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MethylBERT enables read-level DNA
methylation pattern identification and
tumour deconvolution using a Transformer-
based model

Yunhee Jeong 1 , Clarissa Gerhäuser 1, Guido Sauter2,

Thorsten Schlomm 3, Karl Rohr4 & Pavlo Lutsik 1,5

DNA methylation (DNAm) is a key epigenetic mark that shows profound

alterations in cancer. Read-level methylomes enable more in-depth analyses,

due to their broad genomic coverage andpreservation of rare cell-type signals,

compared to summarized data such as 450K/EPIC microarrays. Here, we

propose MethylBERT, a Transformer-based model for read-level methylation

pattern classification. MethylBERT identifies tumour-derived sequence reads

based on their methylation patterns and local genomic sequence, and esti-

mates tumour cell fractions within bulk samples. In our evaluation, Methyl-

BERT outperforms existing deconvolution methods and demonstrates high

accuracy regardless of methylation pattern complexity, read length and read

coverage. Moreover, we show its applicability to cell-type deconvolution as

well as non-invasive early cancer diagnostics using liquid biopsy samples.

MethylBERT represents a significant advancement in read-level methylome

analysis and enables accurate tumour purity estimation. The broad applic-

ability ofMethylBERTwill enhance studies on both tumour and non-cancerous

bulk methylomes.

DNA methylation (DNAm) refers to enzymatic modification of

nucleotide bases in the DNA with methyl groups. In animal and many

plant genomes, cytosine followed by guanine (CpG) is the most fre-

quent methylation target. Aberrant methylation patterns at CpGs

reflect epigenetic heterogeneity in human tumours1. Therefore, DNAm

data has beenwidely used for estimating tumour purity to examine the

tumour epigenetic landscape relevant to clinical outcomes, tumour

diagnosis and phenotypic characteristics2–4.

DNAm can be profiled by sequencing methods such as whole

genome bisulfite sequencing (WGBS)5 or reduced representation bisul-

fite sequencing6, amplification-free long-read sequencing, e.g. using

Oxford Nanopore Technologies or Pacific Biosciences platforms, as well

as with bisulfite-based microarray methods like Infinium 450K/EPIC

arrays7. High-quality sequencing-based profiling produces sequence

reads covering a broad range of genomic regions with sufficient read

depth (30x being a de facto industry-wide standard), and thereby pre-

serves single-molecule signals of rare cell populations8. Sequencing-

based data is even more crucial in circulating tumour DNA (ctDNA)

analysis that facilitates non-invasive early diagnosis, prognosis and

treatment responsemonitoring in cancer patients9–11. Nevertheless,most

purity estimation or cell-type deconvolution methods have been

developed for array-based DNAm profiles because of the intuitive
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application of classical linear algebraic algorithms tomatrices of average

DNAm levels (beta-values)12. Most ctDNA data analysis methods likewise

use beta-values. Moreover, our previous analysis showed that existing

sequencing-based deconvolution methods do not perform better than

array-based methods implying that they fail to fully exploit the advan-

tages of sequencing data for accurate inference13.

To overcome these limitations, we propose MethylBERT, a

deep learning method for read-level methylation pattern identi-

fication and tumour purity estimation based on Bidirectional

Encoder Representations from Transformers (BERT)14. Methyl-

BERT uses a modified BERT model to encode read-level methy-

lomes and classifies tsequence reads into tumour or normal cell

types. Resulting posterior probabilies of cell types are used to

derive tumour purity estimates through Bayesian prob-

ability inversion and maximum likelihood estimation. Along with

purity estimation, MethylBERT provides the model precision

based on Fisher information and estimation adjustment taking

region-wise tumour purity into account. The application of

Transformers has been overlooked in sequencing-based tumour

purity estimation, and MethylBERT suggests an approach to using

Transformers for sequence read classification that is different

from previous methods (Supplementary Table 1).

We have thoroughly evaluated MethylBERT and compared it

with existing methods. The results demonstrate MethylBERT

outperforms other methods in read-level methylation pattern

classification and tumour purity estimation. In our evaluation, we

not only investigate the performance of MethylBERT but also

analyse what the model actually learns via pre-training using

reference genome sequences. Moreover, we suggest using the

Fisher information to measure the precision of the estimation

model. This gives guidance about how accurate the estimated

tumour purity is, which represents essential information for

analysing bulk samples without ground-truth tumour purity.

Finally, we also propose using MethylBERT for early diagnosis of

cancers based on ctDNA analysis as well as cell-type

deconvolution.

Results
MethylBERT overview
MethylBERT includes three main steps (Fig. 1). First, the MethylBERT

model is pre-trained with a reference genome processed into 3-mer

sequences. After pre-training, the MethylBERT model is fine-tuned to

learn the read-level methylation pattern classification task. The output

converted with a softmax function is interpreted as the posterior

probability PðcjjriÞ of the cell type cj given a read ri. In our case, the cell

type is either tumour (T) or normal (N). Classification is performed by

assigning the cell type with a higher posterior probability.

For thefinal tumourpurity estimation,we apply Bayes’ theorem to

compute the probability PðrijcjÞ in the likelihood function using PðcjjriÞ

assuming that every read has an equal marginal probability. After-

wards, the tumour purity is determined by maximum likelihood esti-

mation. The estimated tumour purity can also be adjusted based on

the skewness of the region-wise tumour ratio. The adjustment is par-

ticularly useful when the analysed bulks have a very high or low ratio of

tumour-derived reads. A detailed description of the three steps of

MethylBERT is provided in Methods.

MethylBERT classifies complex read-level methylation patterns
We simulated read-level methylomes in different scenarios to evaluate

the robustness of the MethylBERT read classification with respect to

the pattern complexity (the details are inMethods). We compared our

method with CancerDetector15 and DISMIR16, as well as a baseline

method implemented using a hidden Markov model (HMM) designed

to classify read-level methylation patterns into cell types.

