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DNA methylation (DNAm) is a key epigenetic mark that shows profound
alterations in cancer. Read-level methylomes enable more in-depth analyses,
due to their broad genomic coverage and preservation of rare cell-type signals,
compared to summarized data such as 450K/EPIC microarrays. Here, we
propose MethyIBERT, a Transformer-based model for read-level methylation
pattern classification. MethylBERT identifies tumour-derived sequence reads

M Check for updates

based on their methylation patterns and local genomic sequence, and esti-
mates tumour cell fractions within bulk samples. In our evaluation, Methyl-
BERT outperforms existing deconvolution methods and demonstrates high
accuracy regardless of methylation pattern complexity, read length and read
coverage. Moreover, we show its applicability to cell-type deconvolution as
well as non-invasive early cancer diagnostics using liquid biopsy samples.
MethyIBERT represents a significant advancement in read-level methylome
analysis and enables accurate tumour purity estimation. The broad applic-
ability of MethylBERT will enhance studies on both tumour and non-cancerous

bulk methylomes.

DNA methylation (DNAm) refers to enzymatic modification of
nucleotide bases in the DNA with methyl groups. In animal and many
plant genomes, cytosine followed by guanine (CpG) is the most fre-
quent methylation target. Aberrant methylation patterns at CpGs
reflect epigenetic heterogeneity in human tumours'. Therefore, DNAm
data has been widely used for estimating tumour purity to examine the
tumour epigenetic landscape relevant to clinical outcomes, tumour
diagnosis and phenotypic characteristics®™*.

DNAm can be profiled by sequencing methods such as whole
genome bisulfite sequencing (WGBS)® or reduced representation bisul-
fite sequencing®, amplification-free long-read sequencing, e.g. using

Oxford Nanopore Technologies or Pacific Biosciences platforms, as well
as with bisulfite-based microarray methods like Infinium 450K/EPIC
arrays’. High-quality sequencing-based profiling produces sequence
reads covering a broad range of genomic regions with sufficient read
depth (30x being a de facto industry-wide standard), and thereby pre-
serves single-molecule signals of rare cell populations®. Sequencing-
based data is even more crucial in circulating tumour DNA (ctDNA)
analysis that facilitates non-invasive early diagnosis, prognosis and
treatment response monitoring in cancer patients’ . Nevertheless, most
purity estimation or cell-type deconvolution methods have been
developed for array-based DNAm profiles because of the intuitive
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application of classical linear algebraic algorithms to matrices of average
DNAm levels (beta-values)”. Most ctDNA data analysis methods likewise
use beta-values. Moreover, our previous analysis showed that existing
sequencing-based deconvolution methods do not perform better than
array-based methods implying that they fail to fully exploit the advan-
tages of sequencing data for accurate inference®.

To overcome these limitations, we propose MethylBERT, a
deep learning method for read-level methylation pattern identi-
fication and tumour purity estimation based on Bidirectional
Encoder Representations from Transformers (BERT)Y. Methyl-
BERT uses a modified BERT model to encode read-level methy-
lomes and classifies tsequence reads into tumour or normal cell
types. Resulting posterior probabilies of cell types are used to
derive tumour purity estimates through Bayesian prob-
ability inversion and maximum likelihood estimation. Along with
purity estimation, MethylBERT provides the model precision
based on Fisher information and estimation adjustment taking
region-wise tumour purity into account. The application of
Transformers has been overlooked in sequencing-based tumour
purity estimation, and MethyIBERT suggests an approach to using
Transformers for sequence read classification that is different
from previous methods (Supplementary Table 1).

We have thoroughly evaluated MethylBERT and compared it
with existing methods. The results demonstrate MethylBERT
outperforms other methods in read-level methylation pattern
classification and tumour purity estimation. In our evaluation, we
not only investigate the performance of MethylBERT but also
analyse what the model actually learns via pre-training using
reference genome sequences. Moreover, we suggest using the
Fisher information to measure the precision of the estimation
model. This gives guidance about how accurate the estimated
tumour purity is, which represents essential information for
analysing bulk samples without ground-truth tumour purity.

Pre-training MethylBERT

0

Reference genome ACTGATCTACT ACGLCT (150bp)

3-mers

Fine-tuning MethylBERT

Finally, we also propose using MethylBERT for early diagnosis of
cancers based on ctDNA analysis as well as cell-type
deconvolution.

Results

MethyIBERT overview

MethyIBERT includes three main steps (Fig. 1). First, the MethylBERT
model is pre-trained with a reference genome processed into 3-mer
sequences. After pre-training, the MethylBERT model is fine-tuned to
learn the read-level methylation pattern classification task. The output
converted with a softmax function is interpreted as the posterior
probability P(c;|r;) of the cell type ¢; given aread r;. In our case, the cell
type is either tumour (7) or normal (N). Classification is performed by
assigning the cell type with a higher posterior probability.

For the final tumour purity estimation, we apply Bayes’ theorem to
compute the probability P(r;|¢;) in the likelihood function using P(c;|r;)
assuming that every read has an equal marginal probability. After-
wards, the tumour purity is determined by maximum likelihood esti-
mation. The estimated tumour purity can also be adjusted based on
the skewness of the region-wise tumour ratio. The adjustment is par-
ticularly useful when the analysed bulks have a very high or low ratio of
tumour-derived reads. A detailed description of the three steps of
MethyIBERT is provided in Methods.

MethyIBERT classifies complex read-level methylation patterns
We simulated read-level methylomes in different scenarios to evaluate
the robustness of the MethyIBERT read classification with respect to
the pattern complexity (the details are in Methods). We compared our
method with CancerDetector” and DISMIR', as well as a baseline
method implemented using a hidden Markov model (HMM) designed
to classify read-level methylation patterns into cell types.

