable for robustness metrics. Approximately 99 % of evaluated metrics fell within
established SPC limits. The prediction model for D95yean(CTV) showed good performance (adjusted R? = 0.88,
mean squared error (MSE) = 3.84 x 10’6), while the model for EVH demonstrated moderate reliability (adjusted
R? = 0.52, MSE = 0.2). No statistically significant differences were found between the predicted (using dose-and
complexity-metrics) and calculated robustness metrics (EVH (p-value = 0.9) and D95ean(CTV) (p-value = 1)).
Conclusions: The developed framework enables early detection of sub-optimal, complex and non-robust treatment
plans. The predictive model can be used when robustness evaluations are impractical.

Statistical process control
Robustness prediction

1. Introduction

Traditionally, a treatment plan (TP) is evaluated based on a visual
examination of the calculated dose distribution and dose-volume his-
tograms (DVH) [1,2]. However, the expected differences between
planned and delivered plans should be addressed during the evaluation.
Accurate plan quality assessment should consider qualitative and
quantitative measures rather than relying solely on clinical protocols,

historical practices, or personal preferences [2]. The literature [3] rec-
ommends evaluating plan quality using dose, plan complexity, and
robustness metrics and implementing these metrics into the clinical
treatment planning system (TPS). Dose metrics (dose coverage, homo-
geneity, conformity, and gradient index) used to evaluate the dose dis-
tribution are mainly based on the DVH data [3]. Plan complexity metrics
quantify the degree of complexity associated with machine parameters,
TPS properties, and plan characteristics, which can cause discrepancies
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between delivered and calculated dose distributions, potentially
affecting robustness [3-5]. In photon therapy, uncertainties are typi-
cally addressed by adding a margin to the Clinical Target Volume (CTV)
to create a planning target volume (PTV) to ensure adequate CTV
coverage despite discrepancies [6]. The classical PTV- or margin-
approach has some shortcomings, such as high-dose irradiation of the
organ-at-risk (OAR) or static dose cloud approximation, which assumes
that the dose distribution is unaffected by uncertainties [7,8].
Conversely, a robust planning approach accounts for uncertainties
during the optimisation or evaluation [8,9]. A robust optimisation
produces a dose distribution with less variability and greater resilience
to uncertainties, while robust evaluation only assesses how well the dose
distribution handles uncertainties [7,10]. Robust optimisation methods
include minimax [7,11], worst-case [7,11], conditional value at risk [9],
and probabilistic planning [7] optimisation. Robust evaluation ap-
proaches include scenario-based (individual scenarios); aggregated dose
distribution (combination of multiple scenarios, e.g., voxel-wise mini-
mum, mean, and maximum dose) [12]; worst-case scenario [12,13]; and
probabilistic robust evaluation [13].

Statistical process control (SPC) aims to monitor process quality by
comparing current parameters with previous data [14]. The classical
Shewhart control chart is derived under the normality assumption [15].
For non-parametric data (e.g. skewed data), new generation methods
(heuristic, transformation, or percentile methods) could be used
[16-18]. In radiotherapy, SPC has been used in previous studies to set
limits for patient-specific measurements [16,19,20], machine quality
assurance tolerances [14,21], and dose comparisons [22].

This study has three parts. First, dose-, complexity-, and robustness-
metrics were calculated, and multivariate Spearman correlations were
used to identify metrics for evaluating plan quality. SPC was used to
determine the undefined limits of the metrics, which vary according to
clinical standards, radiation techniques, and treatment sites. Second,
regression models were introduced to predict plan robustness using dose
and complexity metrics. The prediction could be used when robust
evaluation is unavailable or impractical because robust evaluation cal-
culations could be time-consuming, especially during the planning
process. The third part demonstrates the application of the framework
and the prediction model. The aggregation and visualisation of the re-
sults through a user interface are necessary for proper clinical imple-
mentation, but this is beyond the scope of this study.

2. Methods and materials

The Ethics Committee of the Medical Faculty, Heidelberg University
(S-192/2022), approved this study.

