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A B S T R A C T

Background and purpose: Conventionally, the quality of radiotherapy treatment plans is assessed through visual 
inspection of dose distributions and dose-volume histograms. This study developed a framework to evaluate plan 
quality using dose, complexity, and robustness metrics. Additionally, a method for predicting plan robustness 
metrics using dose and complexity metrics was introduced for cases where plan robustness evaluation is un
available or impractical.
Materials and methods: The framework and prediction models were developed and validated using 103-bronchial 
Volumetric Modulated Arc Therapy (VMAT)-plans. The application of the framework was demonstrated using 
25-VMAT-plans. To identify significant metrics for plan evaluation, 122-metrics were analysed and narrowed 
down using multivariate Spearman correlation. Metric limits were set with Statistical process control (SPC). 
Robustness metrics were predicted using multivariable or single linear regression models based on dose-and 
complexity-metrics.
Results: Twenty-five-metrics were selected based on the amount and strength of correlations. R95(dose coverage) 
and HI95/5(homogeneity index) stood out among the dose-metrics, while the complexity-metrics showed similar 
correlations. Average scenarios dose at 95 % Clinical Target Volume D95mean(CTV) and Errorbar-based Volume- 
Histograms (EVH) were notable for robustness metrics. Approximately 99 % of evaluated metrics fell within 
established SPC limits. The prediction model for D95mean(CTV) showed good performance (adjusted R2 = 0.88, 
mean squared error (MSE) = 3.84 × 10− 6), while the model for EVH demonstrated moderate reliability (adjusted 
R2 = 0.52, MSE = 0.2). No statistically significant differences were found between the predicted (using dose-and 
complexity-metrics) and calculated robustness metrics (EVH (p-value = 0.9) and D95mean(CTV) (p-value = 1)).
Conclusions: The developed framework enables early detection of sub-optimal, complex and non-robust treatment 
plans. The predictive model can be used when robustness evaluations are impractical.

1. Introduction

Traditionally, a treatment plan (TP) is evaluated based on a visual 
examination of the calculated dose distribution and dose-volume his
tograms (DVH) [1,2]. However, the expected differences between 
planned and delivered plans should be addressed during the evaluation. 
Accurate plan quality assessment should consider qualitative and 
quantitative measures rather than relying solely on clinical protocols, 

historical practices, or personal preferences [2]. The literature [3] rec
ommends evaluating plan quality using dose, plan complexity, and 
robustness metrics and implementing these metrics into the clinical 
treatment planning system (TPS). Dose metrics (dose coverage, homo
geneity, conformity, and gradient index) used to evaluate the dose dis
tribution are mainly based on the DVH data [3]. Plan complexity metrics 
quantify the degree of complexity associated with machine parameters, 
TPS properties, and plan characteristics, which can cause discrepancies 
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between delivered and calculated dose distributions, potentially 
affecting robustness [3–5]. In photon therapy, uncertainties are typi
cally addressed by adding a margin to the Clinical Target Volume (CTV) 
to create a planning target volume (PTV) to ensure adequate CTV 
coverage despite discrepancies [6]. The classical PTV- or margin- 
approach has some shortcomings, such as high-dose irradiation of the 
organ-at-risk (OAR) or static dose cloud approximation, which assumes 
that the dose distribution is unaffected by uncertainties [7,8]. 
Conversely, a robust planning approach accounts for uncertainties 
during the optimisation or evaluation [8,9]. A robust optimisation 
produces a dose distribution with less variability and greater resilience 
to uncertainties, while robust evaluation only assesses how well the dose 
distribution handles uncertainties [7,10]. Robust optimisation methods 
include minimax [7,11], worst-case [7,11], conditional value at risk [9], 
and probabilistic planning [7] optimisation. Robust evaluation ap
proaches include scenario-based (individual scenarios); aggregated dose 
distribution (combination of multiple scenarios, e.g., voxel-wise mini
mum, mean, and maximum dose) [12]; worst-case scenario [12,13]; and 
probabilistic robust evaluation [13].