In our first scenario, we simulated different complexities of
150 bps read-level methylomes from a beta-binomial distribution. Our
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Fig. 1| MethylBERT overview. The main three steps are separated by dotted lines.
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Fig. 2 | Read-level methylome classification results. In all line plots, the error bars
indicate 95% confidence interval. A-C An example of simulated read-level methy-
lation patterns for tumour and normal cell types (reads were simulated with the
complexity of al b5, see Methods for details) and the classification accuracy
comparison across different complexities (A) with read length 150 bps, (B) with
read length 500 bps, and (C) with CpG-specific methylation patterns. Yellow and

Read coverage in each DMR

black on each read show methylated and unmethylated CpGs, whereas grey
represents other bases. Sequence reads for two cell types are divided by a dotted
line in the middle. Region-wise methylation levels in tumour and normal cell types
are shown in the histogram. D Read-level methylome classification accuracy com-
parison for different read coverages. E MethyIBERT read-level methylome classifi-
cation accuracy for different read coverages and pattern complexities.

simulation algorithm generates more complex methylation patterns
with an increasing a value of the beta distribution (Supplementary
Fig. 2A, B). For all complexities of methylation patterns, MethylBERT
outperformed the other three methods in the classification task
(Fig. 2A). All four methods yielded the highest accuracy and the lowest
deviation of accuracy values over differentially methylated regions
(DMRs) for the simplest methylation patterns (a0_b5). Although the
accuracy decreases with increasing complexity for all methods,
MethyIBERT still classified reads more accurately than the other
methods in each case. We further simulated longer read-level

methylation patterns with 500 bp length. In this case, the reads cover
both a DMR and non-DMRs on the genome resulting in more compli-
cated methylation patterns, because most DMRs are shorter than
500 bps (Supplementary Fig. 2C). With the 500 bps of simulated reads,
MethyIBERT again performed better than the other methods regard-
less of the complexity (Fig. 2B). It likewise achieved more precise
classification for simpler complexity keeping the lowest deviation of
accuracy at the complexity a0_b5. On the other hand, for the same
complexity level, CancerDetector and HMM performed worse and had
a higher deviation of accuracy in the results with 500 bp reads than in
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the results with 150 bp reads. Overall, the deep learning methods,
MethyIBERT and DISMIR, yielded better classification results for the
500 bp read simulation.

Neighbouring CpGs usually have a consistent methylation pat-
tern, but the innate inclination of methylation for each CpG and
erroneous methylation patterns in cancer are non-trivial factors”"®,
Thus, we conducted the same evaluation for the extreme scenario
where only CpG-specific methylation patterns differ between tumour
and normal whereas region-specific methylation levels are almost
identical (Methods, Supplementary Fig. 2D). CancerDetector and
HMM could not classify reads into cell types despite the clear pattern
difference in the case of a0 _b5 and al b5, whereas MethylBERT per-
formed best with the exception of highly noisy patterns in a2_b5 and
a3 b5 (Fig. 2C). These results demonstrate that MethylBERT is capable
of detecting tumour-specific methylation patterns not misled by the
average methylation level in a region.

Read coverage is another important factor that can affect read-
level methylome analysis. Many deconvolution algorithms pre-select
regions based on the minimum number of CpGs and read coverage
within the region so that sufficient methylomes can be used for
deconvolution®”, Hence, we simulated read-level methylomes with
variable read coverages in DMRs. Again, MethylBERT achieved the
best methylation pattern classification performance, especially for
low read coverage (Fig. 2D). Although DISMIR showed competitive
performance over different coverage values, we found that DISMIR
training is less robust than MethyIBERT training and partially yields
low read classification accuracy (Supplementary Fig. 10). Methyl-
BERT shows an accuracy value above 0.95 even for coverage 10
where the sample means cannot represent the population mean well
(Supplementary Fig. 2E). On the other hand, CancerDetector could
not perform accurate read classification for coverages below 50. We
also performed the MethylBERT read classification analysis for every
combination of read coverages and complexities (Fig. 2E). Methyl-
BERT keeps a high accuracy regardless of the coverage for the
complexity a0_b5 and al_b5. However, the accuracy converges at the
highest value for the read coverage >100 in the complexity a2_b5 and
a3 b5 results.

Pre-training allows MethyIBERT to understand sequence
features

Bidirectional pre-training is a pivotal feature of the BERT model™,
alleviating the restricted choice of a model architecture. It was shown
by Ji et al.” that the pre-trained BERT model can be successfully fine-
tuned for various DNA sequence analyses such as promoter region
prediction. Clark et al.*° have carefully described what kind of infor-
mation BERT learns during pre-training in natural language processing.
Yet, the efficacy of BERT pre-training on DNA sequences is still poorly
understood.

We have primarily found that pre-training enables the BERT
model to understand the mutual relationships between DNA 3-mers
(Fig. 3A). Even though any information about CpGs or methylation has
not been provided, BERT distinguishes 3-mer tokens including “CG”
from other tokens (cluster 3). This might be driven by the repetitive
“CG” patterns especially occurring in CpG islands. In addition, the pre-
trained BERT model is able to associate paired DNA nucleotides with
each other (C-G and T-A). UMAP2 embedding divides the 3-mer tokens
into two groups: those that start with C/T and the others starting with
G/A. Each cluster is composed of tokens whose first nucleotide is the
same and whose last nucleotide makes a nucleotide pair. For example,
in cluster 6, all tokens start with A and end with C/T. We hypothesise
that BERT pre-training identified the nucleotide pairs because of
Chargaff’s second parity rule that the amount of two nucleotides in a
pair is approximately equal in a single DNA strand. Special tokens (e.g.,
<unk> or <mask>) also make up a separate cluster from the other DNA
3-mer tokens only after pre-training.

We have also evaluated the influence of pre-training on the
identification of tumour methylation patterns. For this, we compared
the performance of read classification when the MethylBERT model
was pre-trained and when it was not pre-trained. The comparison was
done by utilising diffuse large B cell lymphoma (DLBCL) and non-
neoplastic B cell samples (Methods). In order to avoid the additional
influence carried by the dominant promoter hypermethylation in the
tumour, we selected 50 DMRs where tumour cells are hypermethy-
lated and hypomethylated, respectively (Supplementary Fig. 3A, B).
Both MethylBERT models with and without pre-training gradually
decrease the loss value during the early steps of fine-tuning (Fig. 3C).
However, when MethylBERT is not pre-trained, the loss value increases
again after 100 steps and the accuracy eventually converges around
0.5. The confusion matrix of classified reads also shows that pre-
trained MethylBERT achieves far more accurate classification
results (Fig. 3D).

Figure 3E shows the change in the probability
P(cell type=Tumour|read) during MethylBERT fine-tuning. When
MethyIBERT is pre-trained with the reference genome, the probability
distribution of tumour reads and normal reads start separating from
each other at step 50. Over further steps, the model yields higher
probability values of correct cell types for the reads. For instance, at
step 350, P(cell type = Tumour|read) of normal reads are close to O
and the probability of tumour reads are close to 1. On the other hand,
MethyIBERT without pre-training could distinguish some tumour
reads from normal reads until step 150, but afterwards the
P(cell type=Tumour|read) distribution of two cell types becomes
indistinguishable. According to the correlation between the estimated
probability and methylation level of reads, both models classify the
reads mainly based on the methylation level at step 50 (Supplementary
Fig. 3C). However, only the pre-trained model can overcome the bias
and, in the following steps, keep the accuracy high without
P(cell type=Tumour|read) not being strongly correlated with the
methylation level.