In our first scenario, we simulated different complexities of

150 bps read-level methylomes from a beta-binomial distribution. Our

Fig. 1 | MethylBERT overview. The main three steps are separated by dotted lines.
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simulation algorithm generates more complex methylation patterns

with an increasing α value of the beta distribution (Supplementary

Fig. 2A, B). For all complexities of methylation patterns, MethylBERT

outperformed the other three methods in the classification task

(Fig. 2A). All fourmethods yielded the highest accuracy and the lowest

deviation of accuracy values over differentially methylated regions

(DMRs) for the simplest methylation patterns (a0_b5). Although the

accuracy decreases with increasing complexity for all methods,

MethylBERT still classified reads more accurately than the other

methods in each case. We further simulated longer read-level

methylation patterns with 500bp length. In this case, the reads cover

both a DMR and non-DMRs on the genome resulting in more compli-

cated methylation patterns, because most DMRs are shorter than

500 bps (Supplementary Fig. 2C).With the 500bps of simulated reads,

MethylBERT again performed better than the other methods regard-

less of the complexity (Fig. 2B). It likewise achieved more precise

classification for simpler complexity keeping the lowest deviation of

accuracy at the complexity a0_b5. On the other hand, for the same

complexity level, CancerDetector and HMMperformedworse and had

a higher deviation of accuracy in the results with 500bp reads than in
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Fig. 2 | Read-levelmethylomeclassification results. In all line plots, the error bars

indicate 95% confidence interval. A–C An example of simulated read-level methy-

lation patterns for tumour and normal cell types (reads were simulated with the

complexity of a1_b5, see Methods for details) and the classification accuracy

comparison across different complexities (A) with read length 150bps, (B) with

read length 500bps, and (C) with CpG-specific methylation patterns. Yellow and

black on each read show methylated and unmethylated CpGs, whereas grey

represents other bases. Sequence reads for two cell types are divided by a dotted

line in the middle. Region-wise methylation levels in tumour and normal cell types

are shown in the histogram. D Read-level methylome classification accuracy com-

parison for different read coverages. E MethylBERT read-level methylome classifi-

cation accuracy for different read coverages and pattern complexities.
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the results with 150 bp reads. Overall, the deep learning methods,

MethylBERT and DISMIR, yielded better classification results for the

500 bp read simulation.

Neighbouring CpGs usually have a consistent methylation pat-

tern, but the innate inclination of methylation for each CpG and

erroneous methylation patterns in cancer are non-trivial factors17,18.

Thus, we conducted the same evaluation for the extreme scenario

where only CpG-specific methylation patterns differ between tumour

and normal whereas region-specific methylation levels are almost

identical (Methods, Supplementary Fig. 2D). CancerDetector and

HMM could not classify reads into cell types despite the clear pattern

difference in the case of a0_b5 and a1_b5, whereas MethylBERT per-

formed best with the exception of highly noisy patterns in a2_b5 and

a3_b5 (Fig. 2C). These results demonstrate that MethylBERT is capable

of detecting tumour-specific methylation patterns not misled by the

average methylation level in a region.

Read coverage is another important factor that can affect read-

level methylome analysis. Many deconvolution algorithms pre-select

regions based on the minimum number of CpGs and read coverage

within the region so that sufficient methylomes can be used for

deconvolution13. Hence, we simulated read-level methylomes with

variable read coverages in DMRs. Again, MethylBERT achieved the

best methylation pattern classification performance, especially for

low read coverage (Fig. 2D). Although DISMIR showed competitive

performance over different coverage values, we found that DISMIR

training is less robust than MethylBERT training and partially yields

low read classification accuracy (Supplementary Fig. 10). Methyl-

BERT shows an accuracy value above 0.95 even for coverage 10

where the sample means cannot represent the population mean well

(Supplementary Fig. 2E). On the other hand, CancerDetector could

not perform accurate read classification for coverages below 50. We

also performed the MethylBERT read classification analysis for every

combination of read coverages and complexities (Fig. 2E). Methyl-

BERT keeps a high accuracy regardless of the coverage for the

complexity a0_b5 and a1_b5. However, the accuracy converges at the

highest value for the read coverage > 100 in the complexity a2_b5 and

a3_b5 results.

Pre-training allows MethylBERT to understand sequence
features
Bidirectional pre-training is a pivotal feature of the BERT model14,

alleviating the restricted choice of a model architecture. It was shown

by Ji et al.19 that the pre-trained BERT model can be successfully fine-

tuned for various DNA sequence analyses such as promoter region

prediction. Clark et al.20 have carefully described what kind of infor-

mationBERT learns duringpre-training in natural languageprocessing.

Yet, the efficacy of BERT pre-training on DNA sequences is still poorly

understood.

We have primarily found that pre-training enables the BERT

model to understand the mutual relationships between DNA 3-mers

(Fig. 3A). Even though any information about CpGs ormethylation has

not been provided, BERT distinguishes 3-mer tokens including “CG”

from other tokens (cluster 3). This might be driven by the repetitive

“CG” patterns especially occurring in CpG islands. In addition, the pre-

trained BERT model is able to associate paired DNA nucleotides with

each other (C-G and T-A). UMAP2 embedding divides the 3-mer tokens

into two groups: those that start with C/T and the others starting with

G/A. Each cluster is composed of tokens whose first nucleotide is the

same and whose last nucleotide makes a nucleotide pair. For example,

in cluster 6, all tokens start with A and end with C/T. We hypothesise

that BERT pre-training identified the nucleotide pairs because of

Chargaff’s second parity rule that the amount of two nucleotides in a

pair is approximately equal in a single DNA strand. Special tokens (e.g.,

<unk> or <mask>) alsomake up a separate cluster from the other DNA

3-mer tokens only after pre-training.

We have also evaluated the influence of pre-training on the

identification of tumour methylation patterns. For this, we compared

the performance of read classification when the MethylBERT model

was pre-trained and when it was not pre-trained. The comparison was

done by utilising diffuse large B cell lymphoma (DLBCL) and non-

neoplastic B cell samples (Methods). In order to avoid the additional

influence carried by the dominant promoter hypermethylation in the

tumour, we selected 50 DMRs where tumour cells are hypermethy-

lated and hypomethylated, respectively (Supplementary Fig. 3A, B).

Both MethylBERT models with and without pre-training gradually

decrease the loss value during the early steps of fine-tuning (Fig. 3C).

However, whenMethylBERT is not pre-trained, the loss value increases

again after 100 steps and the accuracy eventually converges around

0.5. The confusion matrix of classified reads also shows that pre-

trained MethylBERT achieves far more accurate classification

results (Fig. 3D).

Figure 3E shows the change in the probability

Pðcell type=TumourjreadÞ during MethylBERT fine-tuning. When

MethylBERT is pre-trained with the reference genome, the probability

distribution of tumour reads and normal reads start separating from

each other at step 50. Over further steps, the model yields higher

probability values of correct cell types for the reads. For instance, at

step 350, Pðcell type=TumourjreadÞ of normal reads are close to 0

and the probability of tumour reads are close to 1. On the other hand,

MethylBERT without pre-training could distinguish some tumour

reads from normal reads until step 150, but afterwards the

Pðcell type=TumourjreadÞ distribution of two cell types becomes

indistinguishable. According to the correlation between the estimated

probability and methylation level of reads, both models classify the

readsmainlybasedon themethylation level at step 50 (Supplementary

Fig. 3C). However, only the pre-trained model can overcome the bias

and, in the following steps, keep the accuracy high without

Pðcell type=TumourjreadÞ not being strongly correlated with the

methylation level.

