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Genomic and phenotypic stability of fusion-
driven pediatric sarcoma cell lines
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Human cancer cell lines are the mainstay of cancer research. Recent reports

showed that highly mutated adult carcinoma cell lines (mainly HeLa andMCF-

7) present striking diversity across laboratories and that long-term continuous

culturing results in genomic/transcriptomic heterogeneity with strong phe-

notypical implications. Here, we hypothesize that oligomutated pediatric

sarcoma cell linesmainly driven by a fusion transcription factor, such as Ewing

sarcoma (EwS), are genetically and phenotypically more stable than the pre-

viously investigated adult carcinoma cell lines. A comprehensive molecular

andphenotypic characterization ofmultiple EwS cell line strains, togetherwith

a simultaneous analysis during 12months of continuous cell culture show that

fusion-driven pediatric sarcoma cell line strains are genomically more stable

than adult carcinoma strains, display remarkably stable and homogenous

transcriptomes, and exhibit uniform and stable drug response. Additionally,

the analysis of multiple EwS cell lines subjected to long-term continuous cul-

ture reveals that variable degrees of genomic/transcriptomic/phenotypic

changes among fusion-driven cell lines, further exemplifying that the potential

for reproducibility of in vitro scientific results may be rather understood as a

spectrum, even within the same tumor entity.

Cancer cell lines have been instrumental in biomedical progress for
many decades1–3. In 2018 and 2019, respectively, Ben-David et al. and
Liu et al. showed that highlymutated adult carcinoma cell lines present
striking diversity across laboratories and that long-term continuous
culturing results in genomic/transcriptomic heterogeneity with phe-
notypical implications, including changes indrug sensitivity4, doubling
time, and response to a specific perturbation5, which challenged the
general reproducibility of scientific results based on human cancer cell
lines. However, to which extent these observations can be generalized
to every cancer cell line remains to be explored.

The multi-omics study by Liu et al. showed a substantial hetero-
geneity between different variants of the first human-derived cancer

cell line, HeLa (cervix carcinoma)6, mainly between the most com-
monly used variants HeLa-CCL2 and HeLa-Kyoto. Interestingly, Ben-
David et al. reanalyzed the genomic data (whole exome sequencing) of
106 cancer cell lines provided by the Broad and the Sanger Institutes
and showed a significant diversity in allelic fraction for somatic var-
iants in this panel of cell lines. Notably, this panel mainly consisted of
hematopoietic/lymphoid and adult carcinoma cell lines and only
included a single EwS cell line (CADO-ES1), which was not further
investigated. Among those adult carcinoma cell lines, the authors
specifically focused on the estrogen receptor-positive adult breast
carcinoma cell line MCF-7 for a cross-laboratory analysis and demon-
strated crucial genomic, transcriptomic, and phenotypical diversity.
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They additionally verified their findings in a panel of adult carcinoma
cell lines including (except for a single pediatric hepatoblastoma cell
line HepG2-A) mostly adult-type carcinoma cell lines, all of which are
not driven by a single mutation, such as the chimeric oncogenic
transcription factor (COTF) found in EwS.

In this study, we hypothesize that oligo-mutated pediatric sar-
coma cell lines driven by a COTF, such as Ewing sarcoma (EwS)7 are
genetically and phenotypically more stable than the previously inves-
tigated adult carcinoma cell lines4,5. By performing extensive genomic,
epigenomic, transcriptomic, and phenotypic analyses on multiple
oligo-mutated pediatric sarcoma cell line strains in strict comparison
with the two carcinoma-derived cell lines, we observe that EwS cell
lines are genetically and phenotypically more stable than the pre-
viously investigated adult carcinoma cell lines. In addition, our results
highlight that when subjected to long-term culture conditions, indi-
vidual cell lines from the same cancer entity may display a variable
degree of evolution, further indicating that the reproducibility of cell
line-based scientific results strongly depends on the given cancer
cell line.

Results
To first test whether fusion-driven sarcoma cell lines are clonal or
genetically unstable, we selected humanA-673, one of themost widely
used EwS cell lines, and compared 11 A-673 strains with five strains of
human HeLa cervix cancer and five strains of human MCF-7 breast
cancer collected from seven, three, and two different laboratories,
respectively (Fig. 1a). Despite some of these strains had an undefined
number of passages, they were considered serviceable for cell biology
research. In this comparison, we included a newly purchased strain for
each cell line, which was continuously cultured for 12 months, and
examined at three different time points (corresponding to months 0,
6, and 12, hereafter referred to as m0, m6, m12) (Fig. 1a). To reduce
empirical bias prior to our (epi)genomic, transcriptomic, and pheno-
typical analyses, we cultured all strains in the same cell culture con-
ditions (see Materials and Methods section).