Pre-training on an entire reference genome requires a long
training time, so the cross-species applicability of the pre-trained
MethylBERT model will augment the utility to analyse various sam-
ples. For this reason, we have investigated the discrepancy in fine-
tuning performance between pre-trained models with human (hgl9)
and mouse (mm10) genomes. The classification results of DLBCL and
non-neoplastic B cell reads show that both human and mouse gen-
omes are eligible as pre-training data for human cancer analysis
(Fig. 3B). The read classification area under the curve score calcu-
lated in the validation set shows a difference below 0.001 between
the two reference genomes. The distribution of calculated
P(cell type=Tumour|read) also does not significantly differ in non-
neoplastic B cell reads. However, in the DLBCL reads, the two sets of
probability values still have a p-value below 1.0 x 10~ for paired t-test
statistics.

These results clearly demonstrate that pre-training is a vital step
enabling the MethylBERT model to understand the major features of
the DNA sequence. Furthermore, the MethylBERT fine-tuning can
prevent bias towards read-wise methylation levels only when pre-
training is performed. Finally, the cross-species applicability of the pre-
training broadens the range of available samples for MethylBERT
analysis.

MethyIBERT accurately estimates tumour purity of in silico bulk
samples

We next evaluated the tumour purity estimation performance of
MethyIBERT using in silico-generated pseudo-bulk samples. The sam-
ples were obtained by mixing reads randomly sampled from DLBCL
and non-neoplastic B cell samples with controlled proportions. For the
comparison, we benchmarked MethyIBERT against CancerDetector”,
DISMIR' and Houseman’s method?. Houseman’s method performed
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Fig. 3 | Impact of pre-training on MethylBERT performance. A UMAP plot of
3-mer token embeddings before and after pre-training. The clusters were made via
k-means clustering. B Confusion matrix of read classification results by the model
pre-trained with human genome hg19 (top left) and with mouse genome mm10
(bottom left). Distribution of P(cell type = Tumouriread) in both cell types calculated
by the two pre-trained models (right). P-values in the violin plot were calculated
using two-sided paired t-test statistics. The inner boxplots represent the median,
and the first and third quartiles, whereas the whiskers show the rest of the

distribution. C Training (solid line) and validation (dotted line) curves of Methyl-
BERT with and without pre-training (green and yellow). Both graphs are plotted
every 10 steps. D Confusion matrix of read classification results by the MethylBERT
model with and without pre-training calculated at the step when each model
achieved the best validation performance. E Histogram of P(cell Type=Tumour|read)
in tumour (T) and normal (N) reads (orange and blue each) calculated by Methyl-
BERT with and without pre-training (top and bottom).

best in diverse deconvolution and tumour purity estimation experi-
ments in our previous benchmarking study”. Although DISMIR fea-
tures a procedure for informative genomic region selection for tumour
purity estimation, it could not make reasonable estimates with self-
selected regions. Therefore, we applied DISMIR on the same DMRs
used for the other methods and this is referred to as ‘DISMIR dmr’ in
the following. For the MethyIBERT results, we present the performance
from both models with and without estimation adjustment (described
in Methods) to study the impact of the adjustment.

MethyIBERT outperformed other methods with respect to the
absolute error between the ground-truth and estimated tumour purity
(Fig. 4A, Supplementary Table 2 and Supplementary Fig. 11). Although
Houseman’s method achieved better performance for the bulks with a
high tumour purity, it could not accurately estimate the purity when
the ground-truth value is low. On the contrary, CancerDetector per-
formed better for the bulk samples where the tumour was a minor cell
type. However, MethylBERT maintained its high accuracy for both low
and high tumour purities.

To further improve the accuracy of tumour purity estimation,
MethyIBERT employs estimation adjustment based on the distribution
of region-wise (local) estimated tumour purity (Methods). This is

conceptually equal to the ‘removal of confounding factors’ in
CancerDetector”, as it also handles outlier regions where the esti-
mated proportion of tumour-derived reads is different from the
majority. MethyIBERT finds the optimal mapping of local estimates to
reduce the skewness, whereas CancerDetector iteratively removes
regions that are outside of the standard deviation. Therefore, we have
specifically compared the MethylBERT estimation adjustment and
CancerDetector removal of confounding factors using the same esti-
mated P(cell type|read) values (Fig. 4B). The ‘no adjustment’ label
indicates when neither of the adjustment methods was applied and the
final tumour purity estimation was calculated only based on the
P(cell type|read) values. MethylBERT estimation adjustment out-
performed CancerDetector removal of confounding factors in terms of
median absolute error between the ground-truth and estimated puri-
ties. Although CancerDetector removal of confounding factors cannot
improve the estimated values when the tumour is the major cell type,
MethyIBERT is able to make a better adjustment regardless of ground-
truth tumour purity (Supplementary Fig. 12).

In real application scenarios, ground-truth tumour purity is not
available for evaluation. Therefore, as a quality measure of model
estimates, MethylBERT provides the precision of the tumour purity
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MethyIBERT estimates

estimation using the Fisher information. When multiple experiments
are performed by MethyIBERT, users can obtain information on which
experiment is more likely to make a precise estimation by comparing
the Fisher information indicating the precision of likelihood estimation
models*. Here, we show how the Fisher information can be used for
determining the best DMRs. For this, we split the 100 DMRs ordered by
the region quality (indicated by areaStat value as explained in

Methods) into four groups: very high, high, medium, and low, meaning
that a higher areaStat value represents higher methylation difference
and more CpGs within the region. Both tumour purity and the Fisher
information were calculated in respective groups by MethylBERT
(Fig. 4C). The result shows that the mean absolute error and the esti-
mation quality measured by the Fisher information are anti-correlated.
Hence, the Fisher information from MethylBERT can be used to analyse
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Fig. 4 | MethylBERT analysis results for bulk samples. All boxplots represent the
median, the first and third quartiles, whereas the whiskers show the rest of the
distribution. A-C Tumour purity estimation and estimation adjustment results for
DLBCL pseudo-bulk samples (n =20). A Absolute error between the ground-truth
and estimated tumour purity. B Performance comparison of different estimation
adjustment methods. The boxplot presents the absolute error. The number at the
bottom indicates the median value in both (A) and (B). C Fisher Information values
and mean absolute error calculated for the pseudo-bulk samples with four different
region sets. Dots and lines indicate the mean value and the confidence interval
(95%) in each region set. D-E Cell type-specific methylation level reconstruction
within 100 DMRs for 20 DLBCL pseudo-bulks (n=2000). D Correlation calculated
with reference cell type-specific methylation level (top), and calculated with bulk
methylation level (bottom). E Absolute error calculated with reference methylation
levels (purple), and calculated with bulk methylation levels (green). In (B) and (E)