Pre-training on an entire reference genome requires a long

training time, so the cross-species applicability of the pre-trained

MethylBERT model will augment the utility to analyse various sam-

ples. For this reason, we have investigated the discrepancy in fine-

tuning performance between pre-trained models with human (hg19)

and mouse (mm10) genomes. The classification results of DLBCL and

non-neoplastic B cell reads show that both human and mouse gen-

omes are eligible as pre-training data for human cancer analysis

(Fig. 3B). The read classification area under the curve score calcu-

lated in the validation set shows a difference below 0.001 between

the two reference genomes. The distribution of calculated

Pðcell type=TumourjreadÞ also does not significantly differ in non-

neoplastic B cell reads. However, in the DLBCL reads, the two sets of

probability values still have a p-value below 1:0× 10�5 for paired t-test

statistics.

These results clearly demonstrate that pre-training is a vital step

enabling the MethylBERT model to understand the major features of

the DNA sequence. Furthermore, the MethylBERT fine-tuning can

prevent bias towards read-wise methylation levels only when pre-

training is performed. Finally, the cross-species applicability of the pre-

training broadens the range of available samples for MethylBERT

analysis.

MethylBERT accurately estimates tumour purity of in silico bulk
samples
We next evaluated the tumour purity estimation performance of

MethylBERT using in silico-generated pseudo-bulk samples. The sam-

ples were obtained by mixing reads randomly sampled from DLBCL

and non-neoplastic B cell samples with controlled proportions. For the

comparison, we benchmarked MethylBERT against CancerDetector15,

DISMIR16 and Houseman’s method21. Houseman’s method performed
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best in diverse deconvolution and tumour purity estimation experi-

ments in our previous benchmarking study13. Although DISMIR fea-

tures a procedure for informative genomic region selection for tumour

purity estimation, it could not make reasonable estimates with self-

selected regions. Therefore, we applied DISMIR on the same DMRs

used for the other methods and this is referred to as ‘DISMIR_dmr’ in

the following. For theMethylBERT results,wepresent theperformance

from both models with and without estimation adjustment (described

in Methods) to study the impact of the adjustment.

MethylBERT outperformed other methods with respect to the

absolute error between the ground-truth and estimated tumour purity

(Fig. 4A, Supplementary Table 2 and Supplementary Fig. 11). Although

Houseman’s method achieved better performance for the bulks with a

high tumour purity, it could not accurately estimate the purity when

the ground-truth value is low. On the contrary, CancerDetector per-

formed better for the bulk samples where the tumour was a minor cell

type. However, MethylBERTmaintained its high accuracy for both low

and high tumour purities.

To further improve the accuracy of tumour purity estimation,

MethylBERT employs estimation adjustment based on the distribution

of region-wise (local) estimated tumour purity (Methods). This is

conceptually equal to the ‘removal of confounding factors’ in

CancerDetector15, as it also handles outlier regions where the esti-

mated proportion of tumour-derived reads is different from the

majority. MethylBERT finds the optimal mapping of local estimates to

reduce the skewness, whereas CancerDetector iteratively removes

regions that are outside of the standard deviation. Therefore, we have

specifically compared the MethylBERT estimation adjustment and

CancerDetector removal of confounding factors using the same esti-

mated Pðcell typejreadÞ values (Fig. 4B). The ‘no adjustment’ label

indicateswhen neither of the adjustmentmethodswas applied and the

final tumour purity estimation was calculated only based on the

Pðcell typejreadÞ values. MethylBERT estimation adjustment out-

performedCancerDetector removal of confounding factors in termsof

median absolute error between the ground-truth and estimated puri-

ties. Although CancerDetector removal of confounding factors cannot

improve the estimated values when the tumour is the major cell type,

MethylBERT is able tomake a better adjustment regardless of ground-

truth tumour purity (Supplementary Fig. 12).

In real application scenarios, ground-truth tumour purity is not

available for evaluation. Therefore, as a quality measure of model

estimates, MethylBERT provides the precision of the tumour purity

A
Before pre-training After pre-training

C

E

D

B

Fig. 3 | Impact of pre-training on MethylBERT performance. A UMAP plot of

3-mer token embeddings before and after pre-training. The clusters weremade via

k-means clustering. B Confusion matrix of read classification results by the model

pre-trained with human genome hg19 (top left) and with mouse genome mm10

(bottom left). Distribution of P(cell type = Tumour|read) in both cell types calculated

by the two pre-trained models (right). P-values in the violin plot were calculated

using two-sided paired t-test statistics. The inner boxplots represent the median,

and the first and third quartiles, whereas the whiskers show the rest of the

distribution. C Training (solid line) and validation (dotted line) curves of Methyl-

BERT with and without pre-training (green and yellow). Both graphs are plotted

every 10 steps.DConfusionmatrix of read classification results by theMethylBERT

model with and without pre-training calculated at the step when each model

achieved the best validation performance. EHistogramof P(cell Type=Tumour|read)

in tumour (T) and normal (N) reads (orange and blue each) calculated by Methyl-

BERT with and without pre-training (top and bottom).
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estimation using the Fisher information. When multiple experiments

are performed byMethylBERT, users can obtain information on which

experiment is more likely to make a precise estimation by comparing

theFisher information indicating theprecisionof likelihoodestimation

models22. Here, we show how the Fisher information can be used for

determining the best DMRs. For this, we split the 100DMRsorderedby

the region quality (indicated by areaStat value as explained in

Methods) into four groups: very high, high,medium, and low,meaning

that a higher areaStat value represents higher methylation difference

and more CpGs within the region. Both tumour purity and the Fisher

information were calculated in respective groups by MethylBERT

(Fig. 4C). The result shows that the mean absolute error and the esti-

mation qualitymeasured by the Fisher information are anti-correlated.

Hence, the Fisher information fromMethylBERTcanbeused to analyse
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the quality of maximum likelihood estimation when other information

for the quality evaluation is not available.

In addition to the accurate inference of mixture proportions by

MethylBERT, the read classification results can be used to recon-

struct region-wise methylation levels of constituent cell types within

bulk samples. From the classified reads, we calculated the average

methylation levels of tumour and normal per DMR (so-called

reconstructed methylation level) in each pseudo-bulk sample. Fig-

ure 4D, E present that the reconstructed methylation level is much

more similar to the reference cell type-specificmethylation level than

to the bulk methylation level with a higher Pearson correlation and a

lower mean absolute error. Bulk-wise reconstructed pattern analyses

are shown in Supplementary Figs. 5A and 13. The results confirm that

reconstructed values have a lower error with respect to the reference

methylation patterns than with respect to the bulk patterns. Please

note that, for testing, we used 100 regions where half are tumour

hypermethylated and the other half are hypomethylated regions to

make sure that the result is not influenced by dominant tumour

hypermethylation over the selected DMRs based on the areaStat

score. We performed the same analyses for the DMRs selected based

on the areaStat score (Supplementary Figs. 5B, C and 14). Methyl-

BERT still successfully dissected cell type-specific methylation levels

showing the same results.