In the first step, we performed a cross-strain analysis of A-673,
MCF-7, and HeLa cell lines and subjected each newly purchased cell
line (m0) and its respective m6-cultured version to whole genome
sequencing (WGS), which enabled us to monitor genetic evolution
over time. Analysis of relative in-exon SNVs counts in cancer genes for
A-673, HeLa, and MCF-7 after six months of continuous culture
revealed general stability of A-673 strains as compared to HeLa and
MCF-7 cells (Fig. 1b). To explore the differences in genome stability
comparingCOTF-driven strains to carcinoma strains inmoredetail, we
employed WGS data and compared copy number alternations (CNAs)
of A-673 and MCF-7 strains from different laboratories including our
A-673_m0 and MCF-7_m0, those of the Cancer Cell Line Encyclopedia
(CCLE), and an A-673 strain from the Ewing Sarcoma Cell Line Atlas
(ESCLA). As displayed in Supplementary Fig. 1a, b, the A-673 strains
generally presented amore stable genome compared toMCF-7 strains,
as quantified by relative changes in copy numbers. An expansion of
these analyses by exploring non-synonymous SNPs that affected the
coding sequence and splicing regions for the 11 different A-673 strains
(including twoA-673 with genetic modifications) using Illumina Global
Screening Arrays (GSA) revealed that 98.9% were shared by all strains
(Fig. 1c), which drastically diverged from the only 35% of SNPs shared
by all strains in MCF-74.

To investigate this discrepancy between adult carcinoma cell lines
and oligo-mutated pediatric sarcomas at the transcriptional level, we
compared the transcriptomic variation of these previously studied
adult carcinoma cell lines with fusion-driven EwS cell lines. Specifically,
weperformedRNA sequencing (RNASeq) usingNextSeq 500 (Illumina)
on 11 A-673, five HeLa, and five MCF-7 strains. Principal component
analysis (PCA) performed on the transcriptomic data from three bio-
logical replicates per cell line revealed that similar to the observations

made by Ben-David et al. and Liu et al. 4,5., the strains of both carcinoma
cell lines showed widespread transcriptomic diversity. However, our
fusion-driven A-673 EwS strains clustered tighter than HeLa andMCF-7
carcinoma strains, even though the A-673 cluster contained two strains
with geneticmodifications, and both carcinoma cell lines had relatively
smaller sample sizes (Fig. 1d). To analyze this variability specifically
within each lineage, we conducted independent DGEA and PCA on the
11 A-673, five HeLa, and five MCF-7 strains and computed the variance
percentages across each cell line’s strains. We thus observed that the
A-673 strains demonstrated a 2- to 3-fold smaller variance compared to
the carcinoma cell lines, again highlighting the higher stability of the A-
673 strains, even considering the larger sample size in the A-673 col-
lection (Supplementary Fig. 1c). These observations were additionally
confirmed by analyzing the coefficient of variation (CV) of gene
expression for each cell line (Fig. 1e).

To study this phenomenon in more detail, we compared each
cancer entity with the two strains with the highest variance (A-673_7
andA-673_3 vs.HeLa_5 andHeLa_3 vsMCF-7_5 andMCF-7_3). Strikingly,
we observed over 60 times more differentially expressed genes (DEG)
defined as |fold change (FC) | > 1, Benjamini-Hochberg (BH) adjusted
P <0.01 (380 transcripts; 39 up-, 341 down-regulated) in the HeLa
strains and 20 times more DEG (108 transcripts; 57 up-, 51 down-
regulated) in theMCF-7 strains as compared to theA-673 EwS strains (5
transcripts; all up-regulated) (Fig. 1f and Supplementary Fig. 1d). We
additionally combined our transcriptomic data with that of Liu et al.
and observed a specific clustering of our HeLa strains with their HeLa-
CCL2 strains, indicating a likely common origin (Fig. 1g). Moreover, we
observed a remarkably higher degree of heterogeneity among HeLa
strains than among A-673 strains (Fig. 1g and Supplementary Fig. 1e).
Of note, considering this heterogeneity betweenHeLa-CCL2 andKyoto
strains described by Liu et al. and here, it is conceivable that the
inclusion of HeLa-Kyoto in our panel of cells (Fig. 1a) would have
resulted in an even more substantial difference when compared to
fusion-driven A-673.