2.1. Treatment plans

Volumetric Modulated Arc Therapy (VMAT) plans from 2020 for
patients with bronchial carcinoma were retrospectively analysed. Pre-
scribed doses ranged from 45 to 66 Gy (15-33 fractions). All retro-
spective plans were generated in the TPS (RayStation-v.10A, RaySearch
Lab., Sweden), with 6MV-photon using a collapsed cone algorithm for
an Elekta VersaHD LINAC (Elekta Ltd, Crawley, UK). The dose calcula-
tion (dose-to-different density water) [23] was performed using a (2 x 3
x 2) mm dose grid, and the plans were normalised to the target volume
median dose (D50 %). The baseline and test plans applied in this study
are as follows.

Baseline plans: The framework (including SPC limits) and predic-
tion model were established using 103 bronchial VMAT plans (TP1-
TP103).

Test plans: The framework application was demonstrated on 25
additional bronchial VMAT plans (TP104-TP128). The original plans
were copied and recalculated using an updated TPS version (RayStation-
v.11B) with a re-commissioned machine due to a clinical TPS update.
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Table 1

Summary of the evaluated metrics grouped by dose, plan complexity, and plan
robustness evaluation. In Hlgs,5/Hlgg /2 (95; 98; 5; or 2) refer to the Dy, (dose at
x% volume). The criteria 10 mm, 15 mm, and 20 mm were used for SAS and 10
mm x 10 mm, 15 mm x 15 mm, and 20 mm x 20 mm for SA/CP. ROL: The
regions of interest include the target volume (CTV) and the OARs (right and left
lung, heart and spinal cord). Acronym RTOG: Radiation Therapy Oncology
Group. MU is the unit for PMU, cm? for MFA and PA, and 1/cm for C/A. The

other metrics/parameters listed are unitless.

a) Dose metrics

b) Plan complexity metrics

¢) Plan robustness
evaluation metrics

TC — Target
Coverage [37]
QCrroc — RTOG
Quality of coverage
[38]

— Rgs — Dose Coverage
[39]

~ Clpaddick —

Paddick Conformity

Index [40]

Clrrog — RTOG

Conformity Index

[38]

Hlgrog — RTOG

Homogeneity Index

[38]

— Hlos/s —
Homogeneity Index
[41]

— Hlog/s —

Homogeneity Index

[39,41]

GI — Gradient Index

[2]

— DGI — Dose Gradient
Index [42]

— PQI - Plan Quality

Index [25]

PMU — Plan normalised MU
[43]

MFA — Mean Field Area [44]
PA — Plan averaged beam
Area [43,45]

PI — Plan averaged beam
Irregularity [43,45]

PM — Plan averaged beam
Modulation [43,45]

LT — Leaf Travel [46]

MCS — Plan Modulation
Complexity Score [46]
LTMCS - LT x MCS [46]
C/A — Circumference/Area
[47,48]

SAS(10mm; 15mm; 20mm) —
Small Aperture Score [44]
SA/
CP(10mm»10mm;15mmx 15mm;
20mmx20mm) — Segment Area
per Control Point (CP) [49]

Target-based:

— EVH - Errorbar-
based Volume His-
tograms (EVH)
[50]

— RVH — Root Mean

Square Dose

(RMSD) Volume

Histograms (RVH)

[51]

DVHB(ROI) —

Dose-Volume histo-

gram (DVH)-band

of target (DVHB)

[52]

— DVHBWpy, — DVH
BandWidths (BW)
at Dyo, [53]

— Dyos(ROI) — dose at

x% ROI volume as

range — scenario

dose evaluation

Passratepyo,(ROI) —

ROI clinical goal

pass rate

OAR-based:

— DVHB(OAR) [52]
(similar to target)

— Dyo,(OAR) (similar
to target)

— Passratepyo,(OAR)
(similar to target)

Robust-dose-

metrics:

— Dosemetrics;obust —
Robust-dose-
metrics. All dose
metrics listed in
column a) were
calculated for the
scenarios and
recorded as mini-
mum, mean, and
maximum.

2.2. Plan quality evaluation metrics

Dose (n = 11), complexity (n = 15), and robustness metrics (n = 96)
were calculated using a Python script (v.3.8.7) compiled in the TPS to
retrieve plan parameters. All the metrics (n = 122) were calculated and
examined using the baseline plans. These metrics are listed in Table 1,
and their equations are provided in the Supplementary material
(Table A.1).