Statistical process control (SPC) aims to monitor process quality by 
comparing current parameters with previous data [14]. The classical 
Shewhart control chart is derived under the normality assumption [15]. 
For non-parametric data (e.g. skewed data), new generation methods 
(heuristic, transformation, or percentile methods) could be used 
[16–18]. In radiotherapy, SPC has been used in previous studies to set 
limits for patient-specific measurements [16,19,20], machine quality 
assurance tolerances [14,21], and dose comparisons [22].

This study has three parts. First, dose-, complexity-, and robustness- 
metrics were calculated, and multivariate Spearman correlations were 
used to identify metrics for evaluating plan quality. SPC was used to 
determine the undefined limits of the metrics, which vary according to 
clinical standards, radiation techniques, and treatment sites. Second, 
regression models were introduced to predict plan robustness using dose 
and complexity metrics. The prediction could be used when robust 
evaluation is unavailable or impractical because robust evaluation cal
culations could be time-consuming, especially during the planning 
process. The third part demonstrates the application of the framework 
and the prediction model. The aggregation and visualisation of the re
sults through a user interface are necessary for proper clinical imple
mentation, but this is beyond the scope of this study.

2. Methods and materials

The Ethics Committee of the Medical Faculty, Heidelberg University 
(S-192/2022), approved this study.

2.1. Treatment plans

Volumetric Modulated Arc Therapy (VMAT) plans from 2020 for 
patients with bronchial carcinoma were retrospectively analysed. Pre
scribed doses ranged from 45 to 66 Gy (15–33 fractions). All retro
spective plans were generated in the TPS (RayStation-v.10A, RaySearch 
Lab., Sweden), with 6MV-photon using a collapsed cone algorithm for 
an Elekta VersaHD LINAC (Elekta Ltd, Crawley, UK). The dose calcula
tion (dose-to-different density water) [23] was performed using a (2 × 3 
× 2) mm dose grid, and the plans were normalised to the target volume 
median dose (D50 %). The baseline and test plans applied in this study 
are as follows.

Baseline plans: The framework (including SPC limits) and predic
tion model were established using 103 bronchial VMAT plans (TP1- 
TP103).

Test plans: The framework application was demonstrated on 25 
additional bronchial VMAT plans (TP104-TP128). The original plans 
were copied and recalculated using an updated TPS version (RayStation- 
v.11B) with a re-commissioned machine due to a clinical TPS update.

2.2. Plan quality evaluation metrics

Dose (n = 11), complexity (n = 15), and robustness metrics (n = 96) 
were calculated using a Python script (v.3.8.7) compiled in the TPS to 
retrieve plan parameters. All the metrics (n = 122) were calculated and 
examined using the baseline plans. These metrics are listed in Table 1, 
and their equations are provided in the Supplementary material
(Table A.1).

CTV was considered the target volume for the plan quality evaluation 
(clinical goals: D95 ≥ 0.95; Dmax < 1.07). The OARs clinical goals are 
from QUANTEC (right/left lung: V20Gy = 30 %, Dmean = 7 Gy; heart: 
V30Gy = 46 %, Dmean = 3 Gy, Dmax = 30 Gy; spinal cord: Dmax = 45 Gy) 
[24]. For comparison purposes, the dose values were normalised to the 
prescribed dose.

Table 1 
Summary of the evaluated metrics grouped by dose, plan complexity, and plan 
robustness evaluation. In HI95/5/HI98/2 (95; 98; 5; or 2) refer to the Dx% (dose at 
x% volume). The criteria 10 mm, 15 mm, and 20 mm were used for SAS and 10 
mm × 10 mm, 15 mm × 15 mm, and 20 mm × 20 mm for SA/CP. ROI: The 
regions of interest include the target volume (CTV) and the OARs (right and left 
lung, heart and spinal cord). Acronym RTOG: Radiation Therapy Oncology 
Group. MU is the unit for PMU, cm2 for MFA and PA, and 1/cm for C/A. The 
other metrics/parameters listed are unitless.

a) Dose metrics b) Plan complexity metrics c) Plan robustness 
evaluation metrics

– TC − Target 
Coverage [37]