Next, we compared the expression profiles of the newly pur-
chased cell lines (m0) for each cancer entity with their m12 derivates.
Consistent with the results observed in the cross-laboratory compar-
ison, we observed a significantly greater variation in global gene
expression (P <0.0001, two-sided Wilcoxon signed-rank test) in HeLa
and MCF-7 cells compared to A-673 (median log2FCA-673=0,
– 4.25 < X̃ < 4.22; median log2FCHeLa= 0.47, – 3.39 < X̃ < 16.89; median
log2FCMCF-7 =0.47, – 3.46 < X̃ < 15.81) (Fig. 1h and Supplemen-
tary Fig. 1f).

To evaluate the potential phenotypical impact of these genomic
and transcriptomic changes, we compared the drug responses of
fusion-driven EwS cells with those from highly mutated adult carci-
nomas. Thus, we subjected 11 A-673 EwS strains (including two A-673
with genetic modifications, Fig. 1a), five HeLa cervical cancer strains,
and fiveMCF-7 breast cancer strains to a drug screening consisting of a
selection of 10 active compounds addressing non-redundant func-
tional pathways, which encompassed the same drugs used in Ben-
David et al. 4. The obtained dose-response curves were used to com-
pute the area under the curve (AUC) for each compound and to
determine the respective Euclidean distances (ED) between sensitivity
profiles of a given cell line to the global AUC-mean across cell lines. In
agreement with our previous findings, the strains of both adult carci-
nomas exhibited a significantly higher degree of drug response varia-
bility than those of EwS for all screened compounds (Fig. 1i, P < 0.005,
one-sided Wilcoxon signed-rank test). To confirm the extensive
homogeneity in drug response of the fusion-driven EwS cells as com-
pared to carcinoma cell lines, we additionally performed a Spearman’s
correlation test among each cell line’s strains and once again observed
that EwS strains showed a higher similarity than carcinoma cell lines
(X̃Spearman’s ρ A-673 = 0.94, 0.95 < X̃ < 0.93; X̃Spearman’s ρ HeLa=0.87,
0.91 < X̃ < 0.83; X̃Spearman’s ρ MCF-7 = 0.88, 0.92 < X̃ < 0.85) (Fig. 1j).
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Further,we studied the effect of continuous culture over 12months
on the potential evolution in drug sensitivity. Therefore, we exposed
newly purchased A-673, MCF-7, and HeLa cells (m0) to the drug library,
and then again at two additionally predefined time points after con-
tinuous culture (m6 and m12). In agreement with previous findings, we
detected a remarkably stable phenotype of A-673 after 6 and 12months

in comparison with HeLa andMCF-7 cell lines, measured as raw viability
at a single concentration of each compound (1 µM) (Fig. 1k).

Finally, to expandour understanding of the scarcity of genomic and
phenotypic cell line evolution in the context of EwS, we sought to ana-
lyze how our findings in A-673 cells (as one of the most widely used cell
lines in EwS research) would compare to other EwS cell lines. Thus, we
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newly purchased four additional EwS cell lines (MHH-ES1_m0, SK-ES-
1_m0, SK-N-MC_m0, and TC-71_m0) and propagated them for 12months
(Fig. 2a). We first performed genomic and epigenomic analyses and
subjected our samples to Illumina GSA and MethylationEPIC BeadChip
arrays, respectively. Interestingly, while all EwS cell lines remained
relatively stable, we observed that when compared to the prototypical
A-673 cell line, the remaining EwS cell lines presented a gradient of
variability when analyzing both their non-synonymous SNP alterations
and their differentially methylated CpG sites over time (Fig. 2b, c). For
instance, while a median of 99.6% (range 99.3%–99.8%) of the in-exon
SNPs were shared after 12 months of continuous culture by each cell
line, we could observe relatively less stable cell lines such as A-673, and
MHH-ES-1, and remarkably stable cell lines such as TC-71 (Fig. 2b),
whereas SK-ES-1 and A-673 displayed less stability at epigenetic level
(Fig. 2c). Of note, the relatively low number of variable ns-SNPs found in
A-673 strains appeared to affect randomgenes and to be not enriched in
specific pathways or biological processes (Supplementary Data 2). Only
one knownEWSR1::FLI1-signature gene (UNC5 family of netrin receptors,
UNC5B)8 was affected. In addition, when we tested the consistency of
differentially methylated CpG sites across all EwS cell lines particularly
located at promoter regions, we found only 1% overlap (corresponding
to 51 promoter regions) (Supplementary Fig. 2a and Supplementary
Data 3). This observed genomic and epigenomic variability in the degree
of evolution over time was further detected at the transcriptional level,
as shownby the proportion of significant DEGof each EwS cell line when
compared to theirm12 derivate (Fig. 2d). Indeed, TC-71 showed the least
transcriptional changes over time, while SK-ES-1 exhibited the highest
number of DEG after 12 months of continuous culture (219 transcripts;
99 up- and 120 down-regulated, which represented a 50% increment
relative to A-673) (Fig. 2d). Further, genome-wide gene set enrichment
analysis including every EwS cell line revealed again no significantly
enriched geneontology (GO) gene sets, canonical pathways, andprotein
complexes (P<0.05; FDR<0.25). Collectively, these results suggested
that, while there may be subtle transcriptional changes in particular
genes over time in EwS cell lines, the differences across their entire
genome do not predominantly affect specific pathways or gene sets. In
line with this idea, evaluation of DEGs consistency across the different
EwS cell lines revealed an overlap of a single gene, mitochondrially
encoded tRNA-valine (MT-TV) (Supplementary Fig. 2b and Supplemen-
tary Data 4), which is not an EWSR1::FLI1-signature gene8.