MethylBERT facilitates cancer patient analyses and cell-type
deconvolution using the methylation atlas of normal cells
When MethylBERT is used for practical applications, it could be the

case that tumour reference sequencing data is not available. Thus,

using lymph node samples collected from hormone-sensitive meta-

static prostate cancer patients, we evaluated MethylBERT’s applic-

ability to analysing tumour bulk samples without cancer-derived

reference data. Instead of tumour reference data, we used the normal

cell-type methylation atlas data which includes blood cells and pros-

tate epitheliumcells23.Wehypothesised that the estimationof prostate

epithelium cell fraction should align with the tumour purity in lymph

node samples because of tissue invasion and metastasis, which is a

well-known cancer hallmark24. Therefore, we evaluated the

MethylBERT-estimated prostate epithelial cell proportions compared

to the prostate tumour purity estimated using prostate cancer refer-

ence data (as described in Methods). Despite the methylation level

difference in some regions between normal prostate epithelium and

prostate tumour samples (region clusters C1, C2 and C4 in Fig. 4F), the

prostate-derived read proportion estimation by MethylBERT without

tumour reference data shows a strong positive correlation with the

prostate tumour purity estimated by other methods21,25–27 trained with

tumour reference data (Fig. 4G and Supplementary Fig. 4). We

deconvolved the same samples with the UXM fragment-level decon-

volution algorithm from the atlas study23 (denoted as Loyfer et al.’s

method), however, the results do not show as strong correlation. This

application presents a practical use case of MethylBERT combined

with the atlas data23 even when the reference data is only partially

available.

The design of theMethylBERTmodel and the cell-type proportion

estimation likelihood function are technically not limited to tumour

methylomes. Therefore, we extended MethylBERT to cell-type pro-

portion estimates beyond tumour and applied it to a cell-type

deconvolution for 23 leukocyte bulk samples acquired from the atlas

data23 (Methods). Figure 4H shows the estimated cell-type proportions

in leukocyte bulk samples compared to the estimates by the UXM

fragment-level deconvolution algorithm from the atlas study23. For the

five major cell types (B, NK, granulocytes, T and monocytes +

macrophages) in the bulk samples, MethylBERT estimates have a

strong correlation with the fragment-level deconvolution results. This

confirms the applicability of MethylBERT to more complex cell-type

deconvolution analyses for non-tumour bulk samples.

MethylBERT accurately detects rare tumour signals in liquid
biopsy samples from cancer patients
Besides bulk tumour analyses, precise estimation of sequencing-based

tumour cell fraction is required in ctDNA analysis due to the very low

quantity of tumour-derived DNA found in liquid biopsies at early dis-

ease stages (<5%). Hence, we evaluated MethylBERT as an early cancer

detection method for blood plasma samples and compared its per-

formance to other previous methods.

To validatewhetherMethylBERT can detect a very lowpercentage

of tumour-specific signals, we further generated 10 pseudo-bulks by

mixing reads from non-neoplastic B-cell and DLBCL samples with a

tumour ratio smaller than 10%. MethylBERT achieved a lower median

absolute error than the other methods (Fig. 5A and Supplementary

Table 3). All methods can estimate tumour purities proportional to the

ground-truth values with the exception of DISMIR applied with its own

selected regions but MethylBERT shows the highest correlation

between the two values with p-value < 0.01 (Fig. 5B). Therefore, we

demonstrated that MethylBERT is sufficiently sensitive for ctDNA

analysis compared to the currently available methods.

As an application to real ctDNA samples, we used targeted BS-seq

data collected from 14 healthy donors and 40 colorectal cancer (CRC)

patients in five different stages (GSE149438) (Supplementary Fig. 6A).

The estimated tumour purity significantly differs between healthy

donors and tumour patients later than stage I (Fig. 5C). This implies

that MethylBERT can be instrumental for ctDNA tumour diagnosis in

some early stages (II-III) of CRC patients. The median value of esti-

mated tumour contents has an explicit discrepancy between the

healthy donors and all stages of CRC patients.

From the same dataset, we also collected 44 pancreatic ductal

adenocarcinoma (PDAC) patients in four different stages (IIA, IIB, III

and IV) and conducted the same analysis using MethylBERT (Supple-

mentary Figs. 6B and 5D). PDAC is widely recognised as one of the

trickiest cancer types to be identified during the early stages, which is

also confirmed by the original analysis in this dataset28. The median

Fig. 4 | MethylBERT analysis results for bulk samples. All boxplots represent the

median, the first and third quartiles, whereas the whiskers show the rest of the

distribution. A–C Tumour purity estimation and estimation adjustment results for

DLBCL pseudo-bulk samples (n = 20). A Absolute error between the ground-truth

and estimated tumour purity. B Performance comparison of different estimation

adjustment methods. The boxplot presents the absolute error. The number at the

bottom indicates themedian value in both (A) and (B).C Fisher Information values

andmean absolute error calculated for the pseudo-bulk sampleswith four different

region sets. Dots and lines indicate the mean value and the confidence interval

(95%) in each region set. D–E Cell type-specific methylation level reconstruction

within 100DMRs for 20 DLBCL pseudo-bulks (n = 2000). D Correlation calculated

with reference cell type-specific methylation level (top), and calculated with bulk

methylation level (bottom). EAbsolute error calculated with referencemethylation

levels (purple), and calculated with bulk methylation levels (green). In (B) and (E)

statisticswerecomputedusing a two-sidedpaired t-testwithBonferroni correction.

F Methylation level comparison between prostate tumour, normal prostate epi-

thelium, T cell, B cell, andfibroblasts in the 250 regionsprovidedby the normal cell-

type methylation atlas23. Regions were clustered using the hierarchical clustering

algorithm. G Correlation between the estimated prostate epithelium proportion

(without tumour reference data) and estimated tumour purity (with tumour

reference data) by Houseman’s method for the lymph node samples (n = 15)

acquired from hormone-sensitive metastatic prostate cancer patients. The results

for MethylBERT and Loyfer et al.’s deconvolution methods are coloured blue and

grey, respectively. H Cell-type deconvolution results for leukocyte samples

between MethylBERT and Loyfer et al.’s method. In (D) and (H) the two-sided p-

value represents the probability that the absolute correlation coefficient of a ran-

domsample fromanuncorrelated population is greater than the absolute value of a

given correlation coefficient, as implemented in the Scipy package48.
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tumour purity value estimated by MethylBERT is higher in every stage

of PDAC cohorts than in healthy donors. Among the early-stage

patients, stage IIB showed a statistically significant difference from the

healthy donors. Overall, in both CRC and PDAC ctDNA analyses, all

early-stage cancer patient samples except for CRC stage II have a

median value lower than 0.01 demonstrating the necessity of sensitive

sequencing-based tumour cell fraction estimation models in ctDNA

methylation analysis.