– QCRTOG – RTOG 
Quality of coverage
[38]

– R95 − Dose Coverage 
[39]

– CIpaddick – 
Paddick Conformity 
Index [40]

– CIRTOG − RTOG 
Conformity Index 
[38]

– HIRTOG – RTOG 
Homogeneity Index 
[38]

– HI95/5 −

Homogeneity Index 
[41]

– HI98/2 −

Homogeneity Index 
[39,41]

– GI – Gradient Index 
[2]

– DGI − Dose Gradient 
Index [42]

– PQI – Plan Quality 
Index [25]

– PMU − Plan normalised MU 
[43]

– MFA − Mean Field Area [44]
– PA − Plan averaged beam 

Area [43,45]
– PI − Plan averaged beam 

Irregularity [43,45]
– PM − Plan averaged beam 

Modulation [43,45]
– LT − Leaf Travel [46]
– MCS − Plan Modulation 

Complexity Score [46]
– LTMCS – LT x MCS [46]
– C/A − Circumference/Area 

[47,48]
– SAS(10mm; 15mm; 20mm) −

Small Aperture Score [44]
– SA/ 

CP(10mm×10mm;15mm×15mm; 

20mm×20mm) − Segment Area 
per Control Point (CP) [49]

Target-based:  

– EVH − Errorbar- 
based Volume His
tograms (EVH) 
[50]

– RVH − Root Mean 
Square Dose 
(RMSD) Volume 
Histograms (RVH) 
[51]

– DVHB(ROI) −
Dose-Volume histo
gram (DVH)-band 
of target (DVHB) 
[52]

– DVHBWDx% − DVH 
BandWidths (BW) 
at Dx% [53]

– Dx%(ROI) − dose at 
x% ROI volume as 
range − scenario 
dose evaluation

– PassrateDx%(ROI) – 
ROI clinical goal 
pass rate

OAR-based:  

– DVHB(OAR) [52]
(similar to target)

– Dx%(OAR) (similar 
to target)

– PassrateDx%(OAR) 
(similar to target)

Robust-dose- 
metrics:  

– Dosemetricsrobust – 
Robust-dose- 
metrics. All dose 
metrics listed in 
column a) were 
calculated for the 
scenarios and 
recorded as mini
mum, mean, and 
maximum.
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2.2.1. Dose metrics
Eleven dose metrics were evaluated (Table 1). Plan Quality Index 

(PQI) combines the target dose coverage and the dose received by OARs 
[25]. The above-listed OARs were used.

2.2.2. Plan complexity metrics
Fifteen complexity metrics were calculated (Table 1). Small aperture 

score (SAS) and segment area per control point (SA/CP) were computed 
using three criteria each (10 mm, 15 mm and 20 mm) for SAS and (10 
mm × 10 mm, 15 mm × 15 mm and 20 mm × 20 mm) for SA/CP.

2.2.3. Plan robustness evaluation metrics
The robustness evaluation, essential for calculating robustness met

rics, was limited to setup uncertainties for simplicity. A setup uncer
tainty of 5 mm in all directions was used, which is appropriate for daily 
imaging with cone-beam computed tomography. The scenario-based 
evaluation method [12] available in the TPS was used, where the 
setup error was sampled in different scenarios, and the dose was 
calculated using the nominal plan beam sets. The setup error was re- 
sampled by applying isocenter shifts to the diagonal endpoints, refer
ring to points from the centre to the cube’s corners formed by the given 

uncertainties. This resulted in eight dose distribution scenarios used to 
calculate the robustness metrics. These metrics were divided into three 
groups (Table 1): target-based, OAR-based and robust-dose-metrics 
(dose metrics calculated from the scenarios dose). For the robustness 
based on target (CTV), the following parameters were calculated: i) 
robustness metrics, as errorbar volume-histogram (EVH), root-mean- 
square volume-histogram (RVH), DVH-band (DVHB) and DVH band 
width (DVHBW), ii)Scenarios CTV coverage (Dx%(CTV)), Dx% represents 
Dmean, Dmin, D2, D5, D50, D95, D98, Dmax; and iii)clinical goal pass-rate 
(PassrateDx%(CTV)), Dx% represents D95, Dmax. The pass-rate refers to 
the number of scenarios that fulfil the clinical goal. Regarding the OARs- 
based DVHB, clinical goal dose and pass-rate were calculated. For the 
robust-dose-metrics (Dosemetricsrobust), all dose metrics in Table 1 were 
calculated for each scenario. The robust-dose-metrics and the CTV 
coverage were reported as minimum, mean, and maximum.