We next complemented these results by exposing each newly
purchased EwS cell line (m0) and their 12-month derivate (m12) to an
extended drug library that contained 10 additional compounds
(extended library, ntotal = 20, Supplementary Data 1) to include drugs
that had been recently described in EwS preclinical or clinical studies,
such elesclomol, olaparib, and gemcitabine9–11. Here, we again

observed inter-cell line variability in collective drug responseover time
that ranged from the least stable A-673 to the remarkably stable TC-71
EwS cell line (Fig. 2e).

In synopsis, ranking plots for each different data layer comparing
12 months of continuous culture of each EwS cell line clearly suggest a
range of stability that may inform decision-making on which cell line
models to preferentially employ in this COTF-driven pediatric can-
cer (Fig. 2f).

Collectively, our results highlight that the findings previously
described in Liu et al. and Ben-David et al. regarding the genetic and
phenotypic stability of two carcinoma cell linesmay not be translatable
to other cancer cell lines, especially to those with a stable genetic
background and a defined driver mutation, such as the COTF found in
EwS (Fig. 2g). Our findings indicate that research with COTF-driven cell
linemodels such as EwS should be in principle reproducible, even after
genetic modifications, and extensive periods of continuous culture.
Also, our results demonstrate that individual cell lines from the same
cancer entity may display a variable degree of evolution, suggesting
that the reproducibility of results strongly depends on the given cancer
cell line, which is particularly relevant in the context of large-scale cell
line screening efforts including Genomics of Drug Sensitivity in
Cancer12 and The Cancer Dependency Map Project13.

Methods
Provenience of cell lines and cell culture conditions
For long-term culture assays the following early passage (< 5 passages)
human cancer cell lines were acquired: the cervix carcinoma cell line
HeLa, the human breast carcinoma cell lineMCF-7. The EwSMHH-ES-1,
SK-ES-1, SK-N-MC, and TC-71 cell lines were purchased from the Ger-
manCollection ofMicroorganism andCell Cultures (DSMZ). The A-673
EwS cell line was purchased from the American Type Culture Collec-
tion (ATCC). A-673, HeLa, and MCF-7 wild-type strains with an unde-
fined number of passages were kindly provided by E. de Álava, U.
Dirksen, K. Scotlandi, H. Kovar, I. Oehme, T. Grünewald, O. Delattre,
and D. Surdez. Single-cell clones derived from A-673 cell lines with
either a neutralmanipulation (A-673/shcontrol) or an inducible shRNA
construct against its EWSR1::FLI1 translocation (A-673/TR/shEF1) were
previously described by our laboratory8. All cell lines were routinely
tested for mycoplasma contamination by nested PCR, and cell line
purity and authenticity were confirmed by STR profiling. All cell lines
were cultured at 37 °C, 5% CO2 in RPMI 1640 (Biochrom, Germany)
supplemented with 10% fetal bovine serum (Sigma-Aldrich, Germany)
and 1% penicillin-streptomycin (Merck, Germany). Each cell culture
flask was monitored daily, and cells were passaged twice per week
using Trypsin-EDTA (0.25%) (Life Technologies) when they reached
approximately 70% confluency.