CTV was considered the target volume for the plan quality evaluation
(clinical goals: Dgs > 0.95; Dpax < 1.07). The OARs clinical goals are
from QUANTEC (right/left lung: Vaogy = 30 %, Dmean = 7 Gy; heart:
V3ogy = 46 %, Diean = 3 GY, Dmax = 30 Gy; spinal cord: Dyax = 45 Gy)
[24]. For comparison purposes, the dose values were normalised to the
prescribed dose.
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Fig. 1. Established workflow used to assess plan quality. This workflow has two processes: (a) baseline creation (red framed) and (b) an example of the framework
application (blue framed). The “baseline creation” refers to the selection of metrics and the calculation of SPC limits needed for plan evaluation. The baseline is
created with n VMAT treatment plans (e.g., n = 103 plans). The baseline results are saved in a shared database. The “framework application” uses an existing
baseline, saved in a database, to evaluate a treatment plan. The step "optimise & calculate plan” is not part of the framework in this study. Note: The treatment plan
can refer to any plan requiring evaluation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.2.1. Dose metrics

Eleven dose metrics were evaluated (Table 1). Plan Quality Index
(PQI) combines the target dose coverage and the dose received by OARs
[25]. The above-listed OARs were used.

2.2.2. Plan complexity metrics

Fifteen complexity metrics were calculated (Table 1). Small aperture
score (SAS) and segment area per control point (SA/CP) were computed
using three criteria each (10 mm, 15 mm and 20 mm) for SAS and (10
mm X 10 mm, 15 mm x 15 mm and 20 mm x 20 mm) for SA/CP.

2.2.3. Plan robustness evaluation metrics

The robustness evaluation, essential for calculating robustness met-
rics, was limited to setup uncertainties for simplicity. A setup uncer-
tainty of 5 mm in all directions was used, which is appropriate for daily
imaging with cone-beam computed tomography. The scenario-based
evaluation method [12] available in the TPS was used, where the
setup error was sampled in different scenarios, and the dose was
calculated using the nominal plan beam sets. The setup error was re-
sampled by applying isocenter shifts to the diagonal endpoints, refer-
ring to points from the centre to the cube’s corners formed by the given

uncertainties. This resulted in eight dose distribution scenarios used to
calculate the robustness metrics. These metrics were divided into three
groups (Table 1): target-based, OAR-based and robust-dose-metrics
(dose metrics calculated from the scenarios dose). For the robustness
based on target (CTV), the following parameters were calculated: i)
robustness metrics, as errorbar volume-histogram (EVH), root-mean-
square volume-histogram (RVH), DVH-band (DVHB) and DVH band
width (DVHBW), ii)Scenarios CTV coverage (Dyo,(CTV)), Dyo, represents
Dmeans Dmins D2, Ds, Dso, Dgs, Dog, Dmax; and iii)clinical goal pass-rate
(Passratepyo,(CTV)), Dyo, represents Dgs, Dyax. The pass-rate refers to
the number of scenarios that fulfil the clinical goal. Regarding the OARs-
based DVHB, clinical goal dose and pass-rate were calculated. For the
robust-dose-metrics (Dosemetrics,obyust), all dose metrics in Table 1 were
calculated for each scenario. The robust-dose-metrics and the CTV
coverage were reported as minimum, mean, and maximum.

2.3. Statistical analysis method

The Shapiro-Wilk test assessed data normality (o = 0.05) [15,26].
The Mann-Whitney U test was used to determine the significance of
median differences between subsets of metrics (p < 0.05) [27].
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Selected metrics, counts from the multivariable Spearman correlation, normality check, skewness value, and corresponding SPC results. The Shapiro-Wilk test (o =
0.05) checks for normality, and results are indicated as "pass’ for p-values greater than 0.05 and ’fail’ for those smaller than 0.05. Calculated distribution skewness is
shown as a negative value for left-skewed and a positive value for right-skewed distributions. The calculated CL (centre line), UCL (upper control limit), and LCL (lower
control limit) are provided according to Egs. (2.1) and (2.2) for the baseline plans. * marked the negative limits set to 0.