2.3. Statistical analysis method

The Shapiro-Wilk test assessed data normality (α = 0.05) [15,26]. 
The Mann-Whitney U test was used to determine the significance of 
median differences between subsets of metrics (p < 0.05) [27]. 

Fig. 1. Established workflow used to assess plan quality. This workflow has two processes: (a) baseline creation (red framed) and (b) an example of the framework 
application (blue framed). The “baseline creation” refers to the selection of metrics and the calculation of SPC limits needed for plan evaluation. The baseline is 
created with n VMAT treatment plans (e.g., n = 103 plans). The baseline results are saved in a shared database. The “framework application” uses an existing 
baseline, saved in a database, to evaluate a treatment plan. The step ’optimise & calculate plan” is not part of the framework in this study. Note: The treatment plan 
can refer to any plan requiring evaluation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Spearman’s correlation coefficient was used to assess correlations be
tween metrics (p < 0.05) [28]. Absolute coefficients were categorised as 
very strong/high (0.90–1.00), strong/high (0.70–0.89), moderate 
(0.50–0.69), weak/low (0.30–0.49), and no/little (0.00–0.29) [29]. 
Corrections for multiple testing (e.g. Bonferroni, Benjamini-Hochberg) 
were not applied.

2.4. Statistical process control (SPC) method

Eq. (2.1) was used for normally distributed data [15]. For non- 
normal data with skewed distribution, the skewness correction 
method (Eq. (2.2)) was used [16,18]. 

UCL
/

LCL = CLmean ± 3 •
MR

d2 •
̅̅̅
n

√ = CL ± 3 •
MR

1.128
(2.1) 

UCL/LCL = CLmedian ±

⎛

⎜
⎝3+

4
3k3

1 + 0.2k2
3

⎞

⎟
⎠ •

MR
dsc

2
(2.2) 

where, CL: centre line; UCL/LCL: upper/lower control limit; 
CLmean/CLmedian : mean/median of value ( x); MR = |xi − xi− 1|) is the 
average of the moving range, the difference between two individual 
measurements (xi) for a subgroup (n); The bias correction factors (d2 =

1.128) for n = 2 can be used for n = 1 [21]; dsc
2 is the control chart 

constant according to k3(skewness), taken from [16], which were 
interpolated if k3 is not given and extrapolated for k3 < 4. CL, LCL, and 
UCL were calculated from the baseline plans and are continuously 
updated as new plans are added.

2.5. Plan quality assessment workflow

Fig. 1a) illustrates the baseline creation, with the selection of the 
metrics using the baseline plans and corresponding calculation of SPC 
limits. Metrics listed in Table 1 were calculated and saved in a database. 
The metrics were selected based on the following criteria and steps: i) 
Statistically significant Spearman coefficients (>0.3, indicating weak 
correlation) were counted for each metric, ignoring correlations within 
the same category. E.g. for HI95/5, the correlation with other dose met
rics are not considered, and for DVHB(heart), the correlation with other 
OAR-based robustness metrics are excluded; ii)Metrics with less than 5 
counts were excluded; iii)For metrics with equivalent information, the 
metric with the highest correlation count was selected. Examples of 
metrics that are considered to provide equivalent information include 
dose metrics calculated using different equations (e.g.Gradient Index 
(GI) and Dose Gradient Index (DGI) or Paddick Conformity Index 
(CIpaddick) and RTOG Conformity Index (CIRTOG)), plan complexity 
metrics calculated using various criteria (SAA or SA/CP), and robustness 
metrics where results are recorded as a minimum, mean and maximum 
(Dosemetricsrobust, Dx%(CTV), Dx%(OAR), PassrateDx%(OAR), or Passra
teDx%(CTV)); iv) For equal counts, the metric with the highest coefficient 
was selected. SPC limits were calculated for the selected metrics.