Fig. 1 | Fusion-driven pediatric sarcoma cell line strains exhibit exceptional

genomic, transcriptomic, and phenotypic stability compared to adult carci-

noma strains. a Newly purchased A-673 EwS, HeLa cervix carcinoma and MCF-7

breast carcinoma wild type cell lines (A-673_1, HeLa_1 and MCF-7_1) were kept in

culture for sixmonths (m6; A-673_2, HeLa_2 andMCF-7_2) and twelvemonths (m12;

A-673_3, HeLa_3 and MCF-7_3). In addition, multiple strains for each cell line were

collected from seven, three, and two laboratories, respectively, and arbitrarily

numbered asA-673_4 toA-673_9,HeLa_4 toHeLa_5, andMCF-7_4 toMCF-7_5. Single-

cell clones derived fromA-673 cell lines with a neutralmanipulation (*, A-673_10) or

an inducible shRNA construct targeting its EWSR1::FLI1 translocation (**, A-673_11)

were included. ATCC, American Type Culture Collection, DSMZ (German Collec-

tion of Microorganism and Cell Cultures). b Relative in-exon SNVs counts in cancer

genes for A-673, HeLa, andMCF-7 after sixmonths of continuous culture, using the

respective initial time point (m0) values as reference (m6 vs. m0). c Heatmap

comparing the status (homozygous for reference allele, alternate allele, or het-

erozygous) of non-synonymous SNPs in 11 A-673 strains. The left color bar depicts

chromosomes; the right color bar depicts different SNP-IDs (N = 1,599).

d Transcriptomic PCA of 11 A-673, five HeLa, and five MCF-7 cell line strains

(N = 10,256 transcripts). e Circle plot depicting coefficient of variation (CV) of

expressed genes per chromosome (top 60%quantile) for all A-673, HeLa, andMCF-

7 cell line strains. f Volcano plot of DEG resulting from comparing the two A-673,

HeLa, and MCF-7 strains with the highest variance (A-673_7 vs A-673_3, HeLa_5 vs

HeLa_3 and MCF-7_5 vs MCF-7_3). The red dots denote significantly differentially

expressedgenes (BHadjustedP <0.01; |FC | > 1).gCombined transcriptomicPCAof

ourA-673 andHeLadatasets and thatof Liu et al. (HeLa_Liu) (N = 13,569 transcripts).

h Relative gene expression of A-673, HeLa, and MCF-7 cell lines after long-term

culture for twelve months (m12 vs m0). Outer violin curves denote the kernel

density. Boxplots display the interquartile range and themean, two-sidedWilcoxon

signed-rank test. i Left, collective variability in drug response of all A-673,HeLa, and

MCF-7 cell line strains depicted as the standard error of ED, each compound is

shown as a black circle, one-sided Wilcoxon signed-rank test. Right, standard error

of ED for each specific screened compound. j Spearman’s ρofdrug response across

11 A-673, five HeLa, and five MCF-7 cell line strains. The dotted black line shows the

median (one-sided Wilcoxon rank-sum test). k Raw viability of A-673, HeLa, and

MCF-7 cell lines subjected to each compound (1 µM) included in the drug screening

after 0, 6, and 12 months of continuous long-term culture (m0, m6, and m12).
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DNA extraction, methylation, and global screening arrays
When flasks reached approximately 70% confluency, samples were
lysed, and total DNA was extracted with the NucleoSpin Tissue kit
(Macherey Nagel) following the manufacturer’s protocol. For each
sample, 900ng of DNA in one (genotyping) or two (methylation)

technical replicates were used as input material and were profiled on
Illumina Infinium Global Screening array and MethylationEPIC array,
respectively, at the Molecular Epidemiology Unit of the German
ResearchCenter for Environmental Health (HelmholtzCenter,Munich,
Germany).

Fig. 2 | In-depth analysis of stability on individual EwS cell lines. a Newly pur-

chased A-673, MHH-ES-1, SK-ES-1, SK-N-MC, and TC-71 EwS wild type cell lines (_1)

were kept in culture for six months (m6; _2), and 12 months (m12; _3). ATCC,

American Type Culture Collection, DSMZ (German Collection of Microorganism

and Cell Cultures). b Bar plot shows the Euclidean distance of all SNPs after 6 (m6

vs. m0) and 12 months (m12 vs. m0) of continuous culture. c Number of differen-

tially methylated CpG sites (including differentially hypo- and hyper-methylated)

for A-673, MHH-ES-1, SK-ES-1, SK-N-MC, and TC-71 after six (m6) and 12 months

(m12) of continuous culture, using the respective initial time point (m0) values as

reference. d Volcano plot of DEG comparing each EwS cell line with their m12

derivate. Red dots denote significant DEG (BH adjusted P <0.01; |FC | > 1). eRelative

variation in cell viability for each EwS cell linemeasured as themean area under the

curve (AUC) m12 vs. m0 for the extended drug library (20 compounds). f Ranking

plots depicting the linear distribution of five EwS cell lines based on their evolution

across different datasets after continuous culturing for 12 months. g Schematic

illustration summarizing the findings of this study. Created in BioRender. Aranaz, F.