Discussion
DNA methylation undergoes profound changes during

tumorigenesis1,29 resulting in highly specific methylation patterns in

tumour cells. Sequencing data is particularly valuable in this respect,

since it offers DNAm patterns at single-molecule resolution, broad

genomic coverage and the preservation of rare cell-type signals.

Aiming to fully utilise the potential of sequencing-based data, we

developed MethylBERT, a Transformer-based model for read-level

tumour methylation pattern identification. Based on the estimated

posterior probability by the MethylBERT model, the tumour purity of

each bulk sample can be inferred by maximum likelihood estimation.

The estimated purity can be adjusted for amore accurate inference by

considering region-wise tumour purity estimation.

In the benchmarking using simulated read-level methylation pat-

terns with different scenarios, MethylBERT achieved the best perfor-

mance regardless of methylation pattern complexity, read length and

read coverage. Our benchmarking results demonstrate not only the

accurate read classification and tumour purity estimation performed

by MethylBERT in varying experiments but also provide in-depth

analyses of BERT pre-training and the dynamics of the estimated

posterior probability during model training. Moreover, MethylBERT is

capableof deconvolvingbulk samples intomultiple cell types aswell as

distinguishing some early-stage cancer patients from healthy donors

using blood plasma samples. This assures the applicability of Methyl-

BERT as a cell-type deconvolution model as well as in the context of

Fig. 5 | Estimation of tumour fraction in plasma cell-free DNA. All boxplots

represent the median, the first and third quartiles, whereas the whiskers show the

rest of the distribution. A Tumour purity estimation of simulated pseudo-bulk

samples (n = 10) with a low percentage of tumour DNA. Distribution of absolute

percentage error values in each method. B Comparison of ground-truth and esti-

mated tumour purities in each method. For each comparison, Spearman’s corre-

lation is given with a respective p-value. The error bars indicate a 95% confidence

interval. The two-sided p-values were calculated with a null hypothesis that two

samples do not have an ordinal correlation, as implemented in the Scipy package48.

C, D Tumour cell fraction estimation results in ctDNA samples (C) from CRC

patients and (D) PDAC patients (Supplementary Fig. 6 provides the sample size

information). Both analyses include healthy donors as well. The median of esti-

mated tumour purities in each stage is written at the top of the box plot. Two-sided

Mann–Whitney–Wilxcoxon test p-values between each stage and healthy donors

are denoted with stars. ‘*’, ‘**’ and ‘***’ mean p-value ≤0.05, ≤0.01, and ≤0.001,

respectively.
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early cancer detection. We are convinced that MethylBERT will

become a valuable tool in the field of cancer research and oncology,

extending the usability of various types of DNAm sequencing data.

MethylBERT is agnostic with respect to the source of read-level

methylation data, and can be applied to both solid tumour tissues and

blood plasma samples as well as non-cancerous bulk methylomes,

unlike previous methods that focused on only specific sample

types15,16,30.

In the future, different extensions ofMethylBERT are possible.We

are currently working on a computationally more efficient version of

the MethylBERT model with a reduced number of parameters. This

model optimization is particularly important for applications

with long-read sequencing data31,32. Based on the results of read-level

methylation classificationwith 500bp-long simulated reads,webelieve

thatMethylBERT can handle differentially methylated patterns being a

part of a read-level sequence, and will facilitate accurate and robust

analyses of tumour-specific methylation patterns in long reads.

Methods
MethylBERT model
The aim of MethylBERT is to classify sequence reads with their CpG

methylationpatterns and sequence intodichotomous cell-type-related

classes, e.g., tumour or normal. Applied to a set of genomic regions, it

also provides a global maximum likelihood estimate of cell-type pro-

portions for the two classes, e.g., tumour purity in the tumour-normal

deconvolution scenario.

BERT model. The basis of MethylBERT is the BERT model which has

achieved groundbreaking progress in various natural language pro-

cessing studies33,34. Transformers35 in the BERT model take the atten-

tionmechanism resembling human cognitive attention andmap given

query (Q), key (K) and value (V ) sequences to an output sequence.

Transformers particularly use scaled dot-product attention, where the

dot-product of query and key sequences are scaled by the inverse

square root of the dimension of key vectors (dk):

AttentionðQ,K ,V Þ= sof tmax
QKT

ffiffiffiffiffiffi

dk

p

 !

V : ð1Þ

The scale factor enables the model to avoid an extremely large

magnitude of multiplied value which especially occurs with a long

sequence input. Multi-head attention which concatenates H multiple

attentions calculated from the weighted query, key and value

sequences is a major advantage of Transformers in learning different

projections of these three sequences:

Ai =Attentioni QWQ
i, KW

K
i, VW

V
i

� �

, ð2Þ

Multi� head attentionðQ, K , V Þ=ConcatenationðA1, :::,AHÞW
O ð3Þ

where Ai refers to an attention head. In every attention head, given

query, key and value matrices are projected using the parameter

matricesWQ
i,W

K
i andWV

i. Then, multi-head attention is created as a

concatenation of all H attention heads projected using another

parameter matrixWO.

Wemodified theBERTmodel to processDNA sequence fragments

and sequentialmethylation patterns (Supplementary Fig. 1). Originally,

BERT needs three types of input embeddings: token embeddings,

segment embeddings and position embeddings. In MethylBERT, we

replaced the token embeddings assigned for tokenised words with

DNA token embeddings. The segment embeddings indicate the sen-

tence label of each token and are used for next sentence prediction

(NSP). Instead, for MethylBERT, we created methylation embeddings

for encodedmethylation patterns. The position embeddings were also

used in MethylBERT to guide the position of tokens in the

sequence read.

Pre-training methylBERT. As described above, BERT requires long

pre-training to learn the general context of input data and avoids

heavily engineered task-specific architectures for every specific task.

We use the Masked Language Model (MLM) for pre-training while the

original BERT method performs pre-training of the model via both

MLM and NSP14. NSP is known to make the BERT model understand

semantic dependencies across sentences36, however, sincewe focus on

the methylation pattern of unpaired reads, NSP was disregarded for

MethylBERT pre-training. The overall pre-training scheme to use

3-mers for MLM is inspired by DNABERT19.