Variable name Number of counts Normality check

Data Skewness

CL - centre line LCL - lower control limit UCL - upper control limit

Dose metrics

Ros [u.a.] 11 fail —0.60
Clpaddick [u.a.] 6 pass 0.01
Hlos/s5 [u.a.] 12 pass 0.37
DGI [u.a.] 8 pass 0.40
PQI [u.a.] 5 fail 4.40

Plan complexity

PMU [MU] 9 pass 0.24
PA [cm?] 6 fail 0.55
PI [u.a.] 10 pass 0.28
PM [u.a.] 8 fail -1.07
MCS [u.a.] 7 fail 0.75
LTMCS [u.a.] 7 fail 0.89
C/A [1/cm] 5 pass 0.11
SAS15mm [u.a.] 7 pass 0.07
SA/CP1smmx15mm [u.a.] 6 pass —0.04

Plan robustness (target-based)

DVHB(CTV) [u.a.] 4 fail 0.91
D95mean(CTV) [u.a.] 16 fail -1.27
EVH [u.a.] 18 fail 0.82

Plan robustness (OAR-based)

DVHB(right lung) [u.a.] 1 fail 0.81
Dmeany,,(right lung) [u.a.] 1 fail 0.48
DVHB(left lung) [u.a.] 6 fail 1.51
Dmeanx(left lung) [u.a.] 9 fail 0.83
DVHB(heart) [u.a.] 1 fail 0.42
Dmaxpax(heart) [u.a.] 15 fail —-2.62
DVHB(spinal cord) [u.a.] 7 fail 0.68
Dmaxmax(spinal cord) [u.a.] 8 fail —0.51

0.98 0.95 0.99
0.51 0.22 0.80
0.05 0.01 0.10
0.09 0.02 0.17
5.44 0* 106.20
498.40 91.23 905.56
60.23 20.06 124.52
1.21 0.02 2.40
0.71 0.23 0.92
0.32 0.12 0.68
0.14 0.04 0.35
0.47 0.13 0.81
0.28 0* 0.58
0.36 0.00 0.73
0.01 0.00 0.03
0.98 0.95 0.99
3.49 1.52 7.32
0.04 0* 0.13
0.29 0* 0.83
0.03 0* 0.13
0.28 0* 0.98
0.05 0.00 0.14
1.05 0.23 1.33
0.02 0* 0.07
0.69 0.04 1.11

Spearman’s correlation coefficient was used to assess correlations be-
tween metrics (p < 0.05) [28]. Absolute coefficients were categorised as
very strong/high (0.90-1.00), strong/high (0.70-0.89), moderate
(0.50-0.69), weak/low (0.30-0.49), and no/little (0.00-0.29) [29].
Corrections for multiple testing (e.g. Bonferroni, Benjamini-Hochberg)
were not applied.

2.4. Statistical process control (SPC) method

Eq. (2.1) was used for normally distributed data [15]. For non-
normal data with skewed distribution, the skewness correction
method (Eq. (2.2)) was used [16,18].

MR

UCL/LCL:CmeiBo—:CLi3-ﬂ @1

%, MR

UCL/LCL = CLpegian + | 3 Trome| &

(2.2)

where, CL: centre line; UCL/LCL: upper/lower control limit;
CLmean/CLmedian : mean/median of value (X); MR = |x; —x;_1]|) is the
average of the moving range, the difference between two individual
measurements (x;) for a subgroup (n); The bias correction factors (d2 =
1.128) for n =2 can be used for n =1 [21]; d¥ is the control chart
constant according to ks(skewness), taken from [16], which were
interpolated if k3 is not given and extrapolated for k3 < 4. CL, LCL, and
UCL were calculated from the baseline plans and are continuously
updated as new plans are added.

2.5. Plan quality assessment workflow

Fig. 1a) illustrates the baseline creation, with the selection of the
metrics using the baseline plans and corresponding calculation of SPC
limits. Metrics listed in Table 1 were calculated and saved in a database.
The metrics were selected based on the following criteria and steps: i)
Statistically significant Spearman coefficients (>0.3, indicating weak
correlation) were counted for each metric, ignoring correlations within
the same category. E.g. for Hlgs/5, the correlation with other dose met-
rics are not considered, and for DVHB(heart), the correlation with other
OAR-based robustness metrics are excluded; ii)Metrics with less than 5
counts were excluded; iii)For metrics with equivalent information, the
metric with the highest correlation count was selected. Examples of
metrics that are considered to provide equivalent information include
dose metrics calculated using different equations (e.g.Gradient Index
(GI) and Dose Gradient Index (DGI) or Paddick Conformity Index
(Clyaddick) and RTOG Conformity Index (Clrrog)), plan complexity
metrics calculated using various criteria (SAA or SA/CP), and robustness
metrics where results are recorded as a minimum, mean and maximum
(Dosemetricsyobust, Dxo(CTV), Dyxos(OAR), Passratepye,(OAR), or Passra-
tepxo,(CTV)); iv) For equal counts, the metric with the highest coefficient
was selected. SPC limits were calculated for the selected metrics.