(2023) BioRender.com/k87h648.
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Whole genome sequencing (WGS)
High-quality genomic DNA from A-673, HeLa, and MCF-7 wild-type
cells at time points m0 andm6was sequenced using the Illumina PCR-
Free Tagmentation Kit (Illumina, CA, USA). A standard input of 300ng
genomic DNA was used for most samples. Sequencing was performed
on the NovaSeq 6000 S4 platform using 150bp paired-end reads.
Libraries were loaded at a concentration of 200 pM with 1% PhiX
control spike-in by the NGS Core Facility of the German Cancer
Research Center (DKFZ, Heidelberg, Germany). WGS of A-673 wild-
type cell DNA was performed as previously described (BioProject
PRJNA610192)8.

WGS data alignment and copy number (CN) estimation
All WGS data was aligned to the hg19 reference genome using the
PanCancer alignment workflow for the whole genome from the Roddy
AlignmentAlgorithms.The alignedWGSdatawasused to estimateCNs
with Allele-specific copy number estimation with whole genome
sequencing (ACEseq) -algorithm as previously described14. All samples
were referenced against a standardized normal control genome, which
was employed because no germline tissue from the subjects was
available. This normal control is derived from a pool of DNA samples
from healthy individuals and serves as a reference to distinguish
between somatic alterations and inherited variants. Alignment and CN
estimation were done by the Omics IT and Data Management Core
Facility of the DKFZ and its One Touch Pipeline15.

Single nucleotide variant (SNV) calling and filtering
WGS data was aligned to the hg19 reference genome using the Pan-
Cancer alignment workflow for the whole genome from the Roddy
Alignment Algorithms. All samples were referenced against a stan-
dardized normal control genome derived from a pool of DNA samples
from healthy individuals and serve as a reference to distinguish
between somatic alterations and inherited variants. Single nucleotide
variants (SNVs) were called using SNVCalling workflow from the pan-
cancer analysis of whole genomes (PCAWG)16. Only high-quality
(QUAL > 10) SNVs located within exonic regions of cancer-related
genes were analyzed. Cancer-related genes were defined as being
present in at least three of the following cancer-related gene
databases: OncoKB, MSK-IMPACT, MSK-Heme, Vogelstein Cancer
Genes, COSMIC CGC (v99), FoundationOne, and FoundationOne
Heme17. Alignment and SNV calling were done by the Omics IT and
Data Management Core Facility of the DKFZ and its One Touch
Pipeline15.

WGS data alignment, copy number (CN) estimation and analysis
Aligned WGS data were used to estimate CNs with allele-specific copy
number estimation with whole genome sequencing (ACEseq)-algo-
rithm as previously described14. All samples were referenced against a
standardized normal control genome (as described before), whichwas
employed because no germline tissue from the subjects was available.
This normal control is derived from a pool of DNA samples from
healthy individuals and serves as a reference to distinguish between
somatic alterations and inherited variants. CN estimation was per-
formed by the Omics IT and Data Management Core Facility of the
DKFZ and its One Touch Pipeline. WGS CN data was corrected using
the batch correction algorithm from ComBat function from the sva R
package version 3.50.0 (ref. 18). WGS data was then segmented into
regions of estimated equal CN using the circular binary segmentation
algorithm from DNAcopy R package version 1.76.0. Segmented data
was used to calculate the Genomic Index (GI) as the square of the
number of CN-altered DNA segments divided by the number of CN-
altered chromosomes as previously described19. Preprocessed single
nucleotide polymorphism array (Affymetrix SNP 6.0) derived CN
analysis data fromtheCancer Cell Line Encyclopedia (CCLE)2 for A-673,
and MCF-7 wild-type cell lines were retrieved from DepMap portal13.

WGS of A-673 wild type derived from BioProject PRJNA610192
(ref. 8). Comparative analysis of genomic intervals between CCLE CNV
data andWGSdatawas performed. Overlapping genomic regions were
identified using the findOverlaps function from the IRanges R package
version 2.36.0 (ref. 20). The filtering criteria included the following
conditions: the start position of the CCLE genomic interval must be
less than or equal to the endposition of theWGSgenomic interval, and
the end position of the CCLE genomic interval must be greater than or
equal to the start positionof theWGSgenomic interval. In addition, the
matching interval of the WGS data had to be 80%–120% of the CCLE
interval’s size. Subsequently, the values of overlapping WGS intervals
within each CCLE interval were aggregated by calculating themeanCN
for all overlappingWGS intervals. The area under the curveofCN ratios
was calculated using Graphpad PRISM 9, v9.4.1.