We split the hg19 genome into 510 bp segments and generated a

3-mer sequence of each segment, and the 3-mer segment is referred to

as a token. While Ji et al. randomly sampled the read length between 5

and 510with a certain probability for DNABERT19, we used a fixed value

of the sequence length 510 since it did not make a major performance

change. For pre-training, we only applied aMLMby randomlymasking

15% of 3-mers. Three masking schemes were employed following the

original BERT paper14: 80% of selected 3-mers were masked with

[MASK] token, 10% were replaced with another randomly chosen

token, and the rest was unchanged. We masked left and right tokens

together with the selected token in order to prevent a biased model

predicting themasked token fromneighbouring tokens. 3-mers tokens

have 69 labels in total includingfive special tokens. A categorical cross-

entropy loss Lpre�training was calculated over all tokens t 2 f1:::Tg for

every step of the model optimisation:

Lpre�training = �
X

T

t = 1

X

69

l = 1

mtyt l logðŷ
t
lÞ ð4Þ

where yt l and ŷ
t
l refer to as one-hot encoded value of label l in token t

and corresponding logit value calculated by the MethylBERT model.

mt is a binary value indicating whether token t is masked or not.

We pre-trained the MethylBERT model for 120 k steps including

10 k warm-up steps and 20 k decrease steps at the end of the training

with a learning rate of 4e–4. The batch size was set to 256 and the

gradient was accumulated over 4 steps. In the network architecture,

the hidden layer had a size of 768 and the baseline model had 12

encoder layerswith 12 attention heads. However, since the smaller size

BERT models performed similarly to the baseline model in the read

classification analysis using simulated data, we used 6 encoder layers

of the MethylBERT model for 500 bps read analysis (Supplementary

Fig. 7). AdamWoptimiser37 was used with decay rate 0.01, β1 =0.9 and

β2 =0.98 values. Since reference genomes do not have methylation

patterns, we filled the methylation embeddings up with zeros during

pre-training.

Fine-tuning for read-level methylation pattern classification. For

fine-tuning, the encoder network in MethylBERT encodes a read-level

reference DNA sequence and CpG methylation patterns (Supplemen-

tary Fig. 1). Although reference DNA sequences do not contain any

tumour-specific genetic information, they carry the exact position of a

read in a given region as well as sequence features associated with

specific methylation patterns. This information is necessary for the

model to learn which CpGs are more likely to show tumour-specific

signals. Previous studies also have pointed out that integrated infor-

mation of DNA sequences andmethylation can improvemodelling16,38.

DNA sequence fragments from reads are processed into 3-mer

sequences as described in the previous section. The input length was

reduced to 150 due to the shorter sequence read length. In order to

represent CpGmethylomes, three numbers were used formethylation

pattern encoding: 0 for unmethylated CpGs, 1 for methylated CpGs,
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and 2 for non-CpGs. CpG methylation patterns were assigned to the

3-mers where the cytosine of CpG is located in the middle.

The encoder part of the MethylBERT network takes DNA,

methylation and position embeddings, and generates an encoded

vector of sequence length× 768 dimension. This vector is con-

catenated with DMR information embedded into a space of dimension

sequence length, and the following the cell-type classifier calculates

the posterior probabilities of cell types using the concatenated vec-

tors. The DMR label is provided as information to determine region-

wise tumour-specificmethylome profile. The cell type with the highest

posterior probability is determined as the classification outcome.

The MethylBERT model was fine-tuned over 600 or 1000 steps

with a learning rate of 4e–4. We used the same optimisation scheme as

for pre-training but applied the cross-entropy loss on the cell-type

label for read-level methylome classification:

Lf ine�tuning = �
X

R

r = 1

X

c2fT ,Ng

mr, c log
expðxc

rÞ
P

c02fT ,Ng expðx
c0
rÞ

ð5Þ

where xc
r is the final activation for the cell type c (T=tumour, N=nor-

mal) for each read r:mr, c is a binary value from one-hot encoded cell-

type label c. The logits are normalised with a softmax function before

the cross-entropy loss is calculated.

Tounderstand the timecomplexity ofMethylBERTfine-tuning,we

provide the running time of MethylBERT by the number of encoder

layers and number of GPUs in Supplementary Fig. 9. Using 541,000

reads for the training set and 135,000 reads for the validation setwith a

batch size of 600, four GPUs (Nvidia V100 SXM2 32GB) achieved the

best time performance. However, we note that deep neural network

training highly depends on the batch size set up and hardware speci-

fications. For instance, increasing batch size could reduce the running

time for 6–8 GPUs in Supplementary Fig. 9. This will result in faster

training for the case of using 6–8GPUs thanusing 4GPUs, thus a larger

batch size is recommended when users have a sufficient number of

GPUs. Moreover, after one-time fine-tuning, the trained MethylBERT

can be used for tumour purity estimation of several bulks indepen-

dently and this takes amuchshorter time. For instance, the tumour cell

fraction estimation for one CRC ctDNA sample needed only less than

5min with one GPU.

Tumour purity/fraction estimation
Since the proportions of the tumour and non-tumour compartments

sum up to one, we used a single-parameter likelihood function to

estimate the best tumour purity ^δ from collected reads fr1, :::, rNg:

L δð Þ =
Y

N

i= 1

δP rijcell type=Tumour
� �

+ 1� δð ÞP rijcell type=Normal
� �� �

, ð6Þ

^δ =argmaxδLðδÞ: ð7Þ

TheMethylBERTmodel calculates only the posterior probabilities

of cell types given a read, so Bayes’ theorem is applied to calculate the

posterior probability of a read assuming that every read has the same

marginal probability:

Pðrijcell type =TÞ / Pðcell type=T jriÞP cell type=Tð Þ
�1 ð8Þ

The prior probability of the cell types is calculated from the

training dataset used for fine-tuning. For less complex likelihood

computation and the Fisher information calculation, we use the log-

likelihood function for maximum likelihood estimation. We employ a

grid-search algorithm to find the optimal parameter ^δ increasing the δ

value by 0.0001 from zero to one.

As shown in Supplementary Fig. 8A, the ratio of tumour-derived

reads in DMRs does not have a symmetric distribution when tumour-

normal cell types do not have an equal proportion. This is also shown

by the negative correlation between the ground-truth tumour purity

and the skewness of region-wise tumour purities (Supplementary

Fig. 8B). However, estimating the tumour purity only using the log-

likelihood function above assumes that tumour-derived reads are

equally distributed in every DMR. Therefore, we propose an adjust-

ment of estimated tumour purity to take the region-wise tumour

purities into account.