Fig. 1b shows an example of the framework application, where the
pre-calculated control limits are used to evaluate a plan. If the plan falls
outside the SPC limits, the user can re-optimise or proceed if it is
acceptable.

2.6. Prediction of plan robustness using dose and complexity metrics

The forward selection method was used to determine the best
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Fig. 2. Multivariable Spearman correlation analysis of the selected dose, plan complexity, and plan robustness metrics based on the CTV and the OAR. Each cell in
the plot shows the correlation between the corresponding row and column variables. An asterisk (*) indicates statistically significant correlation coefficients (a =
0.05). Blue indicates a negative correlation, while red indicates a positive correlation. The lightest blue/red colours represent coefficients with no correlation, and the
colour intensity increases according to the categorisation of the coefficients: very strong/high (0.90-1.00), strong/high (0.70-0.89), moderate (0.50-0.69), weak/low
(0.30-0.49), and no/little (0.00-0.29). The number of coefficients >0.3 in Figure is lower than those listed in Table 2 because some significant coefficients were
counted but not selected. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

statistically significant metrics for prediction [30]. Only dose- and
complexity-metrics with at least a weak significant correlation with the
target-based robustness metrics were used as input variables for the
forward selection method. The prediction model used single or multi-
variable linear regression (ordinary least squares), depending on the
number of selected variables. The 103 baseline plans were randomly
divided into training (80 % = 82 plans) and validation (20 % = 21 plans)
datasets. The prediction models were validated with the validation
datasets calculating the Residual Sum of Squares (RSS), coefficient of
determination (RZ), Adjusted Rz, Mean Squared Error (MSE), and Akaike
Information Criterion (AIC) [30]. Goodness of fit was classified as high
or good (R2 > 0.7), moderate (0.7 > R? > 0.5), or poor (R2 < 0.5) [31].
High RSS and MSE indicate low prediction accuracy [30,32]. The 95 %
confidence interval (range of the true means) and prediction interval
(range of new observations) were calculated for the validation dataset
[30,33]. The percentage of this data within these intervals and the dif-
ference between predicted and calculated values were assessed.

2.7. Application of framework and prediction model using test plans

2.7.1. General framework

As illustrated in Fig. 1b, the selected metrics were calculated and
evaluated for compliance with SPC limits for each test plan. Plans
outside the SPC limits were not reoptimised.

2.7.2. Prediction model

As described in Section 2.6, the test plans’ robustness metrics were
predicted from dose and complexity metrics. Confidence and prediction
intervals were determined for predicted values, and the percentage of
calculated metric values within these intervals was assessed. The

calculated and predicted robustness metrics were compared using the
Mann-Whitney test.

3. Results
3.1. Selection of metrics using multivariate correlation

From the initial 122 metrics, 25 were selected for further use (Table 2
and Fig. 2). In summary, out of the 122 metrics, 45 were removed due to
counts of less than five, and 52 provided equivalent information to other
metrics and had fewer counts or lower coefficients. All robust-dose-
metrics were deselected because they yield similar results as the dose
metrics calculated with the nominal plan. Despite having fewer than five
significant correlations, the following metrics were included: DVHB
(CTV), DVHB(left lung), Dmeanp(left lung), DVHB(heart), and
Dmeanpax(left lung). The DVHB metrics were selected to evaluate the
robustness of all relevant volumes, and Dmeany,x(left lung) comple-
ments Dmeany,,(right lung). Although Dmaxp;,(spinal cord) had the
highest count (12), Dmaxpyax(spinal cord) with eight counts was selected
as it reflects the worst-case scenario for spinal cord dose.