statistics were computed using a two-sided paired ¢-test with Bonferroni correction.
F Methylation level comparison between prostate tumour, normal prostate epi-
thelium, T cell, B cell, and fibroblasts in the 250 regions provided by the normal cell-
type methylation atlas®. Regions were clustered using the hierarchical clustering
algorithm. G Correlation between the estimated prostate epithelium proportion
(without tumour reference data) and estimated tumour purity (with tumour
reference data) by Houseman’s method for the lymph node samples (n=15)
acquired from hormone-sensitive metastatic prostate cancer patients. The results
for MethyIBERT and Loyfer et al.’s deconvolution methods are coloured blue and
grey, respectively. H Cell-type deconvolution results for leukocyte samples
between MethyIBERT and Loyfer et al.’s method. In (D) and (H) the two-sided p-
value represents the probability that the absolute correlation coefficient of a ran-
dom sample from an uncorrelated population is greater than the absolute value of a
given correlation coefficient, as implemented in the Scipy package*®.

the quality of maximum likelihood estimation when other information
for the quality evaluation is not available.

In addition to the accurate inference of mixture proportions by
MethyIBERT, the read classification results can be used to recon-
struct region-wise methylation levels of constituent cell types within
bulk samples. From the classified reads, we calculated the average
methylation levels of tumour and normal per DMR (so-called
reconstructed methylation level) in each pseudo-bulk sample. Fig-
ure 4D, E present that the reconstructed methylation level is much
more similar to the reference cell type-specific methylation level than
to the bulk methylation level with a higher Pearson correlation and a
lower mean absolute error. Bulk-wise reconstructed pattern analyses
are shown in Supplementary Figs. 5A and 13. The results confirm that
reconstructed values have a lower error with respect to the reference
methylation patterns than with respect to the bulk patterns. Please
note that, for testing, we used 100 regions where half are tumour
hypermethylated and the other half are hypomethylated regions to
make sure that the result is not influenced by dominant tumour
hypermethylation over the selected DMRs based on the areaStat
score. We performed the same analyses for the DMRs selected based
on the areaStat score (Supplementary Figs. 5B, C and 14). Methyl-
BERT still successfully dissected cell type-specific methylation levels
showing the same results.

MethyIBERT facilitates cancer patient analyses and cell-type
deconvolution using the methylation atlas of normal cells
When MethyIBERT is used for practical applications, it could be the
case that tumour reference sequencing data is not available. Thus,
using lymph node samples collected from hormone-sensitive meta-
static prostate cancer patients, we evaluated MethylBERT’s applic-
ability to analysing tumour bulk samples without cancer-derived
reference data. Instead of tumour reference data, we used the normal
cell-type methylation atlas data which includes blood cells and pros-
tate epithelium cells*. We hypothesised that the estimation of prostate
epithelium cell fraction should align with the tumour purity in lymph
node samples because of tissue invasion and metastasis, which is a
well-known cancer hallmark®. Therefore, we evaluated the
MethyIBERT-estimated prostate epithelial cell proportions compared
to the prostate tumour purity estimated using prostate cancer refer-
ence data (as described in Methods). Despite the methylation level
difference in some regions between normal prostate epithelium and
prostate tumour samples (region clusters C1, C2 and C4 in Fig. 4F), the
prostate-derived read proportion estimation by MethylBERT without
tumour reference data shows a strong positive correlation with the
prostate tumour purity estimated by other methods”* % trained with
tumour reference data (Fig. 4G and Supplementary Fig. 4). We
deconvolved the same samples with the UXM fragment-level decon-
volution algorithm from the atlas study® (denoted as Loyfer et al.’s
method), however, the results do not show as strong correlation. This
application presents a practical use case of MethylBERT combined

with the atlas data® even when the reference data is only partially
available.

The design of the MethylBERT model and the cell-type proportion
estimation likelihood function are technically not limited to tumour
methylomes. Therefore, we extended MethyIBERT to cell-type pro-
portion estimates beyond tumour and applied it to a cell-type
deconvolution for 23 leukocyte bulk samples acquired from the atlas
data” (Methods). Figure 4H shows the estimated cell-type proportions
in leukocyte bulk samples compared to the estimates by the UXM
fragment-level deconvolution algorithm from the atlas study®. For the
five major cell types (B, NK, granulocytes, T and monocytes +
macrophages) in the bulk samples, MethylBERT estimates have a
strong correlation with the fragment-level deconvolution results. This
confirms the applicability of MethylBERT to more complex cell-type
deconvolution analyses for non-tumour bulk samples.

MethyIBERT accurately detects rare tumour signals in liquid
biopsy samples from cancer patients

Besides bulk tumour analyses, precise estimation of sequencing-based
tumour cell fraction is required in ctDNA analysis due to the very low
quantity of tumour-derived DNA found in liquid biopsies at early dis-
ease stages (<5%). Hence, we evaluated MethyIBERT as an early cancer
detection method for blood plasma samples and compared its per-
formance to other previous methods.

To validate whether MethyIBERT can detect a very low percentage
of tumour-specific signals, we further generated 10 pseudo-bulks by
mixing reads from non-neoplastic B-cell and DLBCL samples with a
tumour ratio smaller than 10%. MethylBERT achieved a lower median
absolute error than the other methods (Fig. 5A and Supplementary
Table 3). All methods can estimate tumour purities proportional to the
ground-truth values with the exception of DISMIR applied with its own
selected regions but MethylBERT shows the highest correlation
between the two values with p-value <0.01 (Fig. 5B). Therefore, we
demonstrated that MethyIBERT is sufficiently sensitive for ctDNA
analysis compared to the currently available methods.

As an application to real ctDNA samples, we used targeted BS-seq
data collected from 14 healthy donors and 40 colorectal cancer (CRC)
patients in five different stages (GSE149438) (Supplementary Fig. 6A).
The estimated tumour purity significantly differs between healthy
donors and tumour patients later than stage 1 (Fig. 5C). This implies
that MethyIBERT can be instrumental for ctDNA tumour diagnosis in
some early stages (II-lll) of CRC patients. The median value of esti-
mated tumour contents has an explicit discrepancy between the
healthy donors and all stages of CRC patients.