DNA methylation data analysis
The initial pre-processing of the raw methylation was performed in R
version 3.3.1. Rawsignal intensitieswereobtained from IDATfiles using
theminfi Bioconductor package version 1.21.421 in R version 3.3.1. Each
sample was individually normalized by performing a background
correction (shifting of the 5% percentile of negative control probe
intensities to 0) and a dye-bias correction (scaling the mean of nor-
malization control probe intensities to 10,000) for both color chan-
nels. The methylated and unmethylated signals were corrected
individually. Subsequently, beta values were calculated from the
retransformed intensities using an offset of 100 (as recommended by
Illumina). Out of 865,859 probes on the EPIC array, 105,454 probes
weremasked, according to Zhou et al. 22 aswell as 16,944probes on the
X and Y chromosomes. In total, 743,461 probes were kept for down-
streamanalysis. Thebeta valueswere transformed toM-valueswith the
logit2 function of the minfi package version 1.42.0, R version 4.2.0. A
probe-wise differentialmethylation analysis23was performed using the
limma package24 version 3.52.4 in R version 4.2.0 by comparing six and
twelve months of culturing with the initial time point (m0) as refer-
ence. Significant differentially methylated CpG probes were extracted
with the decideTests function of the limma package with an FDR <0.05
(Benjamini-Hochberg). All significantly differentially methylated (total
hypo- and hyper-methylated) CpG sites were visualized using PRISM 9
(GraphPad Software Inc. CA, USA). Differentially methylated promoter
regions (DMPRs) were identified by encompassing CpG sites within
promoter regions defined using the mCSEA package, version 1.16.0 in
R version 4.2.0. Differential methylation analysis of promoter regions
was performed by aggregating CpG sites into promoter regions and
calculating average methylation levels. A region-wise differential
methylation analysis was conducted using the minfi package to iden-
tify regions with significant differential methylation. Statistical sig-
nificance for promoter regions was determined with an FDR <0.05
(Benjamini-Hochberg correction). Only promoter regions containing
at least five CpG sites were considered for this analysis (default setting
of the mCSEATest function).

Global screening array (GSA) data analysis
The initial processing and quality control (QC) of the raw genotyping
data was performed using PLINK version 1.9 (SNP call rate > 95%,
Hardy-Weinberg exact test < 1e-6, and variants on the Y chromosome
were excluded). In total 526,610 variants out of 696,726 passed theQC
filters. Infinium GSA v3.0 annotation file was used to filter for in-exon
or non-synonymous variants. To determine single nucleotide altera-
tions (SNA), A-673 strains were compared to itsm0 version (number of
consistent alleles and changes from homozygous to heterozygous)
using the Variant Call Format (VCF)file generated by PLINK 1.9. Further
data analysis was performed in R version 4.2.1, using the vcfR package
version 1.14.0, among other data processing packages described
below. The distance between two-time points for each cell line was
computed in R version 4.2.1 using the proxy package version 0.4-27.
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The eigenvectors generated for dimension reduction in PLINK version
1.9, were used as input. The heatmap was generated in R version 4.2.1
using the pheatmap package version 1.0.12.

RNA extraction, library preparation, RNA sequencing and
analysis
When flasks reached ~ 70% confluency, total RNA was isolated using
the NucleoSpin RNA kit (Macherey-Nagel, Germany) according to the
manufacturer’s protocol. RNA quality was verified on a Nanodrop
Spectrophotometer ND-1000 (Thermo Fischer), and quantity was
measured on a Qubit instrument (Life Technologies). For each sample,
50–100 ng of RNA in three biological and two technical replicates were
used as input material and were profiled on an Illumina NextSeq
500 system at the Institute of Molecular Oncology and Functional
Genomics in Rechts der Isar University Hospital (TranslaTUM Cancer
Center, Munich, Germany). Library preparation for bulk 3’-sequencing
of poly(A)-RNA was performed as previously described25. Briefly, the
barcoded cDNA of each sample was generated with a Maxima RT
polymerase (Thermo Fisher) using oligo-dT primer containing bar-
codes, unique molecular identifiers (UMIs), and an adapter. 5’ ends of
the cDNAs were extended by a template switch oligo (TSO), and after
pooling of all samples full-length cDNA was amplified with primers
binding to the TSO-site and the adapter. cDNA was fragmented, and
TruSeq-Adapters ligated with the NEBNext® Ultra™ II FS DNA Library
Prep Kit for Illumina® (NEB), and 3’-end-fragments were finally ampli-
fied using primers with Illumina P5 and P7 overhangs. P5 and P7 sites
were exchanged to allow sequencing of the cDNA in read1 and bar-
codes and UMIs in read2 to achieve better cluster recognition. The
library was sequenced with 75 cycles for the cDNA in read1 and 16
cycles for the barcodes and UMIs in read2. Data was processed using
the published Drop-seq pipeline (v1.0) to generate sample- and gene-
wise UMI tables26. After the elimination of transcripts with very low
counts (sums of all samples < 10), RNASeq data in countmatrix format
was batch corrected using the ComBat-Seq function of R package sva
version 3.44.0 (ref. 18), and differential gene expression analysis
(DGEA) was performed using DESeq2 version 1.36.0 (ref. 27) on R
version 4.2.1. Combat-Seq adjusted data was used as count input for
DESeqDataSet. To avoid false discovery artifacts due to the detection
of minimally expressed genes, we excluded the 40% lowest expressed
genes across samples (remaining expressed genes N = 10,257). For the
analysis of long-term cultured EwS cell lines we performed DGEA on
the top 60% expressed genes included in the raw count matrix
(N = 27,143, all EwS cell line samples were analyzed in one batch). For
DGEA between two samples, genes with Padj≤0.01, |log2(FC) | > 1 were
considered asDEG. Principal component analysis was used to preserve
the global properties of the data using the plotPCA function. To com-
prehensively display the degree of variability between strains in each
tumor type, the gene-specific CV of the transcriptomic data was cal-
culated. In the long-term culture assays, log2FC of gene expression of
each cell line for 6 and 12 months (m6 and m12) were analyzed using
the initial time point (m0) values as reference.