Fig. 2 displays the correlations among the final selected metrics. Dose
coverage (Rgs) and Homogeneity Index (Hlgs,s) have several weak to
moderate correlations with complexity and target-based robustness
metrics. The plan complexity metrics (Plan normalised MU (PMU), Plan
averaged beam Irregularity (PI), Plan averaged beam Modulation (PM),
Modulation Complexity Score (MCS), Leaf Travel MCS (LTMCS),
Circumference/Area (C/A), SASismm, and SA/CP1smmx15mm) Show
moderate to strong correlations with EVH and D95,¢an(CTV).
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Fig. 3. Statistical Process Control (SPC) chart of four calculated metrics. Blue circles represent baseline treatment plans, the filled black diamonds indicate test plans,
red dashed lines mark the upper and lower control limits (UCL/LCL), and the black solid line indicates the centre line (CL). The control chart for the dose metrics
“Clpaddick” (@) and complexity metrics “PMU” (b) are in control and are normally distributed. The left-skewed robustness metric “D954,(CTV)” (c) shows plans
TP120, TP124, and TP127 outside the limits. The right-skewed robustness metric “EVH” (d) values are within the limits. TP116, TP119, TP120, and TP124 are the
calculated test plan metrics between the EVH values 6-7. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

3.2. Statistical process control (SPC)

The Shapiro-Wilk test shows that 9 out of 25 metrics follow a normal
distribution (Table 2). Overall, 99.5 % of the metrics were within the
SPC limits displayed in Table 2. Outliers included 11 metrics (1 DGI, 4
PQIL, 1 DVHB(CTV), 1 DVHB(heart), and 4 Dmaxy,,x(heart)). SPC limits
may be broad and occasionally have negative values, e.g., OARs DVH-
Band(DVHB), Dmean«x(right lung), and Dmeanpy(left lung)). The
negative SPC limits were set to zero (Table 2).

3.3. Prediction of plan robustness using dose and plan complexity metrics

The input variables for the forward selection are taken from Fig. 2.
The input variables were: a) for D95,6an(CTV) — Ros, Clpaddick, Hlos/s,
PMU, PI, PM, MCS, LTMCS, C/A, SAS15mm, and SA/CP15mmx15mm; b) for
EVH — the same as for D95,¢4n(CTV) plus DGI, and c) for DVHB(CTV) —
Clpaddick and DGI. The selected metrics for prediction were a) Rgs and
Clpaddick for D95mean(CTV); b) LTMCS, Clpaddicks and SA/CP15mmx15mm
for EVH; and c) Clpaddick for DVHB(CTV).

The validation of the prediction models indicated that D95, (CTV)
(RSS=8.1 x 10>, R*>=0.883, R, . ,—0.880, MSE = 3.84 x 10~%) was

adjusted
a good model (Fig. 4a), EVH (RSS = 4.13, R* = 0.53,R2u5tea = 0-52,
MSE = 0.20) a moderate (Fig. 4b) and DVHB(CTV) R? = 0.065,

Rgdjusted:0.053) a poor model. Therefore, DVHB(CTV) won’t be

predicted. The respective equations for these models are:

D95mean (CTV) = — 0.04 +1.04 @ Rgs — 0.01 @ Clpyqaick
EVH = 1.70 4 2.52 @ Clqqgick —4.88 « LTMCS + 2.84 © SA/CP15mmx«15mm

The Mann-Whitney p-values for D95,ean(CTV) (p-value = 0.8) and
EVH (p-value = 0.9) indicated no significant difference between pre-
dicted and calculated metrics of the validation dataset. The corre-
sponding percentages of validation data within the confidence/
prediction intervals were 28.6 %/100 % for D95yean(CTV) and 52.4
%,/100 % for EVH, respectively.

3.4. Application of framework and prediction model using test plans

3.4.1. General framework

The Mann-Whitney test comparing baseline plans with test plans
showed significant differences in six metrics: PMU, PI, PM, MCS, LTMCS,
and C/A. The analysis showed that 98.9 % of the calculated test plan
metrics fall within the control limits. The outliers were Rgs for test plan
TP124, D95mean(CTV) for TP119, TP124, and TP127 (Fig. 3c), and
Dmaxpax(heart) for TP124. Test plan TP124 exceeded the limits for
several metrics. Analysis revealed that the patient had a pacemaker
positioned at the same level as the target volume, resulting in a subop-
timal plan that was not robust yet clinically desirable. Fig. 3a-d show
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some examples of SPC plots. Although TP116, TP119, TP120, and TP124
in Fig. 3d were within the EVH metrics limit, their EVH values are higher
than the other test plans.

