001     299862
005     20250325163310.0
024 7 _ |2 doi
|a 10.48550/ARXIV.2502.20985
037 _ _ |a DKFZ-2025-00592
100 1 _ |0 P:(DE-He78)936ebccdc011e3efd9ffc0bdcc2d8379
|a Rokuss, Maximilian
|b 0
|e First author
|u dkfz
245 _ _ |a LesionLocator: Zero-Shot Universal Tumor Segmentation and Tracking in 3D Whole-Body Imaging
260 _ _ |b arXiv
|c 2025
336 7 _ |0 PUB:(DE-HGF)25
|2 PUB:(DE-HGF)
|a Preprint
|b preprint
|m preprint
|s 1742908301_26915
336 7 _ |2 ORCID
|a WORKING_PAPER
336 7 _ |0 28
|2 EndNote
|a Electronic Article
336 7 _ |2 DRIVER
|a preprint
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DataCite
|a Output Types/Working Paper
500 _ _ |a License: CC BY-NC-SA 4.0
520 _ _ |a Abstract: This archive contains the Lesion Dataset with Synthetic Follow-ups, which provides original and synthetic second-timepoint images with annotations as part of the LesionLocator paper, a framework for zero-shot universal tumor segmentation and tracking in 3D whole-body imaging. The dataset is approximately 700 GB in size and contains around 5,200 images. It is designed to support research in lesion tracking, segmentation, and progression analysis. Lesions are annotated with instance-based labels, ensuring consistent lesion identification across both timepoints. The dataset includes images sourced from multiple publicly available datasets, covering a variety of lesion types and anatomical regions. Due to constraints related to image size, quality, or licensing, not all images were included in the final dataset. This dataset is particularly well suited for pretraining or for use in combination with real longitudinal imaging data to improve model generalization. For longitudinal tracking tasks, we recommend introducing image misalignment through data augmentation, such as cropping one timepoint, to better simulate real-world conditions. A more detailed description of the dataset is available in the paper or the archive, downloadable via the "Fulltext" link at the bottom of the page.
536 _ _ |0 G:(DE-HGF)POF4-315
|a 315 - Bildgebung und Radioonkologie (POF4-315)
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |2 Other
|a Computer Vision and Pattern Recognition (cs.CV)
650 _ 7 |2 Other
|a Artificial Intelligence (cs.AI)
650 _ 7 |2 Other
|a FOS: Computer and information sciences
700 1 _ |0 P:(DE-He78)11abdd498226fde3e6b67ba107bf4e83
|a Kirchhoff, Yannick
|b 1
|u dkfz
700 1 _ |0 P:(DE-He78)be4d0bbacce2cd31fc4287ad4e66edd1
|a Akbal, Seval
|b 2
|u dkfz
700 1 _ |0 P:(DE-He78)6bfeb1f4178c095061573c14780e1377
|a Kovacs, Balint
|b 3
|u dkfz
700 1 _ |0 P:(DE-He78)e2245a7841121bee37e036c68b55ec94
|a Roy, Saikat
|b 4
|u dkfz
700 1 _ |0 P:(DE-He78)1bf529d39d90e30ceb901da6e5816185
|a Ulrich, Constantin
|b 5
|u dkfz
700 1 _ |0 P:(DE-He78)4412d586f86ca57943732a2b9318c44f
|a Wald, Tassilo
|b 6
|u dkfz
700 1 _ |0 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
|a Rotkopf, Lukas T.
|b 7
|u dkfz
700 1 _ |0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|a Schlemmer, Heinz-Peter
|b 8
|u dkfz
700 1 _ |0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|a Maier-Hein, Klaus
|b 9
|e Last author
|u dkfz
773 _ _ |a https://doi.org/10.48550/arXiv.2502.20985
|t arXiv
|y 2025
856 4 _ |u https://doi.dkfz.de/10.6097/DKFZ/IR/E230/20250324_1.zip
909 C O |o oai:inrepo02.dkfz.de:299862
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)936ebccdc011e3efd9ffc0bdcc2d8379
|a Deutsches Krebsforschungszentrum
|b 0
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)11abdd498226fde3e6b67ba107bf4e83
|a Deutsches Krebsforschungszentrum
|b 1
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)be4d0bbacce2cd31fc4287ad4e66edd1
|a Deutsches Krebsforschungszentrum
|b 2
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)6bfeb1f4178c095061573c14780e1377
|a Deutsches Krebsforschungszentrum
|b 3
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)e2245a7841121bee37e036c68b55ec94
|a Deutsches Krebsforschungszentrum
|b 4
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)1bf529d39d90e30ceb901da6e5816185
|a Deutsches Krebsforschungszentrum
|b 5
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)4412d586f86ca57943732a2b9318c44f
|a Deutsches Krebsforschungszentrum
|b 6
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
|a Deutsches Krebsforschungszentrum
|b 7
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|a Deutsches Krebsforschungszentrum
|b 8
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|a Deutsches Krebsforschungszentrum
|b 9
|k DKFZ
913 1 _ |0 G:(DE-HGF)POF4-315
|1 G:(DE-HGF)POF4-310
|2 G:(DE-HGF)POF4-300
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Gesundheit
|l Krebsforschung
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21