From the same dataset, we also collected 44 pancreatic ductal
adenocarcinoma (PDAC) patients in four different stages (IIA, 1IB, III
and IV) and conducted the same analysis using MethyIBERT (Supple-
mentary Figs. 6B and 5D). PDAC is widely recognised as one of the
trickiest cancer types to be identified during the early stages, which is
also confirmed by the original analysis in this dataset®. The median
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Fig. 5 | Estimation of tumour fraction in plasma cell-free DNA. All boxplots
represent the median, the first and third quartiles, whereas the whiskers show the
rest of the distribution. A Tumour purity estimation of simulated pseudo-bulk
samples (n =10) with a low percentage of tumour DNA. Distribution of absolute
percentage error values in each method. B Comparison of ground-truth and esti-
mated tumour purities in each method. For each comparison, Spearman’s corre-
lation is given with a respective p-value. The error bars indicate a 95% confidence
interval. The two-sided p-values were calculated with a null hypothesis that two

Stage

samples do not have an ordinal correlation, as implemented in the Scipy package*®.
C, D Tumour cell fraction estimation results in ctDNA samples (C) from CRC
patients and (D) PDAC patients (Supplementary Fig. 6 provides the sample size
information). Both analyses include healthy donors as well. The median of esti-
mated tumour purities in each stage is written at the top of the box plot. Two-sided
Mann-Whitney-Wilxcoxon test p-values between each stage and healthy donors
are denoted with stars. *, “* and “** mean p-value < 0.05, <0.01, and <0.001,
respectively.

tumour purity value estimated by MethyIBERT is higher in every stage
of PDAC cohorts than in healthy donors. Among the early-stage
patients, stage IIB showed a statistically significant difference from the
healthy donors. Overall, in both CRC and PDAC ctDNA analyses, all
early-stage cancer patient samples except for CRC stage Il have a
median value lower than 0.01 demonstrating the necessity of sensitive
sequencing-based tumour cell fraction estimation models in ctDNA
methylation analysis.

Discussion
DNA  methylation undergoes profound changes during
tumorigenesis*?’ resulting in highly specific methylation patterns in

tumour cells. Sequencing data is particularly valuable in this respect,
since it offers DNAm patterns at single-molecule resolution, broad
genomic coverage and the preservation of rare cell-type signals.
Aiming to fully utilise the potential of sequencing-based data, we
developed MethyIBERT, a Transformer-based model for read-level

tumour methylation pattern identification. Based on the estimated
posterior probability by the MethylBERT model, the tumour purity of
each bulk sample can be inferred by maximum likelihood estimation.
The estimated purity can be adjusted for a more accurate inference by
considering region-wise tumour purity estimation.

In the benchmarking using simulated read-level methylation pat-
terns with different scenarios, MethylBERT achieved the best perfor-
mance regardless of methylation pattern complexity, read length and
read coverage. Our benchmarking results demonstrate not only the
accurate read classification and tumour purity estimation performed
by MethyIBERT in varying experiments but also provide in-depth
analyses of BERT pre-training and the dynamics of the estimated
posterior probability during model training. Moreover, MethyIBERT is
capable of deconvolving bulk samples into multiple cell types as well as
distinguishing some early-stage cancer patients from healthy donors
using blood plasma samples. This assures the applicability of Methyl-
BERT as a cell-type deconvolution model as well as in the context of
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early cancer detection. We are convinced that MethylBERT will
become a valuable tool in the field of cancer research and oncology,
extending the usability of various types of DNAm sequencing data.
MethyIBERT is agnostic with respect to the source of read-level
methylation data, and can be applied to both solid tumour tissues and
blood plasma samples as well as non-cancerous bulk methylomes,
unlike previous methods that focused on only specific sample
typesls'“"”.

In the future, different extensions of MethylBERT are possible. We
are currently working on a computationally more efficient version of
the MethylBERT model with a reduced number of parameters. This
model optimization is particularly important for applications
with long-read sequencing data®>?. Based on the results of read-level
methylation classification with 500bp-long simulated reads, we believe
that MethyIBERT can handle differentially methylated patterns being a
part of a read-level sequence, and will facilitate accurate and robust
analyses of tumour-specific methylation patterns in long reads.

Methods

MethyIBERT model

The aim of MethyIBERT is to classify sequence reads with their CpG
methylation patterns and sequence into dichotomous cell-type-related
classes, e.g., tumour or normal. Applied to a set of genomic regions, it
also provides a global maximum likelihood estimate of cell-type pro-
portions for the two classes, e.g., tumour purity in the tumour-normal
deconvolution scenario.

BERT model. The basis of MethylBERT is the BERT model which has
achieved groundbreaking progress in various natural language pro-
cessing studies®>*. Transformers® in the BERT model take the atten-
tion mechanism resembling human cognitive attention and map given
query (Q), key (K) and value (V) sequences to an output sequence.
Transformers particularly use scaled dot-product attention, where the
dot-product of query and key sequences are scaled by the inverse
square root of the dimension of key vectors (d,):

.
Attention(Q,K, V) =sof tmax <QK> V. @

Vg
The scale factor enables the model to avoid an extremely large
magnitude of multiplied value which especially occurs with a long
sequence input. Multi-head attention which concatenates H multiple
attentions calculated from the weighted query, key and value
sequences is a major advantage of Transformers in learning different
projections of these three sequences:

A, =Attention; <QWQ,-, Kwk, VWV,-), @

Multi — head attention(Q, K, V)= Concatenation(A,, .., A,))W° (3)

where A; refers to an attention head. In every attention head, given
query, key and value matrices are projected using the parameter
matrices W2, WX, and WV . Then, multi-head attention is created as a
concatenation of all H attention heads projected using another
parameter matrix WO.

We modified the BERT model to process DNA sequence fragments
and sequential methylation patterns (Supplementary Fig. 1). Originally,
BERT needs three types of input embeddings: token embeddings,
segment embeddings and position embeddings. In MethylBERT, we
replaced the token embeddings assigned for tokenised words with
DNA token embeddings. The segment embeddings indicate the sen-
tence label of each token and are used for next sentence prediction
(NSP). Instead, for MethylBERT, we created methylation embeddings
for encoded methylation patterns. The position embeddings were also

used in MethylBERT to guide the position of tokens in the
sequence read.

Pre-training methylBERT. As described above, BERT requires long
pre-training to learn the general context of input data and avoids
heavily engineered task-specific architectures for every specific task.
We use the Masked Language Model (MLM) for pre-training while the
original BERT method performs pre-training of the model via both
MLM and NSP*. NSP is known to make the BERT model understand
semantic dependencies across sentences*, however, since we focus on
the methylation pattern of unpaired reads, NSP was disregarded for
MethyIBERT pre-training. The overall pre-training scheme to use
3-mers for MLM is inspired by DNABERT".