In a symmetric distribution, the skewness value is zero, thus we

find a mapping which minimises the skewness of region-wise tumour

purities to adjust the tumour purity. Let W = fW 1, :::, WK g be para-

meters of the mapping for the estimated tumour purity in K regions,

δ = fδ1, :::, δK g. Assuming that the DMR k includes N reads,

frk 1, :::, r
k
Ng, the region-wise tumour purity δk is calculated as:

δk =argmaxδ
Y

rk i2fr
k
1 , :::, r

k
N g

�

δPðrk ijcell type=TumourÞ

+ ð1� δÞP
�

rk ijcell type=Normal
��

:

ð9Þ

The skewness of region-wise tumour purities can be calculated via

the adjusted Fisher-Pearson standardised moment coefficient:

G1ðδÞ=
m3ðδÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KðK � 1Þ
p

m2ðδÞ
3=2

ðK � 2Þ
, mtðδÞ=

1

K

X

K

i = 1

ðδi � μÞ
t

ð10Þ

where μ is the sample mean of region-wise tumour purities, 1
K

PK
i = 1δi.

Therefore, the mapping parameters W are optimised to minimise the

skewness of region-wise tumour purities as follows:

Ŵ =argminWG1ðW°δÞ=argminWG1ðfW 1δ1, :::, WKδK gÞ ð11Þ

whereW°δ refers to the element-wisemultiplication of two vectorsW

and δ. The expectation-maximisation (EM) algorithm is used to find

the optimal mapping parameters Ŵ . Once the best mapping is found,

we assume that the distribution of region-wise estimates is symmetric

and determine the final estimation of tumour purity as themean value

of mapped region-wise tumour purities:

^δ =
1

K
Ŵ

>
δ: ð12Þ

TheFisher information indicates the amount of informationabout

a model parameter carried by observed variables. In other words, the

Fisher information is equivalent to an estimate of the model

precision22. It is calculated as the variance of the derivative of the log-

likelihood function with respect to the model parameter:

FIðδÞ=Var
∂

∂δ
logLðδÞ

	 


: ð13Þ

When the tumour purity adjustment is applied, the Fisher infor-

mation cannot be calculated for the final estimation but in each region.

Therefore, in this case, MethylBERT provides the Fisher information

values as many as the number of selected DMRs.

Data preparation
Diffuse large B cell lymphoma WGBS data. Diffuse large B cell lym-

phoma (DLBCL) and non-neoplastic B-cell WGBS data were down-

loaded from the Gene Expression Omnibus (GEO) database with the

accession number GSE13788039. Eight samples from two DLBCL

patients and eight non-neoplastic B cell samples from twodonorswere

used for the experiments. From each subject, 4 samples were assigned

for the training and validation dataset and the rest were used for
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creating pseudo-bulks. All downloaded FastQ files were aligned with

hg19 reference genome by Bismark 0.22.340 after trimming using

TrimGalore 0.6.641, then duplicated reads were removed using picard

Mark Duplicates 1.141. We followed the whole pipeline specified in our

previous benchmarking study13. For Houseman’s method, the read-

level methylomes were converted into an array shape containing beta-

values by Methrix42. Since Methrix requires a bedGraph file not a BAM

file as an input, we converted the BAM files into a bedGraph file format

using MethylDackel (https://github.com/dpryan79/MethylDackel).

CRC and PDAC BS-seq data. To train each MethylBERT model for

ctDNA analysis derived from CRC and PDAC patients, we downloaded

single-cell BS-seq of CRC cells with the GEO accession number

GSE9769343 and WGBS of PDAC tissue with GSE6312344. Only part of

the CRC samples (341 cells) were downloaded as a training dataset.

Similarly, weutilised only a subset of the PDACdata set involving seven

samples collected from primary tumours in three different patients.

During the data processing to convert the FastQ files to BAM files, we

used TrimGalore 0.6.6 for adapter trimming and quality control.

Afterwards, the samples were aligned with the hg19 reference genome

using Bismark 0.22.3. Duplicate removal was done by picard Mark

Duplicates 1.141.

CRC, PDAC and control healthy ctDNA blood plasma data. For

ctDNA experiments, we downloaded targeted BS-seq of plasma samples

from gastrointestinal cancer patients and controlled healthy donors

with the GEO accession number GSE14943828. The downloaded dataset

includes samples from 46 healthy donors, 74 PDAC patients, and 40

CRC patients in different cancer stages. We only used 44 PDAC patients

whose cancer stage is clarified for the experiment. 32 healthy plasma

samples were used to fine-tune the MethylBERTmodel and the rest was

used as a comparison group in the tumour diagnosis analyses. We

processed the data in FastQ files via trimming using TrimGalore, align-

ment to hg19 using Bismark and duplicate removal using picard Mark

Duplicates. The samples were aligned with paired-end mode and the

unmapped reads were re-aligned with single-end mode.

DMR calling
Selecting informative regions with tumour-specific signals is vital in

tumour purity estimation. For MethylBERT, we pre-selected DMRs to

collect reads presenting informative methylation patterns. Tumour-

specific DMRs were called by comparing tumour samples to non-

tumour samples and the DSS package was used for the calling45.

Parameters were set up as follows: delta value 0.2, P-value threshold

0.05, minimum number of CpGs 4, minimum length 50bps and dis-

tance to merge 50bps. In all analyses, we picked the top 100 DMRs

based on the highest areaStat score. DSS performs a Wald test to

identify differentially methylated loci and the areaStat score is calcu-

lated by summing all the test statistics up within eachDMR. Therefore,

a higher value of areaStat is likely to secure a larger number of CpGs in

the region that are significantly differentially methylated between

tumour and normal cell types.

Read-level methylome simulation
Simulated read-level methylomes were used to mimic different sce-

narios of tumour-specific signals for the evaluation of methylation

pattern classification. We selected 100 CpG islands with the highest

number of CpGs as the regions where reads are sampled. For each

region, two mean methylation levels need to be assigned for tumour

and normal cell types. We sampled a tumour mean methylation value

di from a beta distribution whose β parameter is fixed to 5 and

assigned 1� di to a normal mean methylation value. Then, read-level

methylation patterns were sampled from a binomial distribution with

the probability 1� di and di for normal and tumour cell types,

respectively. The entire mechanism of sampling a read-level

methylomewith K CpGs,mT = fmT
1, :::, m

T
K g for tumour cell type and

mN = fmN
1, :::, m

N
K g for normal cell type, is described as follows:

di � Beta α,β= 5ð Þ, ð14Þ

m
T � Binomial n=K, p=di

� �

, ð15Þ

m
N � Binomialðn =K ,p= 1� diÞ ð16Þ

where α and β are two shape parameters of the beta distribution, while

n and p are the number of trials and the success probability of one trial

in the binomial distribution.

Four different α values, 0.1, 1.0, 2.0 and 3.0, were used in the beta

distribution to model different complexities of methylation patterns.