Fig. 1b shows an example of the framework application, where the 
pre-calculated control limits are used to evaluate a plan. If the plan falls 
outside the SPC limits, the user can re-optimise or proceed if it is 
acceptable.

2.6. Prediction of plan robustness using dose and complexity metrics

The forward selection method was used to determine the best 

Table 2 
Selected metrics, counts from the multivariable Spearman correlation, normality check, skewness value, and corresponding SPC results. The Shapiro-Wilk test (α =
0.05) checks for normality, and results are indicated as ’pass’ for p-values greater than 0.05 and ’fail’ for those smaller than 0.05. Calculated distribution skewness is 
shown as a negative value for left-skewed and a positive value for right-skewed distributions. The calculated CL (centre line), UCL (upper control limit), and LCL (lower 
control limit) are provided according to Eqs. (2.1) and (2.2) for the baseline plans. * marked the negative limits set to 0.

Variable name Number of counts Normality check Data Skewness CL – centre line LCL – lower control limit UCL – upper control limit

​ Dose metrics
R95 [u.a.] 11 fail − 0.60 0.98 0.95 0.99
CIpaddick [u.a.] 6 pass 0.01 0.51 0.22 0.80
HI95/5 [u.a.] 12 pass 0.37 0.05 0.01 0.10
DGI [u.a.] 8 pass 0.40 0.09 0.02 0.17
PQI [u.a.] 5 fail 4.40 5.44 0* 106.20

​ Plan complexity
PMU [MU] 9 pass 0.24 498.40 91.23 905.56
PA [cm2] 6 fail 0.55 60.23 20.06 124.52
PI [u.a.] 10 pass 0.28 1.21 0.02 2.40
PM [u.a.] 8 fail − 1.07 0.71 0.23 0.92
MCS [u.a.] 7 fail 0.75 0.32 0.12 0.68
LTMCS [u.a.] 7 fail 0.89 0.14 0.04 0.35
C/A [1/cm] 5 pass 0.11 0.47 0.13 0.81
SAS15mm [u.a.] 7 pass 0.07 0.28 0* 0.58
SA/CP15mm×15mm [u.a.] 6 pass − 0.04 0.36 0.00 0.73

​ Plan robustness (target-based)
DVHB(CTV) [u.a.] 4 fail 0.91 0.01 0.00 0.03
D95mean(CTV) [u.a.] 16 fail − 1.27 0.98 0.95 0.99
EVH [u.a.] 18 fail 0.82 3.49 1.52 7.32

​ Plan robustness (OAR-based)
DVHB(right lung) [u.a.] 1 fail 0.81 0.04 0* 0.13
Dmeanmax(right lung) [u.a.] 1 fail 0.48 0.29 0* 0.83
DVHB(left lung) [u.a.] 6 fail 1.51 0.03 0* 0.13
Dmeanmax(left lung) [u.a.] 9 fail 0.83 0.28 0* 0.98
DVHB(heart) [u.a.] 1 fail 0.42 0.05 0.00 0.14
Dmaxmax(heart) [u.a.] 15 fail − 2.62 1.05 0.23 1.33
DVHB(spinal cord) [u.a.] 7 fail 0.68 0.02 0* 0.07
Dmaxmax(spinal cord) [u.a.] 8 fail − 0.51 0.69 0.04 1.11

T. Orovwighose et al.                                                                                                                                                                                                                           Physics and Imaging in Radiation Oncology 32 (2024) 100685 