We split the hgl9 genome into 510 bp segments and generated a
3-mer sequence of each segment, and the 3-mer segment is referred to
as a token. While Ji et al. randomly sampled the read length between 5
and 510 with a certain probability for DNABERT", we used a fixed value
of the sequence length 510 since it did not make a major performance
change. For pre-training, we only applied a MLM by randomly masking
15% of 3-mers. Three masking schemes were employed following the
original BERT paper'*: 80% of selected 3-mers were masked with
[MASK] token, 10% were replaced with another randomly chosen
token, and the rest was unchanged. We masked left and right tokens
together with the selected token in order to prevent a biased model
predicting the masked token from neighbouring tokens. 3-mers tokens
have 69 labels in total including five special tokens. A categorical cross-
entropy 10ss L. ¢rqining Was calculated over all tokens ¢ € {1...T} for
every step of the model optimisation:

T 69

- Z Z m'y" log(y')) “4)

t=11(=1

Lpre—training =

where y*, and §, refer to as one-hot encoded value of label / in token ¢
and corresponding logit value calculated by the MethylBERT model.
m‘ is a binary value indicating whether token ¢ is masked or not.

We pre-trained the MethylBERT model for 120 k steps including
10 k warm-up steps and 20 k decrease steps at the end of the training
with a learning rate of 4e™. The batch size was set to 256 and the
gradient was accumulated over 4 steps. In the network architecture,
the hidden layer had a size of 768 and the baseline model had 12
encoder layers with 12 attention heads. However, since the smaller size
BERT models performed similarly to the baseline model in the read
classification analysis using simulated data, we used 6 encoder layers
of the MethylBERT model for 500 bps read analysis (Supplementary
Fig. 7). AdamW optimiser®” was used with decay rate 0.01, 8, =0.9 and
B, =0.98 values. Since reference genomes do not have methylation
patterns, we filled the methylation embeddings up with zeros during
pre-training.

Fine-tuning for read-level methylation pattern classification. For
fine-tuning, the encoder network in MethyIBERT encodes a read-level
reference DNA sequence and CpG methylation patterns (Supplemen-
tary Fig. 1). Although reference DNA sequences do not contain any
tumour-specific genetic information, they carry the exact position of a
read in a given region as well as sequence features associated with
specific methylation patterns. This information is necessary for the
model to learn which CpGs are more likely to show tumour-specific
signals. Previous studies also have pointed out that integrated infor-
mation of DNA sequences and methylation can improve modelling'®%,

DNA sequence fragments from reads are processed into 3-mer
sequences as described in the previous section. The input length was
reduced to 150 due to the shorter sequence read length. In order to
represent CpG methylomes, three numbers were used for methylation
pattern encoding: O for unmethylated CpGs, 1 for methylated CpGs,
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and 2 for non-CpGs. CpG methylation patterns were assigned to the
3-mers where the cytosine of CpG is located in the middle.

The encoder part of the MethylBERT network takes DNA,
methylation and position embeddings, and generates an encoded
vector of sequence_lengthx768 dimension. This vector is con-
catenated with DMR information embedded into a space of dimension
sequence_length, and the following the cell-type classifier calculates
the posterior probabilities of cell types using the concatenated vec-
tors. The DMR label is provided as information to determine region-
wise tumour-specific methylome profile. The cell type with the highest
posterior probability is determined as the classification outcome.

The MethylBERT model was fine-tuned over 600 or 1000 steps
with a learning rate of 4e™*. We used the same optimisation scheme as
for pre-training but applied the cross-entropy loss on the cell-type
label for read-level methylome classification:

¢ exp,)

— log— —F 17
Z Z mr,c OgZCfE(T,N) eXp(XC/,) (5)

r=1ce{T,N}

Lfine—tuning =

where x¢, is the final activation for the cell type ¢ (T=tumour, N=nor-
mal) for each read r.m, . is a binary value from one-hot encoded cell-
type label c. The logits are normalised with a softmax function before
the cross-entropy loss is calculated.

To understand the time complexity of MethyIBERT fine-tuning, we
provide the running time of MethylBERT by the number of encoder
layers and number of GPUs in Supplementary Fig. 9. Using 541,000
reads for the training set and 135,000 reads for the validation set with a
batch size of 600, four GPUs (Nvidia V100 SXM2 32GB) achieved the
best time performance. However, we note that deep neural network
training highly depends on the batch size set up and hardware speci-
fications. For instance, increasing batch size could reduce the running
time for 6-8 GPUs in Supplementary Fig. 9. This will result in faster
training for the case of using 6-8 GPUs than using 4 GPUs, thus a larger
batch size is recommended when users have a sufficient number of
GPUs. Moreover, after one-time fine-tuning, the trained MethylBERT
can be used for tumour purity estimation of several bulks indepen-
dently and this takes a much shorter time. For instance, the tumour cell
fraction estimation for one CRC ctDNA sample needed only less than
5 min with one GPU.

Tumour purity/fraction estimation

Since the proportions of the tumour and non-tumour compartments
sum up to one, we used a single-parameter likelihood function to
estimate the best tumour purity & from collected reads {ry, ..., ryk:

N
L(6)= H[ﬁP(mcell type=Tumour) +(1 — §)P(r;|cell type=Normal)], (6)
i1

&=argmaxsL(5). (7)

The MethyIBERT model calculates only the posterior probabilities
of cell types given a read, so Bayes’ theorem is applied to calculate the
posterior probability of a read assuming that every read has the same
marginal probability:

P(r;|cell type=T) o P(cell type=T|r;)P(cell type = T)’1 (€))

The prior probability of the cell types is calculated from the
training dataset used for fine-tuning. For less complex likelihood
computation and the Fisher information calculation, we use the log-
likelihood function for maximum likelihood estimation. We employ a
grid-search algorithm to find the optimal parameter 5 increasing the 6
value by 0.0001 from zero to one.

As shown in Supplementary Fig. 8A, the ratio of tumour-derived
reads in DMRs does not have a symmetric distribution when tumour-
normal cell types do not have an equal proportion. This is also shown
by the negative correlation between the ground-truth tumour purity
and the skewness of region-wise tumour purities (Supplementary
Fig. 8B). However, estimating the tumour purity only using the log-
likelihood function above assumes that tumour-derived reads are
equally distributed in every DMR. Therefore, we propose an adjust-
ment of estimated tumour purity to take the region-wise tumour
purities into account.