Since a larger alpha value increases the variance of the beta distribu-

tion with a fixed beta value, it is more likely that a lower tumour

methylation value di will be sampled. This makes a higher methylation

value 1 � di assigned to normal cell type. The smaller gap between di

and 1 � di forms more complex methylation patterns between

tumour and normal cell types (Supplementary Fig. 2).

When CpG-specific methylation patterns are sampled (Supple-

mentary Fig. 2D), di and 1 � di are assigned to the odd and even

indices of CpGs. Therefore, in this simulation, the averagemethylation

level between tumour and normal cell types do not significantly differ,

but still have cell type-specific methylation patterns.

Evaluation of read classification performance
The read classification performance evaluation includes an HMM-

based algorithm. We designed the HMM to take methylation patterns

as anobservation, thus the observationhas two categories:methylated

and unmethylated CpGs. The hidden state is also a two-categorical

variable with the assumption of whether the CpG is differentially

methylated or not between tumour and normal cell types.

Although CancerDetector15 and DISMIR16 do not explicitly men-

tion ‘read classification’, CancerDetector calculates

Pðreadjcell type=TumourÞ whereas DISMIR has a ‘d-score’ that

quantifies the chance that a given read is derived from tumour cells as

interpreted by the authors. Therefore, we conducted read classifica-

tion for those methods by assigning every read to the tumour class

when the probability or d-score > 0.5.

In Fig. 2D, E and Supplementary Fig. 2, we evaluated MethylBERT

read classification with different read coverage of the training set and

the results show that MethylBERT can classify reads accurately in the

case that the samplemean cannot represent the populationmeanwell

due to the low coverage. The standard error of the mean (SEM) was

used for measuring how likely sample means of simulated read-level

methylation patterns represent the real population mean. The SEM

was calculated over the average methylation level of reads in each

region.

Prostate epithelium proportion analysis for the lymph node
sample acquired from prostate cancer patients
We collected 15 lymph node samples from hormone-sensitive meta-

static prostate cancer patients and generated both WGBS and 450K

array data. The 450K data were processed following46, while theWGBS

data were processed following the DLBCL data preprocessing. For the

array-based deconvolution methods21,25–27, in-house prostate tumour

and epithelial cell reference (as described in ref. 47) and additional cell

types acquired from GEO (with the accession numbers GSE35069,

GSE86258, GSE74877, GSE71837, GSE49667 and GSE87797) were used:

monocytes, B cells, T cell, natural killer cells, granulocytes, fibroblasts,

endothelium and mesenchymal stromal cells.

MethylBERT was trained with samples collected from the

normal cell type atlas23 (details are given in Supplementary
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Table 4) not using any tumour reference data. The code is avail-

able at https://github.com/CompEpigen/wgbs_atlas_simulation.

git. Instead of tumour reference data, we used four prostate

epithelium samples, whereas we used two blood T cell, two blood

B-cell, and one colon fibroblast samples for the normal cell-type

label considering the composition of normal lymph node bulks.

For DMRs, we used the top 250 hypomethylated regions in

prostate epithelium cells provided by the atlas. After the fine-

tuning, we performed prostate epithelium proportion estimation

with the WGBS data from the lymphoma samples.

Leukocyte subtypes deconvolution
We downloaded leukocyte WGBS samples collected from 23 healthy

donors provided by the normal cell-type methylation atlas23. For the

MethylBERT fine-tuning, we used two samples for each blood cell type

as training data (details are given in Supplementary Table 5). Since the

atlas only provides .pat file format, not raw sequence data, we con-

verted the .pat files to read-level methylomes. The code is available on

our GitHub repository (https://github.com/CompEpigen/wgbs_atlas_

simulation.git).

We used 4 encoder layers and set all hyperparameters as descri-

bed above, but increased the sequence length to 160. For the loss

function, the focal loss47 was used instead of the cross-entropy loss

because multiple cell types make an imbalanced read distribution in

terms of corresponding and non-corresponding cell types in each

DMR. For example, in tumour purity estimation, tumour and normal

cell types comprise roughly 50% of reads in each DMR in the case that

both cell-type reference data have similar read coverage. Yet, if we

want to perform five cell-type deconvolution, the corresponding cell

type and non-corresponding cell types make up roughly 20% and 80%

of the distribution in each DMR. This is called a class imbalance pro-

blem and often impedes deep neural network training. Focal loss was

proposed to alleviate this problem by introducing a factor adjusting

the loss value according to the misclassification. We followed the ori-

ginal implementation of the focal loss:

p = σ xc
r

� �

, ð17Þ

Lf ocal�lossðx
c
rÞ=

�α � ð1� pÞγ � logðpÞ ifc= corresponding cell type

�ð1� αÞ � pγ � logðpÞ otherwise, :

�

ð18Þ

where xc
r is the final activation for the cell type c for each read r.

Although we used the softmax function in tumour purity estimation,

here, we used the sigmoid function σð�Þ following the original imple-

mentation. The authors explained that sigmoid operation shows better

numerical stability. γ and α are hyperparameters of the focal loss

function and were set up as 2 and 0.1 for the leukocyte deconvolution.

After classifying sequence reads, we applied a new likelihood

function to estimate the proportion of C cell types, θ= fθ1, :::, θCg:

L θð Þ=
Y

c

c= 1

Y

ri2Rc

θcP ri cell typec
�

�

� �

+ 1� θc

� �

1� P rijcell typec
� �� �� �

ð19Þ

^θ=argmaxθL θð Þ, ð20Þ

whereRc is a groupof reads classified into cell type cwhich iswritten as

cell typec in Eq. (19).

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
All data sets used in the studywere downloaded fromGene Expression

Omnibus (GEO). DLBCL WGBS data was downloaded with the acces-

sion number GSE137880, and ctDNA blood plasma samples (targeted

BS-seq) were downloaded with the accession number GSE149438. The

colorectal cancer (scBS-seq) and pancreatic cancer (WGBS) samples

were downloaded with the accession numbers GSE97693 and

GSE63123, respectively. All samples we downloaded from the normal

cell atlas are available with the accession number GSE186458.

Lymph node metastasis samples from prostate cancer patients

are uploaded to the European Genome-Phenome Archive under

the ID EGAS50000000806. Source data are provided with this paper.

Code availability
The read-level methylation simulation code is available at https://github.

com/CompEpigen/methylseq_simulation (https://doi.org/10.5281/

zenodo.14025025). The normal cell-type atlas data processing code is

available at https://github.com/CompEpigen/wgbs_atlas_simulation.git

(https://doi.org/10.5281/zenodo.14025054). The MethylBERT code and

package are available at https://github.com/CompEpigen/methylbert

(https://doi.org/10.5281/zenodo.14025052) and https://pypi.org/project/

methylbert/.
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