4 



statistically significant metrics for prediction [30]. Only dose- and 
complexity-metrics with at least a weak significant correlation with the 
target-based robustness metrics were used as input variables for the 
forward selection method. The prediction model used single or multi
variable linear regression (ordinary least squares), depending on the 
number of selected variables. The 103 baseline plans were randomly 
divided into training (80 % = 82 plans) and validation (20 % = 21 plans) 
datasets. The prediction models were validated with the validation 
datasets calculating the Residual Sum of Squares (RSS), coefficient of 
determination (R2), Adjusted R2, Mean Squared Error (MSE), and Akaike 
Information Criterion (AIC) [30]. Goodness of fit was classified as high 
or good (R2 ≥ 0.7), moderate (0.7 > R2 ≥ 0.5), or poor (R2 < 0.5) [31]. 
High RSS and MSE indicate low prediction accuracy [30,32]. The 95 % 
confidence interval (range of the true means) and prediction interval 
(range of new observations) were calculated for the validation dataset 
[30,33]. The percentage of this data within these intervals and the dif
ference between predicted and calculated values were assessed.

2.7. Application of framework and prediction model using test plans

2.7.1. General framework
As illustrated in Fig. 1b, the selected metrics were calculated and 

evaluated for compliance with SPC limits for each test plan. Plans 
outside the SPC limits were not reoptimised.

2.7.2. Prediction model
As described in Section 2.6, the test plans’ robustness metrics were 

predicted from dose and complexity metrics. Confidence and prediction 
intervals were determined for predicted values, and the percentage of 
calculated metric values within these intervals was assessed. The 

calculated and predicted robustness metrics were compared using the 
Mann-Whitney test.

3. Results

3.1. Selection of metrics using multivariate correlation

From the initial 122 metrics, 25 were selected for further use (Table 2
and Fig. 2). In summary, out of the 122 metrics, 45 were removed due to 
counts of less than five, and 52 provided equivalent information to other 
metrics and had fewer counts or lower coefficients. All robust-dose- 
metrics were deselected because they yield similar results as the dose 
metrics calculated with the nominal plan. Despite having fewer than five 
significant correlations, the following metrics were included: DVHB 
(CTV), DVHB(left lung), Dmeanmax(left lung), DVHB(heart), and 
Dmeanmax(left lung). The DVHB metrics were selected to evaluate the 
robustness of all relevant volumes, and Dmeanmax(left lung) comple
ments Dmeanmax(right lung). Although Dmaxmin(spinal cord) had the 
highest count (12), Dmaxmax(spinal cord) with eight counts was selected 
as it reflects the worst-case scenario for spinal cord dose.

Fig. 2 displays the correlations among the final selected metrics. Dose 
coverage (R95) and Homogeneity Index (HI95/5) have several weak to 
moderate correlations with complexity and target-based robustness 
metrics. The plan complexity metrics (Plan normalised MU (PMU), Plan 
averaged beam Irregularity (PI), Plan averaged beam Modulation (PM), 
Modulation Complexity Score (MCS), Leaf Travel MCS (LTMCS), 
Circumference/Area (C/A), SAS15mm, and SA/CP15mm×15mm) show 
moderate to strong correlations with EVH and D95mean(CTV).

Fig. 2. Multivariable Spearman correlation analysis of the selected dose, plan complexity, and plan robustness metrics based on the CTV and the OAR. Each cell in 
the plot shows the correlation between the corresponding row and column variables. An asterisk (*) indicates statistically significant correlation coefficients (α =
0.05). Blue indicates a negative correlation, while red indicates a positive correlation. The lightest blue/red colours represent coefficients with no correlation, and the 
colour intensity increases according to the categorisation of the coefficients: very strong/high (0.90–1.00), strong/high (0.70–0.89), moderate (0.50–0.69), weak/low 
(0.30–0.49), and no/little (0.00–0.29). The number of coefficients >0.3 in Figure is lower than those listed in Table 2 because some significant coefficients were 
counted but not selected. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.2. Statistical process control (SPC)

The Shapiro-Wilk test shows that 9 out of 25 metrics follow a normal 
distribution (Table 2). Overall, 99.5 % of the metrics were within the 
SPC limits displayed in Table 2. Outliers included 11 metrics (1 DGI, 4 
PQI, 1 DVHB(CTV), 1 DVHB(heart), and 4 Dmaxmax(heart)). SPC limits 
may be broad and occasionally have negative values, e.g., OARs DVH- 
Band(DVHB), Dmeanmax(right lung), and Dmeanmax(left lung)). The 
negative SPC limits were set to zero (Table 2).