Drug screening
All A-673, HeLa, and MCF-7 strains, as well as MHH-ES-1, SK-ES-1, SK-N-
MC, and TC-71 EwS cell lines, were tested against a core drug library
consisting of 10 cytotoxic or cytostatic agents, or an extended drug
library consisting of 20 agents (Supplementary Data 1). For this, cells
were seeded into 96-well plates at a density of 5×103 cells per well in
90 µl of medium in triplicates. Once cells were attached, ∼ 4 h after
seeding, 10 µl of each compound was added in serially diluted con-
centrations ranging from 1 × 10-5

µM to 10 µM. DMSO was used as
vehicle control. Plateswere incubated for 72 h at 37 °C,with 5%CO2 in a
humidified atmosphere. At the experimental endpoint, a solution of
25 µg/ml of resazurin salt (Sigma-Aldrich) was added to the medium,

and cell viability was determined as previously described28. Each
compound and cell line were assayed in four biological replicates.

Drug screening data analysis
Cell viability data wasfirst normalized using themeasured raw viability
of each control (DMSO vehicle), and the area under the curve (AUC)
was computed for each cell line using the PharmacoGx package ver-
sion 3.0.2 (P Smirnov, 2016) in R version 4.2.1. Euclidean distances (ED)
between drug sensitivity profiles of each strain were calculated using
the following formula:

function(x1, x2) sqrt(sum((x1 – x2) 2))= ED, where x1 is the mean
value of AUC of all strains and x2 the AUC of individual cell lines. The
variability in drug response across different cancer entities was
visualized using the standard error of ED values, accounting for dif-
ferences in sample size. Changes in drug sensitivity during the long-
term culture of each cell line for six and 12 months (m6 andm12) were
analyzed using the initial time point (m0) values as reference.

Other bioinformatic and statistical analyses
If not otherwise specified, genomic, methylation, transcriptomic, and
drug sensitivity data analyses were performed in R version 4.2.1. The
following R packages were used: for data processing, readxl package
version 1.4.3, tidyverse package version 2.0. (ref. 29), reshape2 pack-
age version 1.4.4 (ref. 30), cowplot package version 1.1.1, Rfast package
version 2.0.8, and data.table package version 1.14.8 (ref. 31); for data
visualization, ggplot2 package version 3.4.1 (ref. 32), gghalves package
version 0.1.4, ggdist package version 3.2.1 and PupillometryR package
version 0.0.4; for circle plots, circlize package version 0.4.15; and for
PCA and volcano plots, ggplot2 package version 3.4.1 (ref. 32). Spear-
man’s correlation analyses of quantitative data of bothmRNA anddrug
response were performed using Hmisc package version 4.7-2 (ref. 33).
Figures 1b, 1i, 1j, 2b, 2c, 2e, and Supplementary Fig. 1b were generated
using PRISM 9 (GraphPad Software Inc., Ca, USA). Transcriptomic
datasets from this study and Liu et al.5 were combined and batch-
corrected using the ComBat-Seq function of package sva version
3.44.0 (ref. 34). Venn diagrams were plotted using Affinity Designer 2,
version 2.4.2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Original data that support the findings of this study was deposited at
the National Center for Biotechnology Information (NCBI) GEO under
accession numbers GSE270195, GSE268437, GSE264509, and under
BioProject PRJNA1160032. Source data are provided in this paper.
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