In a symmetric distribution, the skewness value is zero, thus we
find a mapping which minimises the skewness of region-wise tumour
purities to adjust the tumour purity. Let W ={W,, ..., W} be para-
meters of the mapping for the estimated tumour purity in K regions,
6=1{6,, ..., 6x}. Assuming that the DMR k includes N reads,
{rk,, ..., rk}, the region-wise tumour purity &, is calculated as:

b=argmaxs [  [6P*;Icell type=Tumour)
rkietrky, ., rky) (9)
+(1— 86)P(r*;|cell type=Normal)].

The skewness of region-wise tumour purities can be calculated via
the adjusted Fisher-Pearson standardised moment coefficient:

6,(6)= O VKK T

, 10
my(8)**(K - 2) o

_1E ¢
m(8)= 2; G =1
where p is the sample mean of region-wise tumour purities, %Zﬁl&i.
Therefore, the mapping parameters W are optimised to minimise the
skewness of region-wise tumour purities as follows:

W =argmin,, G (Wo°8)=argminy, G,(W6,, ..., Wib,}) (11
where W o refers to the element-wise multiplication of two vectors W
and é. The expectation-maximisation (EM) algorithm is used to find
the optimal mapping parameters W. Once the best mapping is found,
we assume that the distribution of region-wise estimates is symmetric

and determine the final estimation of tumour purity as the mean value
of mapped region-wise tumour purities:

5=-WT8. 12)

x| =

The Fisher information indicates the amount of information about
a model parameter carried by observed variables. In other words, the
Fisher information is equivalent to an estimate of the model
precision®. It is calculated as the variance of the derivative of the log-
likelihood function with respect to the model parameter:

FI(6)=Var P log L(6)} . 13)

06

When the tumour purity adjustment is applied, the Fisher infor-
mation cannot be calculated for the final estimation but in each region.
Therefore, in this case, MethyIBERT provides the Fisher information
values as many as the number of selected DMRs.

Data preparation

Diffuse large B cell lymphoma WGBS data. Diffuse large B cell lym-
phoma (DLBCL) and non-neoplastic B-cell WGBS data were down-
loaded from the Gene Expression Omnibus (GEO) database with the
accession number GSE137880%. Eight samples from two DLBCL
patients and eight non-neoplastic B cell samples from two donors were
used for the experiments. From each subject, 4 samples were assigned
for the training and validation dataset and the rest were used for
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creating pseudo-bulks. All downloaded FastQ files were aligned with
hgl9 reference genome by Bismark 0.22.3*" after trimming using
TrimGalore 0.6.6", then duplicated reads were removed using picard
Mark Duplicates 1.141. We followed the whole pipeline specified in our
previous benchmarking study”. For Houseman’s method, the read-
level methylomes were converted into an array shape containing beta-
values by Methrix*% Since Methrix requires a bedGraph file not a BAM
file as an input, we converted the BAM files into a bedGraph file format
using MethylDackel (https://github.com/dpryan79/MethylDackel).

CRC and PDAC BS-seq data. To train each MethylBERT model for
ctDNA analysis derived from CRC and PDAC patients, we downloaded
single-cell BS-seq of CRC cells with the GEO accession number
GSE97693* and WGBS of PDAC tissue with GSE63123*. Only part of
the CRC samples (341 cells) were downloaded as a training dataset.
Similarly, we utilised only a subset of the PDAC data set involving seven
samples collected from primary tumours in three different patients.
During the data processing to convert the FastQ files to BAM files, we
used TrimGalore 0.6.6 for adapter trimming and quality control.
Afterwards, the samples were aligned with the hgl9 reference genome
using Bismark 0.22.3. Duplicate removal was done by picard Mark
Duplicates 1.141.

CRC, PDAC and control healthy ctDNA blood plasma data. For
ctDNA experiments, we downloaded targeted BS-seq of plasma samples
from gastrointestinal cancer patients and controlled healthy donors
with the GEO accession number GSE149438. The downloaded dataset
includes samples from 46 healthy donors, 74 PDAC patients, and 40
CRC patients in different cancer stages. We only used 44 PDAC patients
whose cancer stage is clarified for the experiment. 32 healthy plasma
samples were used to fine-tune the MethylBERT model and the rest was
used as a comparison group in the tumour diagnosis analyses. We
processed the data in FastQ files via trimming using TrimGalore, align-
ment to hgl9 using Bismark and duplicate removal using picard Mark
Duplicates. The samples were aligned with paired-end mode and the
unmapped reads were re-aligned with single-end mode.

DMR calling

Selecting informative regions with tumour-specific signals is vital in
tumour purity estimation. For MethylBERT, we pre-selected DMRs to
collect reads presenting informative methylation patterns. Tumour-
specific DMRs were called by comparing tumour samples to non-
tumour samples and the DSS package was used for the calling®.
Parameters were set up as follows: delta value 0.2, P-value threshold
0.05, minimum number of CpGs 4, minimum length 50 bps and dis-
tance to merge 50 bps. In all analyses, we picked the top 100 DMRs
based on the highest areaStat score. DSS performs a Wald test to
identify differentially methylated loci and the areaStat score is calcu-
lated by summing all the test statistics up within each DMR. Therefore,
a higher value of areaStat is likely to secure a larger number of CpGs in
the region that are significantly differentially methylated between
tumour and normal cell types.

Read-level methylome simulation

Simulated read-level methylomes were used to mimic different sce-
narios of tumour-specific signals for the evaluation of methylation
pattern classification. We selected 100 CpG islands with the highest
number of CpGs as the regions where reads are sampled. For each
region, two mean methylation levels need to be assigned for tumour
and normal cell types. We sampled a tumour mean methylation value
d; from a beta distribution whose B parameter is fixed to 5 and
assigned 1 — d; to a normal mean methylation value. Then, read-level
methylation patterns were sampled from a binomial distribution with
the probability 1—d; and d; for normal and tumour cell types,
respectively. The entire mechanism of sampling a read-level

methylome with K CpGs, m” = {m’;, ..., m” ;} for tumour cell type and

m"={m",, .., m",} for normal cell type, is described as follows:
d; ~ Beta(a, B=5), (14)
m’ ~ Binomial(n=K, p=d;), 15)
m" ~ Binomial(n=K,p=1-d,) (16)

where a and S are two shape parameters of the beta distribution, while
n and p are the number of trials and the success probability of one trial
in the binomial distribution.