3.3. Prediction of plan robustness using dose and plan complexity metrics

The input variables for the forward selection are taken from Fig. 2. 
The input variables were: a) for D95mean(CTV) – R95, CIPaddick, HI95/5, 
PMU, PI, PM, MCS, LTMCS, C/A, SAS15mm, and SA/CP15mm×15mm; b) for 
EVH − the same as for D95mean(CTV) plus DGI, and c) for DVHB(CTV) −
CIPaddick and DGI. The selected metrics for prediction were a) R95 and 
CIPaddick for D95mean(CTV); b) LTMCS, CIPaddick, and SA/CP15mm×15mm 
for EVH; and c) CIPaddick for DVHB(CTV).

The validation of the prediction models indicated that D95mean(CTV) 
(RSS = 8.1 × 10− 5, R2 = 0.883, R2

adjusted=0.880, MSE = 3.84 × 10− 6) was 
a good model (Fig. 4a), EVH (RSS = 4.13, R2 = 0.53,R2

adjusted = 0.52, 
MSE = 0.20) a moderate (Fig. 4b) and DVHB(CTV) (R2 = 0.065, 
R2

adjusted=0.053) a poor model. Therefore, DVHB(CTV) won’t be 

predicted. The respective equations for these models are: 

D95mean(CTV) = − 0.04+1.04 • R95 − 0.01 • CIPaddick 

EVH = 1.70+ 2.52 • CIpaddick − 4.88 • LTMCS+2.84 • SA/CP15mm×15mm 

The Mann-Whitney p-values for D95mean(CTV) (p-value = 0.8) and 
EVH (p-value = 0.9) indicated no significant difference between pre
dicted and calculated metrics of the validation dataset. The corre
sponding percentages of validation data within the confidence/ 
prediction intervals were 28.6 %/100 % for D95mean(CTV) and 52.4 
%/100 % for EVH, respectively.

3.4. Application of framework and prediction model using test plans

3.4.1. General framework
The Mann-Whitney test comparing baseline plans with test plans 

showed significant differences in six metrics: PMU, PI, PM, MCS, LTMCS, 
and C/A. The analysis showed that 98.9 % of the calculated test plan 
metrics fall within the control limits. The outliers were R95 for test plan 
TP124, D95mean(CTV) for TP119, TP124, and TP127 (Fig. 3c), and 
Dmaxmax(heart) for TP124. Test plan TP124 exceeded the limits for 
several metrics. Analysis revealed that the patient had a pacemaker 
positioned at the same level as the target volume, resulting in a subop
timal plan that was not robust yet clinically desirable. Fig. 3a–d show 

Fig. 3. Statistical Process Control (SPC) chart of four calculated metrics. Blue circles represent baseline treatment plans, the filled black diamonds indicate test plans, 
red dashed lines mark the upper and lower control limits (UCL/LCL), and the black solid line indicates the centre line (CL). The control chart for the dose metrics 
“CIpaddick” (a) and complexity metrics “PMU” (b) are in control and are normally distributed. The left-skewed robustness metric “D95mean(CTV)” (c) shows plans 
TP120, TP124, and TP127 outside the limits. The right-skewed robustness metric “EVH” (d) values are within the limits. TP116, TP119, TP120, and TP124 are the 
calculated test plan metrics between the EVH values 6–7. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)
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Fig. 4. The black squares show the comparison between the calculated and predicted values from the validation dataset (20 % of the randomly split baseline dataset) 
for D95mean (CTV) (a) and EVH (b), used for model validation. The red fit line in (a) and (b) represents a perfect fit, where calculated equals predicted. Important 
metrics to validate the prediction models are stated in the plot. The calculated robustness metrics (blue circles) and predicted robustness metrics (black triangles), 
along with confidence and prediction intervals, are shown for the test plans. The robustness metrics D95mean(CTV) (c) and EVH (d) are presented. A low EVH in
dicates a more robust plan, and D95mean(CTV) should be high. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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some examples of SPC plots. Although TP116, TP119, TP120, and TP124 
in Fig. 3d were within the EVH metrics limit, their EVH values are higher 
than the other test plans.

