001     304974
005     20251005022911.0
024 7 _ |a 10.1007/s00401-025-02939-7
|2 doi
024 7 _ |a pmid:41014355
|2 pmid
024 7 _ |a 0001-6322
|2 ISSN
024 7 _ |a 1432-0533
|2 ISSN
024 7 _ |a altmetric:181770773
|2 altmetric
037 _ _ |a DKFZ-2025-01965
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Jürgensen, Liv
|b 0
245 _ _ |a In silico purification improves DNA methylation-based classification rates of pediatric low-grade gliomas.
260 _ _ |a Heidelberg
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1759230987_31252
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a DNA methylation-based classification using the Heidelberg Classifier is a state-of-the-art data-driven method for molecular diagnosis of central nervous system (CNS) tumors. However, many pediatric low-grade glioma (pLGG) samples fail to yield a confident methylation-based classification, often suspected due to low tumor cell content. Here, we present a rapid, reference-based in silico purification framework that systematically removes the epigenetic signatures of five non-malignant cell types-microglia, monocytes, neutrophils, T cells, and neurons-from tumor profiles to enable classification of previously non-classifiable pLGG samples. To validate our approach, we analyzed paired DNA methylation profiles from the same biopsy, where one was initially classifiable and the other was not. After purification, predictions for all newly classifiable samples matched the classification of their corresponding initially classifiable counterparts (9/9, 100%). Application of our method to two independent pLGG cohorts allowed confident classification in 24.1% (26/108) and 22.7% (5/22) of previously non-classifiable cases. In conclusion, our in silico purification framework enables confident classification of previously non-classifiable pLGG samples, supporting accurate molecular diagnosis and timely clinical decision-making, and can seamlessly be integrated into current classification workflows. Its independence from tumor type, classifier, and reference signatures further suggests the potential for broader application to other low-purity tumor types.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Cancer
|2 Other
650 _ 7 |a Classification
|2 Other
650 _ 7 |a DNA methylation
|2 Other
650 _ 7 |a In silico purification
|2 Other
650 _ 7 |a Machine learning
|2 Other
650 _ 7 |a Pediatric low-grade glioma
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a DNA Methylation
|2 MeSH
650 _ 2 |a Glioma: genetics
|2 MeSH
650 _ 2 |a Glioma: classification
|2 MeSH
650 _ 2 |a Glioma: pathology
|2 MeSH
650 _ 2 |a Glioma: diagnosis
|2 MeSH
650 _ 2 |a Child
|2 MeSH
650 _ 2 |a Brain Neoplasms: genetics
|2 MeSH
650 _ 2 |a Brain Neoplasms: classification
|2 MeSH
650 _ 2 |a Brain Neoplasms: pathology
|2 MeSH
650 _ 2 |a Brain Neoplasms: diagnosis
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Computer Simulation
|2 MeSH
650 _ 2 |a Child, Preschool
|2 MeSH
650 _ 2 |a Adolescent
|2 MeSH
650 _ 2 |a Infant
|2 MeSH
700 1 _ |a Benfatto, Salvatore
|b 1
700 1 _ |a Schmid, Simone
|0 P:(DE-He78)6e4a8cc4eb35e694f95453ed8a927a83
|b 2
700 1 _ |a Daenekas, Bjarne
|b 3
700 1 _ |a Großer, Julia
|b 4
700 1 _ |a Driever, Pablo Hernáiz
|b 5
700 1 _ |a Koch, Arend
|b 6
700 1 _ |a Capper, David
|0 P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c
|b 7
|u dkfz
700 1 _ |a Hovestadt, Volker
|b 8
773 _ _ |a 10.1007/s00401-025-02939-7
|g Vol. 150, no. 1, p. 34
|0 PERI:(DE-600)1458410-4
|n 1
|p 34
|t Acta neuropathologica
|v 150
|y 2025
|x 0001-6322
909 C O |o oai:inrepo02.dkfz.de:304974
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)6e4a8cc4eb35e694f95453ed8a927a83
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA NEUROPATHOL : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACTA NEUROPATHOL : 2022
|d 2024-12-11
920 1 _ |0 I:(DE-He78)BE01-20160331
|k BE01
|l DKTK Koordinierungsstelle Berlin
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)BE01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21