3.4.2. Prediction model

The calculated EVH was within the confidence/prediction limits of
28 % / 84 % (Fig. 4c), and the D95,ean(CTV) was within 44 % / 88 %
(Fig. 4d), respectively. The calculated metrics of plan TP116, TP119,
and TP120 are outside the prediction interval for EVH and
D95mean(CTV) and TP124 for D95yean(CTV). The Mann-Whitney test for
EVH (p-value = 0.9) and D95,¢an(CTV) (p-value = 1) indicated no sta-
tistically significant differences between the calculated and predicted
values.

4. Discussion

Plan quality assessment included dose-, plan complexity-, and plan
robustness metrics [3]. From an initial 122 metrics, 25 were selected
based on multivariate Spearman correlations, including dose,
complexity, and robustness metrics. Yaparpalvi et al. [34] used a similar
method to evaluate dose metrics for SBRT lung plans but did not include
complexity and robustness metrics. Table 2 lists the recommended
metrics based on our analysis. Rgs and Hlgs,5 were prominent for dose
metrics, while D95,e,,(CTV) and EVH were prominent for robustness
metrics. Plan complexity metrics showed similar results, except for Plan
Averaged Beam Area (PA).

SPC was primarily used to determine the limits of the metrics. Most
metrics for baseline and test plans were within SPC limits, as expected
for clinically accepted plans. Some limits are broad and could be tight-
ened to detect more suboptimal plans. Before clinical implementation,
limits should be adjusted, e.g., setting negative limits to zero or using an
SPC range smaller than +3c, to ensure clinically meaningful thresholds
and avoid unnecessary workload increases. Alternatively, the quantile
method could be used to set metric limits [16].

A robust evaluation may not always be available, so a multiple-
variable regression model was fitted for EVH and D95,¢,n(CTV). The
performance of the EVH model was moderate, and the one for the
D95mean(CTV) model was good. This prediction model aimed not to
provide exact values but to help planners identify more robust plans
even without performing the robust evaluation. The observed similarity
in trends between the calculated and predicted values supports this aim.
The calculated robustness metrics for test plans T116, T119, and T120
were not within the prediction interval for D95,6.,(CTV) and EVH, and
their values can be identified as outliers, mainly observed in Fig. 3d. The
robustness metrics can always be calculated if robust evaluation is
available.

Significant differences were found between baseline and test plan
distributions for some complexity metrics, likely due to optimisation or
workflow changes. The updated TPS version and machine should not
impact complexity, as plans were recalculated and not re-optimized. No
visual changes were observed between the test plans’ original and
recalculated dose distributions.

The robust evaluation and optimisation only included patient posi-
tion uncertainty. The impact of setup errors on dose distribution un-
certainty is reduced by increasing the number of fractions [35,36], and
therefore the results may be overestimated. However, we acknowledge
that other important uncertainties, such as density and organ motion,
could affect the accuracy of dose delivery, and we plan to include these
uncertainties in our method in the future. Existing co-dependencies
between metrics weren’t evaluated because conventional statistical
methods were used; perhaps a deep learning algorithm could determine
co-dependencies.

In conclusion, this study represents the first step in developing a tool
to assess plan quality through dose, plan complexity, and robustness
metrics within an all-in-one framework that can be applied during the
treatment planning or evaluation process. The introduced method could

Physics and Imaging in Radiation Oncology 32 (2024) 100685

be integrated into TPS through scripting and an intuitive GUL Although
this framework was established for normal fractionated lung cancer
cases, it can easily be applied to different radiation sites/types and to
determine the metrics’ unknown limits. It allows the comparison of
multiple plans for the same or other patients using SPC. It can detect
suboptimal plans and variations in the planning process (e.g., new al-
gorithms, new margin concepts, different optimisation strategies). This
enables planners to systematise and standardise the treatment planning
process and the decision-making during plan quality assessment.
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