Four different a values, 0.1, 1.0, 2.0 and 3.0, were used in the beta
distribution to model different complexities of methylation patterns.
Since a larger alpha value increases the variance of the beta distribu-
tion with a fixed beta value, it is more likely that a lower tumour
methylation value d; will be sampled. This makes a higher methylation
value 1 — d; assigned to normal cell type. The smaller gap between d;
and 1 — d; forms more complex methylation patterns between
tumour and normal cell types (Supplementary Fig. 2).

When CpG-specific methylation patterns are sampled (Supple-
mentary Fig. 2D), d; and 1 — d; are assigned to the odd and even
indices of CpGs. Therefore, in this simulation, the average methylation
level between tumour and normal cell types do not significantly differ,
but still have cell type-specific methylation patterns.

Evaluation of read classification performance

The read classification performance evaluation includes an HMM-
based algorithm. We designed the HMM to take methylation patterns
as an observation, thus the observation has two categories: methylated
and unmethylated CpGs. The hidden state is also a two-categorical
variable with the assumption of whether the CpG is differentially
methylated or not between tumour and normal cell types.

Although CancerDetector” and DISMIR™ do not explicitly men-
tion ‘read classification’, CancerDetector calculates
P(read|cell type=Tumour) whereas DISMIR has a ‘d-score’ that
quantifies the chance that a given read is derived from tumour cells as
interpreted by the authors. Therefore, we conducted read classifica-
tion for those methods by assigning every read to the tumour class
when the probability or d-score >0.5.

In Fig. 2D, E and Supplementary Fig. 2, we evaluated MethylBERT
read classification with different read coverage of the training set and
the results show that MethylBERT can classify reads accurately in the
case that the sample mean cannot represent the population mean well
due to the low coverage. The standard error of the mean (SEM) was
used for measuring how likely sample means of simulated read-level
methylation patterns represent the real population mean. The SEM
was calculated over the average methylation level of reads in each
region.

Prostate epithelium proportion analysis for the lymph node
sample acquired from prostate cancer patients
We collected 15 lymph node samples from hormone-sensitive meta-
static prostate cancer patients and generated both WGBS and 450K
array data. The 450K data were processed following*®, while the WGBS
data were processed following the DLBCL data preprocessing. For the
array-based deconvolution methods** ¥, in-house prostate tumour
and epithelial cell reference (as described in ref. 47) and additional cell
types acquired from GEO (with the accession numbers GSE35069,
GSE86258, GSE74877, GSE71837, GSE49667 and GSE87797) were used:
monocytes, B cells, T cell, natural killer cells, granulocytes, fibroblasts,
endothelium and mesenchymal stromal cells.

MethyIBERT was trained with samples collected from the
normal cell type atlas®® (details are given in Supplementary
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Table 4) not using any tumour reference data. The code is avail-
able at https://github.com/CompEpigen/wgbs_atlas_simulation.
git. Instead of tumour reference data, we used four prostate
epithelium samples, whereas we used two blood T cell, two blood
B-cell, and one colon fibroblast samples for the normal cell-type
label considering the composition of normal lymph node bulks.
For DMRs, we used the top 250 hypomethylated regions in
prostate epithelium cells provided by the atlas. After the fine-
tuning, we performed prostate epithelium proportion estimation
with the WGBS data from the lymphoma samples.

Leukocyte subtypes deconvolution

We downloaded leukocyte WGBS samples collected from 23 healthy
donors provided by the normal cell-type methylation atlas®. For the
MethyIBERT fine-tuning, we used two samples for each blood cell type
as training data (details are given in Supplementary Table 5). Since the
atlas only provides .pat file format, not raw sequence data, we con-
verted the .pat files to read-level methylomes. The code is available on
our GitHub repository (https://github.com/CompEpigen/wgbs_atlas_
simulation.git).

We used 4 encoder layers and set all hyperparameters as descri-
bed above, but increased the sequence length to 160. For the loss
function, the focal loss*” was used instead of the cross-entropy loss
because multiple cell types make an imbalanced read distribution in
terms of corresponding and non-corresponding cell types in each
DMR. For example, in tumour purity estimation, tumour and normal
cell types comprise roughly 50% of reads in each DMR in the case that
both cell-type reference data have similar read coverage. Yet, if we
want to perform five cell-type deconvolution, the corresponding cell
type and non-corresponding cell types make up roughly 20% and 80%
of the distribution in each DMR. This is called a class imbalance pro-
blem and often impedes deep neural network training. Focal loss was
proposed to alleviate this problem by introducing a factor adjusting
the loss value according to the misclassification. We followed the ori-
ginal implementation of the focal loss:

p=0(x%), a7

—a-(1-p) -log(p) ifc=corresponding cell type
L ‘)= 18
focal—lossX 1) { —(A—a)-p - log(p) otherwise, . (18)

where x¢, is the final activation for the cell type c for each read r.
Although we used the softmax function in tumour purity estimation,
here, we used the sigmoid function o(-) following the original imple-
mentation. The authors explained that sigmoid operation shows better
numerical stability. y and a are hyperparameters of the focal loss
function and were set up as 2 and 0.1 for the leukocyte deconvolution.

After classifying sequence reads, we applied a new likelihood

function to estimate the proportion of C cell types, 0={6,, ..., O.}:
L()= H H [6.P(ri|cell type.) + (1 - 6,) (1 — P(r;|cell type,))] 19)
c=1r;eR.
0=argmax,L(0), (20

where R, is a group of reads classified into cell type c which is written as
cell type_ in Eq. (19).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data sets used in the study were downloaded from Gene Expression
Omnibus (GEO). DLBCL WGBS data was downloaded with the acces-
sion number GSE137880, and ctDNA blood plasma samples (targeted
BS-seq) were downloaded with the accession number GSE149438. The
colorectal cancer (scBS-seq) and pancreatic cancer (WGBS) samples
were downloaded with the accession numbers GSE97693 and
GSE63123, respectively. All samples we downloaded from the normal
cell atlas are available with the accession number GSE186458.
Lymph node metastasis samples from prostate cancer patients
are uploaded to the European Genome-Phenome Archive under
the ID EGAS50000000806. Source data are provided with this paper.

Code availability

The read-level methylation simulation code is available at https://github.
com/CompEpigen/methylseq_simulation (https://doi.org/10.5281/
zenodo.14025025). The normal cell-type atlas data processing code is
available at https://github.com/CompEpigen/wgbs atlas_simulation.git
(https://doi.org/10.5281/zenodo.14025054). The MethyIBERT code and
package are available at https://github.com/CompEpigen/methylbert
(https://doi.org/10.5281/zenodo.14025052) and https://pypi.org/project/
methylbert/.
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