000304283 001__ 304283
000304283 005__ 20250903114815.0
000304283 0247_ $$2doi$$a10.1186/s13014-025-02716-6
000304283 0247_ $$2pmid$$apmid:40890739
000304283 037__ $$aDKFZ-2025-01823
000304283 041__ $$aEnglish
000304283 082__ $$a610
000304283 1001_ $$0P:(DE-He78)4a6ee21a126327649b526280172cffaf$$aKafkaletos, Athanasios$$b0$$udkfz
000304283 245__ $$aSurrogating tumour cell density in head and neck cancer: [18F]FDG PET- versus ADC (MRI)-based approaches.
000304283 260__ $$aLondon$$bBioMed Central$$c2025
000304283 3367_ $$2DRIVER$$aarticle
000304283 3367_ $$2DataCite$$aOutput Types/Journal article
000304283 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756819063_26697
000304283 3367_ $$2BibTeX$$aARTICLE
000304283 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000304283 3367_ $$00$$2EndNote$$aJournal Article
000304283 520__ $$aIn this study we examined the correlation between standardized uptake value (SUV) of [18F]fluorodeoxyglucose (FDG) and apparent diffusion coefficient (ADC) within the gross tumor volume (GTV) of patients with head and neck squamous cell carcinoma (HNSCC). In addition, we assessed the comparability of cell density (ρ) estimates obtained from FDG PET and MRI data.Twenty-one HNSCC patients from a prospective FMISO imaging trial underwent pre-treatment PET/CT and MRI. We assessed correlations between FDG SUV (mean, max) and ADC (mean, min) within the GTV using Pearson's correlation coefficient. The tumor cell density within the GTV was calculated from FDG SUV and from ADC maps. For the estimation of ADC-based cell density, we used a published tumor cell volume fraction (vTC). Agreement between FDG- and ADC-derived cell density estimates was assessed. The best-fitting vTC* was computed to achieve equal mean ρADC and ρFDG for each patient and was compared to the literature.The SUV and ADC metrics showed up to moderate negative correlations, but none of them were statistically significant at p < 0.05. The correlation of SUVmean vs. ADCmean with Pearson's correlation coefficient r = -0.426 and p = 0.054 and SUVmax vs. ADCmin with r = -0.414 and p = 0.062 suggested a weak negative trend. The average and standard deviation of mean ρFDG and ρADC across our cohort were (1.8 ± 0.6) × 108 cells/ml and (3.3 ± 0.2) × 108 cells/ml. The difference between the mean ρFDG and ρADC was statistically significant (p < 0.001). To achieve equal mean ρADC and ρFDG for each patient, the mean optimal vTC* with standard deviation was 0.29 ± 0.09. Although significantly lower than the published mean vTC​ (0.54), vTC* lies within the published range of vTC for HNSCCs (0.28 to 0.75).ADC and SUV metrics exhibited moderate but marginally insignificant correlation in this dataset. Although not directly interchangeable, the two methods provide comparable, clinically relevant cell density estimates, offering flexibility to use the most accessible modality for individualized treatment planning.Registered at German Clinical Trials Register on 20/08/2015 (DRKS00003830).
000304283 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000304283 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000304283 650_7 $$2Other$$aADC
000304283 650_7 $$2Other$$aCell density
000304283 650_7 $$2Other$$aFDG
000304283 650_7 $$2Other$$aHNSCC
000304283 650_7 $$00Z5B2CJX4D$$2NLM Chemicals$$aFluorodeoxyglucose F18
000304283 650_7 $$2NLM Chemicals$$aRadiopharmaceuticals
000304283 650_2 $$2MeSH$$aHumans
000304283 650_2 $$2MeSH$$aFluorodeoxyglucose F18
000304283 650_2 $$2MeSH$$aHead and Neck Neoplasms: pathology
000304283 650_2 $$2MeSH$$aHead and Neck Neoplasms: diagnostic imaging
000304283 650_2 $$2MeSH$$aMale
000304283 650_2 $$2MeSH$$aMiddle Aged
000304283 650_2 $$2MeSH$$aFemale
000304283 650_2 $$2MeSH$$aRadiopharmaceuticals
000304283 650_2 $$2MeSH$$aAged
000304283 650_2 $$2MeSH$$aProspective Studies
000304283 650_2 $$2MeSH$$aSquamous Cell Carcinoma of Head and Neck: diagnostic imaging
000304283 650_2 $$2MeSH$$aSquamous Cell Carcinoma of Head and Neck: pathology
000304283 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000304283 650_2 $$2MeSH$$aPositron Emission Tomography Computed Tomography: methods
000304283 650_2 $$2MeSH$$aPositron-Emission Tomography: methods
000304283 650_2 $$2MeSH$$aAdult
000304283 650_2 $$2MeSH$$aDiffusion Magnetic Resonance Imaging: methods
000304283 650_2 $$2MeSH$$aTumor Burden
000304283 7001_ $$0P:(DE-HGF)0$$aSachpazidis, Ilias$$b1
000304283 7001_ $$0P:(DE-HGF)0$$aMix, Michael$$b2
000304283 7001_ $$aCarles, Montserrat$$b3
000304283 7001_ $$0P:(DE-He78)75b4c256a6de824414938cf2aaeff88e$$aStoian, Raluca$$b4
000304283 7001_ $$0P:(DE-HGF)0$$aSchäfer, Henning$$b5
000304283 7001_ $$0P:(DE-He78)b73d3da775f9acf32d0b1544780edb6e$$aBock, Michael$$b6
000304283 7001_ $$0P:(DE-HGF)0$$aBaltas, Dimos$$b7
000304283 7001_ $$0P:(DE-HGF)0$$aGrosu, Anca L$$b8
000304283 773__ $$0PERI:(DE-600)2224965-5$$a10.1186/s13014-025-02716-6$$gVol. 20, no. 1, p. 137$$n1$$p137$$tRadiation oncology$$v20$$x1748-717X$$y2025
000304283 909CO $$ooai:inrepo02.dkfz.de:304283$$pVDB
000304283 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4a6ee21a126327649b526280172cffaf$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000304283 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000304283 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000304283 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)75b4c256a6de824414938cf2aaeff88e$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000304283 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000304283 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b73d3da775f9acf32d0b1544780edb6e$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000304283 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000304283 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000304283 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000304283 9141_ $$y2025
000304283 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRADIAT ONCOL : 2022$$d2024-12-18
000304283 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000304283 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000304283 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:44:48Z
000304283 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:44:48Z
000304283 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:44:48Z
000304283 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000304283 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000304283 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000304283 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
000304283 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-18
000304283 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
000304283 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000304283 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
000304283 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-18
000304283 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-18
000304283 9201_ $$0I:(DE-He78)FR01-20160331$$kFR01$$lDKTK Koordinierungsstelle Freiburg$$x0
000304283 980__ $$ajournal
000304283 980__ $$aVDB
000304283 980__ $$aI:(DE-He78)FR01-20160331
000304283 980__ $$aUNRESTRICTED