3.4.2. Prediction model
The calculated EVH was within the confidence/prediction limits of 

28 % / 84 % (Fig. 4c), and the D95mean(CTV) was within 44 % / 88 % 
(Fig. 4d), respectively. The calculated metrics of plan TP116, TP119, 
and TP120 are outside the prediction interval for EVH and 
D95mean(CTV) and TP124 for D95mean(CTV). The Mann-Whitney test for 
EVH (p-value = 0.9) and D95mean(CTV) (p-value = 1) indicated no sta
tistically significant differences between the calculated and predicted 
values.

4. Discussion

Plan quality assessment included dose-, plan complexity-, and plan 
robustness metrics [3]. From an initial 122 metrics, 25 were selected 
based on multivariate Spearman correlations, including dose, 
complexity, and robustness metrics. Yaparpalvi et al. [34] used a similar 
method to evaluate dose metrics for SBRT lung plans but did not include 
complexity and robustness metrics. Table 2 lists the recommended 
metrics based on our analysis. R95 and HI95/5 were prominent for dose 
metrics, while D95mean(CTV) and EVH were prominent for robustness 
metrics. Plan complexity metrics showed similar results, except for Plan 
Averaged Beam Area (PA).

SPC was primarily used to determine the limits of the metrics. Most 
metrics for baseline and test plans were within SPC limits, as expected 
for clinically accepted plans. Some limits are broad and could be tight
ened to detect more suboptimal plans. Before clinical implementation, 
limits should be adjusted, e.g., setting negative limits to zero or using an 
SPC range smaller than ±3σ, to ensure clinically meaningful thresholds 
and avoid unnecessary workload increases. Alternatively, the quantile 
method could be used to set metric limits [16].

A robust evaluation may not always be available, so a multiple- 
variable regression model was fitted for EVH and D95mean(CTV). The 
performance of the EVH model was moderate, and the one for the 
D95mean(CTV) model was good. This prediction model aimed not to 
provide exact values but to help planners identify more robust plans 
even without performing the robust evaluation. The observed similarity 
in trends between the calculated and predicted values supports this aim. 
The calculated robustness metrics for test plans T116, T119, and T120 
were not within the prediction interval for D95mean(CTV) and EVH, and 
their values can be identified as outliers, mainly observed in Fig. 3d. The 
robustness metrics can always be calculated if robust evaluation is 
available.

Significant differences were found between baseline and test plan 
distributions for some complexity metrics, likely due to optimisation or 
workflow changes. The updated TPS version and machine should not 
impact complexity, as plans were recalculated and not re-optimized. No 
visual changes were observed between the test plans’ original and 
recalculated dose distributions.

The robust evaluation and optimisation only included patient posi
tion uncertainty. The impact of setup errors on dose distribution un
certainty is reduced by increasing the number of fractions [35,36], and 
therefore the results may be overestimated. However, we acknowledge 
that other important uncertainties, such as density and organ motion, 
could affect the accuracy of dose delivery, and we plan to include these 
uncertainties in our method in the future. Existing co-dependencies 
between metrics weren’t evaluated because conventional statistical 
methods were used; perhaps a deep learning algorithm could determine 
co-dependencies.

In conclusion, this study represents the first step in developing a tool 
to assess plan quality through dose, plan complexity, and robustness 
metrics within an all-in-one framework that can be applied during the 
treatment planning or evaluation process. The introduced method could 

be integrated into TPS through scripting and an intuitive GUI. Although 
this framework was established for normal fractionated lung cancer 
cases, it can easily be applied to different radiation sites/types and to 
determine the metrics’ unknown limits. It allows the comparison of 
multiple plans for the same or other patients using SPC. It can detect 
suboptimal plans and variations in the planning process (e.g., new al
gorithms, new margin concepts, different optimisation strategies). This 
enables planners to systematise and standardise the treatment planning 
process and the decision-making during plan quality assessment.
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